JPH05255176A - Production of monochloroacetic acid - Google Patents

Production of monochloroacetic acid

Info

Publication number
JPH05255176A
JPH05255176A JP4087609A JP8760992A JPH05255176A JP H05255176 A JPH05255176 A JP H05255176A JP 4087609 A JP4087609 A JP 4087609A JP 8760992 A JP8760992 A JP 8760992A JP H05255176 A JPH05255176 A JP H05255176A
Authority
JP
Japan
Prior art keywords
reaction
sulfuric acid
acid
trichloroethylene
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4087609A
Other languages
Japanese (ja)
Inventor
Akihiko Hiraiwa
明彦 平岩
Kanemasa Takashima
兼正 高島
Teruo Yoshida
照雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP4087609A priority Critical patent/JPH05255176A/en
Publication of JPH05255176A publication Critical patent/JPH05255176A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To increase a reaction rate, to suppress formation of by-products and to effectively obtain the subject compound having a high reaction rate even by dropping reaction temperature and concentration of sulfuric acid in hydrolyzing trichloroethylene, etc., by adding a fluorine-containing cation exchange resin to the reaction system. CONSTITUTION:Trichloroethylene and/or 1,1,1,2-tetrachloroethylene is reacted in the presence of preferably 70-98.5wt.% sulfuric acid preferably at 50-200 deg.C by adding a fluorine-containing cation exchange resin to the reaction system to give the objective monochloroacetic acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はトリクロロエチレンまた
は/および1,1,1,2−テトラクロロエタン(以
下、テトラクロロエタンという)を加水分解してモノク
ロロ酢酸を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing monochloroacetic acid by hydrolyzing trichloroethylene or / and 1,1,1,2-tetrachloroethane (hereinafter referred to as tetrachloroethane).

【0002】[0002]

【従来の技術】モノクロロ酢酸は、カルボキシメチルセ
ルロースの合成原料、ビタミンB1 、B6 等の医薬、
2,4−ジクロロフェノキシ酢酸等の農薬、グリコール
酸、チオグリコール酸、マロン酸等の合成中間体、ある
いはキレート剤、界面活性剤等、幅広い用途を有する有
用な化合物である。
BACKGROUND OF THE INVENTION Monochloroacetic acid is a synthetic raw material for carboxymethyl cellulose, medicines such as vitamins B 1 and B 6 ,
It is a useful compound having a wide range of uses such as agricultural chemicals such as 2,4-dichlorophenoxyacetic acid, synthetic intermediates such as glycolic acid, thioglycolic acid and malonic acid, chelating agents and surfactants.

【0003】従来、モノクロロ酢酸の製造方法として、 (1)酢酸を塩素化する方法 (2)エチレンクロロヒドリン、クロロアセトアルデヒ
ド等の塩素化有機化合物を酸化する方法 (3)ケテンを塩素化してクロロアセチルクロライドと
して加水分解する方法 (4)トリクロロエチレンまたはテトラクロロエタンを
硫酸の存在下に加水分解する方法等が報告されている。
Conventionally, as a method for producing monochloroacetic acid, (1) a method of chlorinating acetic acid (2) a method of oxidizing chlorinated organic compounds such as ethylene chlorohydrin and chloroacetaldehyde (3) chlorination of ketene to chloro A method of hydrolyzing as acetyl chloride (4) A method of hydrolyzing trichloroethylene or tetrachloroethane in the presence of sulfuric acid has been reported.

【0004】しかしながら、(1)は、副生するジクロ
ロ酢酸が、製品中のモノクロロ酢酸に混入する等の問題
があり、また(2)および(3)は、使用原料が高価で
あり、反応工程が長く、また取り扱いに注意が必要であ
り、経済的とはいえない。
However, (1) has a problem that dichloroacetic acid produced as a by-product is mixed with monochloroacetic acid in the product, and (2) and (3) use expensive raw materials, and the reaction step However, it is not economical because it is long and requires careful handling.

【0005】(4)は、ジクロロ体が副生せず、反応工
程が簡単であり、高い収率でモノクロロ酢酸を得ること
が出来るが、加水分解の反応速度を大きくするために
は、例えばトリクロロエチレンの場合を例にとると、1
30℃〜140℃の高温で、かつ高濃度の硫酸を用いる
必要がある(東海電極技報 第21巻第1号、P.30
〜P.36)。このような高温や高濃度の硫酸を用いて
反応を行うと、加熱費用が嵩む上に、加圧下で反応を行
う必要性が生じたり、副反応が増加し、装置が腐食する
等の問題を生じる。この問題は反応温度が高ければ高い
程大きく、より耐食性のある高価な装置材料を使う必要
性が生じたり、また、この問題を避けるため反応温度を
低くすると、反応速度が低下し、収率の低下につながる
等の工業的な問題が種々あった。
In the case of (4), a dichloro compound is not produced as a by-product, the reaction process is simple, and monochloroacetic acid can be obtained in a high yield. However, in order to increase the reaction rate of hydrolysis, for example, trichloroethylene is used. Taking the case of as an example, 1
It is necessary to use high-concentration sulfuric acid at a high temperature of 30 ° C to 140 ° C (Tokai Electrode Technical Report Vol. 21, No. 1, P. 30).
~ P. 36). When the reaction is carried out using such a high temperature and a high concentration of sulfuric acid, the heating cost increases, and it becomes necessary to carry out the reaction under pressure, and side reactions increase, causing problems such as corrosion of the device. Occurs. The higher the reaction temperature, the greater the problem, and the need to use more expensive and more corrosion resistant equipment materials. Also, lowering the reaction temperature to avoid this problem lowers the reaction rate and increases the yield. There were various industrial problems such as a decrease.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、トリク
ロロエチレンまたはテトラクロロエタンの加水分解によ
るモノクロロ酢酸の製造方法において、反応温度や硫酸
濃度を低下させても、大きな反応速度を得ることの手段
について鋭意研究した結果、本発明を完成した。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention In the method for producing monochloroacetic acid by hydrolysis of trichloroethylene or tetrachloroethane, the present inventors have proposed a means for obtaining a large reaction rate even if the reaction temperature or the sulfuric acid concentration is lowered. As a result of earnest research, the present invention has been completed.

【0007】[0007]

【課題を解決するための手段】本発明は、トリクロロエ
チレンまたは/およびテトラクロロエタンを加水分解し
てモノクロロ酢酸を製造するに際し、含フッ素系陽イオ
ン交換樹脂を存在させることを特徴とするモノクロロ酢
酸の製造方法である。
DISCLOSURE OF THE INVENTION The present invention is characterized by the presence of a fluorinated cation exchange resin in the production of monochloroacetic acid by hydrolyzing trichloroethylene or / and tetrachloroethane. Is the way.

【0008】本発明におけるトリクロロエチレン、テト
ラクロロエタンは、工業的に製造されているものを用い
ればよいが、純度は高いほど好ましく、特に、加水分解
してジクロロ酢酸を副生するパークロロエチレン、ペン
タクロロエタン等の不純物が少ない方が好ましい。トリ
クロロエチレンまたはテトラクロロエタンは単独で使用
しても、またトリクロロエチレンとテトラクロロエタン
の混合物を用いてもよく、その組成比も特に限定される
ものではない。
As the trichloroethylene and tetrachloroethane in the present invention, those produced industrially may be used, but the higher the purity, the more preferable. Particularly, perchloroethylene and pentachloroethane which are hydrolyzed to produce dichloroacetic acid as a by-product. It is preferable that there are few impurities such as. Trichloroethylene or tetrachloroethane may be used alone or as a mixture of trichloroethylene and tetrachloroethane, and the composition ratio thereof is not particularly limited.

【0009】本発明において加水分解反応は、硫酸の存
在下に硫酸中の水分を利用して行うとよい。硫酸は一般
に使用される硫酸で充分であり、その濃度は、好ましく
は50重量%〜99.5重量%であり、更に好ましくは
70重量%〜98.5重量%である。硫酸の濃度が50
重量%より低いと反応速度が非常に遅くなり、実用的と
は言えない。
In the present invention, the hydrolysis reaction is preferably carried out by utilizing the water content in sulfuric acid in the presence of sulfuric acid. Sulfuric acid generally used is sufficient, and the concentration thereof is preferably 50% by weight to 99.5% by weight, more preferably 70% by weight to 98.5% by weight. The concentration of sulfuric acid is 50
If it is less than wt%, the reaction rate becomes very slow and it cannot be said to be practical.

【0010】反応においては、上記硫酸100重量部に
対して、トリクロロエチレンまたは/およびテトラクロ
ロエタンを0.001〜50重量部とすることが好まし
く、更に好ましくは0.1〜10重量部である。トリク
ロロエチレンまたは/およびテトラクロロエタンが50
重量部より多いと、反応速度が非常に遅くなり実用的で
なくなる。トリクロロエチレンまたは/およびテトラク
ロロエタンが0.001重量部より少ないと、所望量の
モノクロロ酢酸を得るために非常に大きな設備を必要と
し、経済的とはいえない。
In the reaction, trichloroethylene or / and tetrachloroethane is preferably added in an amount of 0.001 to 50 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the sulfuric acid. 50 trichloroethylene or / and tetrachloroethane
If it is more than the amount by weight, the reaction rate becomes very slow and it becomes impractical. If the amount of trichlorethylene or / and tetrachloroethane is less than 0.001 part by weight, a very large facility is required to obtain a desired amount of monochloroacetic acid, which is not economical.

【0011】本発明において使用される含フッ素系陽イ
オン交換樹脂としては、例えば陽イオン交換基含有フッ
素化オレフィン樹脂が挙げられ、陽イオン交換基として
は、スルフォン酸基、カルボン酸基、カルボン酸基およ
びスルフォン酸基等があり、特に好ましいものはスルフ
ォン酸基である。含フッ素系陽イオン交換樹脂の好まし
い具体例としては、例えばテトラフルオロエチレンとパ
ーフルオロ−3,6−ジオキサ−4−メチル−7−オク
テンスルフォン酸との共重合体であるナフィオン−H
(商品名:デュポン社製;ハメット酸度関数(H0 )−
11〜−13)がある。
Examples of the fluorine-containing cation exchange resin used in the present invention include a cation exchange group-containing fluorinated olefin resin, and examples of the cation exchange group include a sulfonic acid group, a carboxylic acid group and a carboxylic acid. Group and a sulfonic acid group, and particularly preferred is a sulfonic acid group. As a preferable specific example of the fluorine-containing cation exchange resin, for example, Nafion-H which is a copolymer of tetrafluoroethylene and perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid.
(Brand name: manufactured by DuPont; Hammett acidity function (H 0 )-
11--13).

【0012】含フッ素系陽イオン交換樹脂は、特に形状
を問うものではなく、ペレット状でも、膜状でもよい。
またこれを反応系に存在させる方法としては、反応液と
接触し得る形態ならば特に限定されるものではなく、反
応液に添加しても、またペレット状のものを充填した容
器が反応液に接触しているような形態でもよい。
The fluorinated cation exchange resin is not particularly limited in shape, and may be in pellet form or film form.
Further, the method of allowing this to exist in the reaction system is not particularly limited as long as it can be brought into contact with the reaction solution, and even if it is added to the reaction solution, a container filled with pellets becomes the reaction solution. It may be in the form of contact.

【0013】含フッ素系陽イオン交換樹脂の使用量は、
樹脂の形状、表面状態にもよるが、トリクロロエチレン
または/およびテトラクロロエタン1Kgに対して、該樹
脂の接触全表面積が、好ましくは30cm2 〜100m2
更に好ましくは300cm2 〜10m2となる量である。3
0cm2 未満では反応促進効果が高くなるとはいえず、1
00m2を超えても樹脂の使用量に見合う効果が期待出来
ない。また過度に微粉末状あるいは薄膜状にして表面積
を大きくした樹脂は、強度的に弱くなったり、取扱いが
困難になるので実用的とはいえなくなる。
The amount of the fluorinated cation exchange resin used is
Although depending on the shape and surface condition of the resin, the total contact surface area of the resin is preferably 30 cm 2 to 100 m 2 with respect to 1 kg of trichloroethylene or / and tetrachloroethane,
The amount is more preferably 300 cm 2 to 10 m 2 . Three
If it is less than 0 cm 2 , the reaction promoting effect cannot be said to be high, and 1
Even if it exceeds 00 m 2 , the effect corresponding to the amount of resin used cannot be expected. In addition, a resin having an excessively fine powder or thin film shape to increase the surface area becomes weak in strength and difficult to handle, and thus is not practical.

【0014】本発明における反応温度は、好ましくは5
0℃〜200℃であり、更に好ましくは、トリクロロエ
チレンの場合は70℃〜150℃、テトラクロロエタン
の場合は90℃〜180℃である。50℃より低い温度
では反応速度が遅くなる恐れがあり、200℃より高い
温度では、より高度な耐圧設備、耐腐食設備等の高価な
設備が必要となり好ましいとはいえない。
The reaction temperature in the present invention is preferably 5
The temperature is 0 ° C to 200 ° C, more preferably 70 ° C to 150 ° C in the case of trichlorethylene, and 90 ° C to 180 ° C in the case of tetrachloroethane. If the temperature is lower than 50 ° C., the reaction rate may be slow, and if the temperature is higher than 200 ° C., expensive equipment such as higher pressure resistance equipment and corrosion resistance equipment is required, which is not preferable.

【0015】本発明は常圧で行えばよいが、必要に応じ
て加圧下で行ってもよい。本発明の反応方法としては、
回分式または連続式のいずれも可能である。回分式の場
合は、例えば、反応器に所定量のトリクロロエチレンま
たは/およびテトラクロロエタン、並びに所定濃度と所
定量の硫酸を仕込み、含フッ素系陽イオン交換樹脂を反
応液と接触させ、所定温度に加熱して反応させればよ
い。また、連続式の場合は、例えば、反応器に所定濃度
と所定量の硫酸および含フッ素系陽イオン交換樹脂を仕
込み、所定温度に加熱し、所定量のトリクロロエチレン
または/およびテトラクロロエタンを連続的に供給し反
応を行うか、あるいはその逆でもよい。生成物であるモ
ノクロロ酢酸は、前記硫酸100重量部に対し200重
量部程度まで蓄積させても差し支えない。モノクロロ酢
酸は、生成液から蒸留、晶析等の通常の操作により分離
取得することが出来る。
The present invention may be carried out under normal pressure, but may be carried out under pressure if necessary. As the reaction method of the present invention,
Either a batch system or a continuous system is possible. In the case of the batch system, for example, a reactor is charged with a predetermined amount of trichlorethylene or / and tetrachloroethane, and a predetermined concentration and a predetermined amount of sulfuric acid, and the fluorinated cation exchange resin is brought into contact with the reaction solution and heated to a predetermined temperature. And react. In the case of the continuous system, for example, a reactor is charged with a predetermined concentration and a predetermined amount of sulfuric acid and a fluorine-containing cation exchange resin, heated to a predetermined temperature, and a predetermined amount of trichloroethylene or / and tetrachloroethane is continuously added. It may be supplied to carry out the reaction, or vice versa. The product monochloroacetic acid may be accumulated up to about 200 parts by weight with respect to 100 parts by weight of the sulfuric acid. Monochloroacetic acid can be separated and obtained from the product solution by ordinary operations such as distillation and crystallization.

【0016】[0016]

【実施例】以下実施例と比較例を挙げて本発明を具体的
に説明する。 実施例1 ガラス製反応器にトリクロロエチレン28g、95wt%
硫酸71gおよびナフィオン−H樹脂ペレット(商品名
デュポン社製)1g(全表面積:540cm2/トリク
ロロエチレン1Kg)を仕込み、87℃にて2時間反応さ
せた。発生する塩化水素の量を10分毎に1時間測定し
て、加水分解反応速度を算出した結果、表1に示すよう
に0.35mol/l ・hr(トリクロロエチレン基準)であ
った。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. Example 1 Trichloroethylene 28 g, 95 wt% in a glass reactor
Sulfuric acid 71g and Nafion -H resin pellets (trade name, manufactured by DuPont) 1g (total surface area: 540cm 2 / trichlorethylene 1Kg) were charged, and the reaction was carried out for 2 hours at 87 ℃. The amount of hydrogen chloride generated was measured every 10 minutes for 1 hour, and the hydrolysis reaction rate was calculated. As a result, as shown in Table 1, it was 0.35 mol / l.hr (based on trichloroethylene).

【0017】[0017]

【表1】 [Table 1]

【0018】実施例2〜10 各条件を表1の通りとし、実施例1と同様に反応を行っ
た。その結果は表1の通りである。
Examples 2 to 10 Reactions were carried out in the same manner as in Example 1 under the conditions shown in Table 1. The results are shown in Table 1.

【0019】比較例1〜5 ナフィオン−H樹脂ペレットを仕込まず、その他の条件
を表1の通りとして、実施例1と同様に反応を行った。
その結果は表1の通りである。
Comparative Examples 1 to 5 The reaction was carried out in the same manner as in Example 1 except that Nafion-H resin pellets were not charged and the other conditions were as shown in Table 1.
The results are shown in Table 1.

【0020】上記実施例および比較例のうち、トリクロ
ロエチレンを原料とした場合について考察すると以下の
通りである。例えば実施例1と比較例1における反応速
度を比較すると、反応温度が87℃で、95wt%硫酸を
ほぼ同量用いた場合、含フッ素系陽イオン交換樹脂を存
在させた場合(実施例1)は、存在させない場合(比較
例1)と比較して、反応速度が1.8倍である。また、
反応温度をより低くした場合は、その差はもっと顕著で
ある。実施例4と比較例2を比較すると、硫酸濃度はそ
れぞれ実施例1または比較例1と同じで、反応温度を7
5℃とした場合、含フッ素系陽イオン交換樹脂を存在さ
せた場合(実施例4)は、存在させない場合(比較例
2)と比較して、反応速度は2.5倍となる。また、硫
酸濃度を低くしても、反応速度の差は顕著であり、実施
例5と比較例3を比較すると、反応温度が87℃で、9
0wt%硫酸をほぼ同量用いた場合、含フッ素系陽イオン
交換樹脂を存在させた場合(実施例5)は、存在させな
い場合(比較例3)と比較して、反応速度が3.4倍で
ある。
Of the above examples and comparative examples, the case of using trichloroethylene as a raw material is as follows. For example, comparing the reaction rates in Example 1 and Comparative Example 1, when the reaction temperature was 87 ° C., 95 wt% sulfuric acid was used in substantially the same amount, and the fluorinated cation exchange resin was present (Example 1) Has a reaction rate of 1.8 times that in the case of not allowing it to exist (Comparative Example 1). Also,
The difference is more pronounced when the reaction temperature is lower. Comparing Example 4 with Comparative Example 2, the sulfuric acid concentration was the same as in Example 1 or Comparative Example 1, and the reaction temperature was 7
When the temperature is 5 ° C., the reaction rate in the case where the fluorinated cation exchange resin is present (Example 4) is 2.5 times that in the case where it is not present (Comparative Example 2). Further, even if the sulfuric acid concentration was lowered, the difference in reaction rate was remarkable, and comparing Example 5 and Comparative Example 3, the reaction temperature was 87 ° C.
When approximately the same amount of 0 wt% sulfuric acid was used, and when the fluorine-containing cation exchange resin was present (Example 5), the reaction rate was 3.4 times as high as when it was not present (Comparative Example 3). Is.

【0021】また、実施例5と比較例1を比較すると明
らかなように、反応温度87℃において、含フッ素系陽
イオン交換樹脂を存在させないで、反応速度を0.19
mol/l ・ hrとするには、95wt%硫酸を使用する必要が
ある(比較例1)のに対し、含フッ素系陽イオン交換樹
脂を存在させた場合(実施例5)は、90wt%硫酸をほ
ぼ同量用いることにより、ほぼ同じ反応速度(0.17
mol/l ・ hr)を達成出来る。
As is clear from the comparison between Example 5 and Comparative Example 1, the reaction rate was 0.19 at the reaction temperature of 87 ° C. without the presence of the fluorinated cation exchange resin.
To achieve mol / l · hr, it is necessary to use 95 wt% sulfuric acid (Comparative Example 1), whereas in the case where a fluorinated cation exchange resin is present (Example 5), 90 wt% sulfuric acid is used. By using almost the same amount, the reaction rate (0.17
mol / l · hr) can be achieved.

【0022】テトラクロロエタンを原料とする場合は、
実施例8と比較例4を比較すると、反応温度130℃に
おいて、95wt%硫酸をほぼ同量用いて反応させた場
合、含フッ素系陽イオン交換樹脂を存在させた場合(実
施例8)は、存在させない場合(比較例4)に比較し
て、反応速度が約2倍である。
When tetrachloroethane is used as a raw material,
Comparing Example 8 and Comparative Example 4, when the reaction was carried out at a reaction temperature of 130 ° C. using approximately the same amount of 95 wt% sulfuric acid, and when the fluorine-containing cation exchange resin was present (Example 8), The reaction rate is about twice as high as when not present (Comparative Example 4).

【0023】[0023]

【発明の効果】本発明は、含フッ素系陽イオン交換樹脂
の存在下に、トリクロロエチレンまたは/およびテトラ
クロロエタンを加水分解することを特徴とするモノクロ
ロ酢酸の製造方法であり、本発明によれば、反応温度や
硫酸濃度を低下させても、大きな反応速度を得ることが
出来、副生物の生成を抑制し、反応器を腐食することな
く、工業的に効率的かつ高収率にモノクロロ酢酸を製造
することが出来る。
The present invention is a process for producing monochloroacetic acid, which comprises hydrolyzing trichloroethylene or / and tetrachloroethane in the presence of a fluorinated cation exchange resin. According to the present invention, Even if the reaction temperature and sulfuric acid concentration are lowered, a large reaction rate can be obtained, the production of by-products is suppressed, and the monochloroacetic acid is produced industrially efficiently and in high yield without corroding the reactor. You can do it.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 照雄 愛知県名古屋市港区船見町1番地の1 東 亞合成化学工業株式会社名古屋総合研究所 内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Teruo Yoshida 1-1 Funami-cho, Minato-ku, Nagoya-shi, Aichi Toagosei Chemical Industry Co., Ltd. Nagoya Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 トリクロロエチレンまたは/および1,
1,1,2−テトラクロロエタンを加水分解してモノク
ロロ酢酸を製造するに際し、含フッ素系陽イオン交換樹
脂を存在させることを特徴とするモノクロロ酢酸の製造
方法。
1. Trichlorethylene or / and 1,
A method for producing monochloroacetic acid, which comprises presenting a fluorinated cation exchange resin when hydrolyzing 1,1,2-tetrachloroethane to produce monochloroacetic acid.
JP4087609A 1992-03-11 1992-03-11 Production of monochloroacetic acid Pending JPH05255176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4087609A JPH05255176A (en) 1992-03-11 1992-03-11 Production of monochloroacetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4087609A JPH05255176A (en) 1992-03-11 1992-03-11 Production of monochloroacetic acid

Publications (1)

Publication Number Publication Date
JPH05255176A true JPH05255176A (en) 1993-10-05

Family

ID=13919713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4087609A Pending JPH05255176A (en) 1992-03-11 1992-03-11 Production of monochloroacetic acid

Country Status (1)

Country Link
JP (1) JPH05255176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322931C (en) * 2003-07-16 2007-06-27 中国石油化工股份有限公司 Solid acid complex catalyst and its preparing process
CN104628550A (en) * 2013-11-07 2015-05-20 范月辉 Preparation method of monochloroacetic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322931C (en) * 2003-07-16 2007-06-27 中国石油化工股份有限公司 Solid acid complex catalyst and its preparing process
CN104628550A (en) * 2013-11-07 2015-05-20 范月辉 Preparation method of monochloroacetic acid
CN104628550B (en) * 2013-11-07 2016-10-05 王宇阳 A kind of monochloroacetic acid preparation method

Similar Documents

Publication Publication Date Title
EP0126569B1 (en) Bromination process for preparing decabromodiphenyl ether from diphenyl ether
JPH069456A (en) Production of 2-perfluoroalkylethyl alcohols
US3102139A (en) Oxidation process for preparing carboxylic acid anhydrides
JPH05255176A (en) Production of monochloroacetic acid
US3576860A (en) Preparation of chloroacetyl chloride
US5091602A (en) Process for preparing 1,1,1-trifluoro-2,2-dichloroethane
US3399217A (en) Catalyst system for reaction of an allyl alcohol and carbon tetrachloride to produce2, 4, 4, 4-tetrachlorobutanol
US4144264A (en) Process for producing a 3-methyl-2-(4-halophenyl)butyronitrile
JPS60193939A (en) Production of 2-chloro-4-fluorophenol
JPS59106438A (en) Manufacture of 1,3-diacetoxy-2-methylenepropane
US3152174A (en) Manufacture of monochloroacetic acid
JPH05125017A (en) Production of chloromethyl pivalate
US2863924A (en) Method of producing polychlorinated acetaldehydes
JPS63297333A (en) Production of 1,3-dichloro-2-propanol
JP3164284B2 (en) Method for producing 2-chloro-4-trifluoromethylbenzal chloride
US2110838A (en) Hydrolysis of isopropyl chloride
US3225087A (en) Process for production of sodium 2,3,6-trichlorophenylacetate
US3072730A (en) Process for preparing perfluoroethyl iodide
JPH0583533B2 (en)
US2917542A (en) Manufacture of monochloroacetic acid
JP3188519B2 (en) Method for producing tert-butyl chloride
US3517056A (en) Process for the production of 2,3,6-trichlorophenylacetic acid
US2826610A (en) Manufacture of monochloroacetic acid
US5493054A (en) Process for the synthesis of acid halides and reactants useful for its implementation
JPS58194826A (en) Preparation of hexafluoroisobutene and/or hexafluorobutene