JPH05254883A - Production of superfine particle-dispersed material - Google Patents

Production of superfine particle-dispersed material

Info

Publication number
JPH05254883A
JPH05254883A JP4051222A JP5122292A JPH05254883A JP H05254883 A JPH05254883 A JP H05254883A JP 4051222 A JP4051222 A JP 4051222A JP 5122292 A JP5122292 A JP 5122292A JP H05254883 A JPH05254883 A JP H05254883A
Authority
JP
Japan
Prior art keywords
gas
ultrafine particles
ultrafine
particle
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4051222A
Other languages
Japanese (ja)
Other versions
JP3099501B2 (en
Inventor
Keiji Tsunetomo
啓司 常友
Tadashi Koyama
正 小山
Shunsuke Otsuka
俊介 大塚
Hisao Nagata
久雄 永田
Shuhei Tanaka
修平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP04051222A priority Critical patent/JP3099501B2/en
Publication of JPH05254883A publication Critical patent/JPH05254883A/en
Application granted granted Critical
Publication of JP3099501B2 publication Critical patent/JP3099501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/30Methods of making the composites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glanulating (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce an superfine particle-dispersed material by embedding superfine particles synthesized in a gas phase in a glass film while maintaining characteristics of the superfine particles. CONSTITUTION:An evaporating chamber 1 is charged with an Ar gas, maintained under about 1Torr pressure and a reaction chamber 2 is charged with a mixed gas of TEOS(tetraethoxysilane) vapor diluted with an Ar gas and oxygen and kept under about 0.05Torr pressure. A CdTe polycrystal target of raw material is irradiated with a second higher harmonic wave of YAG laser in an excited state of a gas in the reaction chamber by impressing a coil 8 with a high-frequency voltage to evaporate CdTe. Consequently, superfine particle-dispersed glass of CeTe having about 6nm particle diameter and an extremely small dispersion of particle diameter is formed on a quartz substrate 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超微粒子を分散させた
材料の製造方法に関するものであり、特に気相中で合成
した超微粒子を、気相中で合成したガラス中に閉じ込め
ることにより、超微粒子分散材料の作製を容易にすると
ともに、連続的あるいは周期的な超微粒子濃度の分布を
持つ超微粒子分散材料の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a material in which ultrafine particles are dispersed, and in particular, by enclosing ultrafine particles synthesized in the gas phase in glass synthesized in the gas phase, The present invention relates to a method for manufacturing an ultrafine particle dispersion material which facilitates the production of the ultrafine particle dispersion material and has a continuous or periodic distribution of the ultrafine particle concentration.

【0002】[0002]

【従来の技術】超微粒子はバルクの持つ性質とは異なっ
た性質を持つことが知られており、機能性材料としての
応用が期待されている。例えばCdS等の化合物半導体
超微粒子は、粒径が小さくなるにしたがってバンド構造
が離散化し、吸収端が高エネルギ側へシフトする等いわ
ゆる量子サイズ効果が生じる(例えば A. J. Nozic et
al., J. Phys. Chem., 89, 397 (1987))。またこのよ
うな量子サイズ効果を有する材料は、大きな非線形光学
効果を持つことも知られており、超高速の光スイッチや
光論理素子等の非線形光学効果を用いた光制御素子への
応用が期待されている。ところが超微粒子の個々の粒径
が量子サイズ効果を示す程度であっても、凝集すると超
微粒子間で電荷の移動が可能となり量子サイズ効果は消
滅する。したがってこのような超微粒子を扱う上で、超
微粒子同士の凝集を防ぐことがその効果を高める上で重
要になってくる。
2. Description of the Related Art Ultrafine particles are known to have properties different from those of bulk, and are expected to be applied as functional materials. For example, ultrafine compound semiconductor particles such as CdS have a so-called quantum size effect in which the band structure becomes discrete as the particle size decreases, and the absorption edge shifts to the high energy side (eg, AJ Nozic et.
al., J. Phys. Chem., 89, 397 (1987)). It is also known that such a material having a quantum size effect has a large nonlinear optical effect, and it is expected to be applied to an optical control element using the nonlinear optical effect such as an ultrafast optical switch or an optical logic element. Has been done. However, even if the individual particle diameters of the ultrafine particles are such that the quantum size effect is exhibited, when they are aggregated, the charge can be transferred between the ultrafine particles, and the quantum size effect disappears. Therefore, in handling such ultrafine particles, it is important to prevent aggregation of the ultrafine particles in order to enhance the effect.

【0003】溶液中に超微粒子を分散させた材料の場合
は、微粒子の凝集を防ぐ方法として界面活性剤を用いる
ことが従来より行われており、多方面に応用されている
(界面活性剤ハンドブック 光学図書)。これはその系
によって異なるが、界面活性剤が超微粒子表面に吸着し
てその立体障害により凝集を防ぐ、界面活性剤の吸着で
例えば疎水性の超微粒子が見かけ上親水性となり親水性
溶液中で安定となる、あるいは界面活性剤によって超微
粒子の内部電場が変化し凝集を防ぐ等種々の効果で説明
されている。一方、 Steigerwaldらは液相中で合成した
CdSeの超微粒子にフェニル基を吸着させることによ
り、溶液中だけではなく沈澱乾燥後でもフェニル基の立
体障害のために微粒子の独立性が保存されることを報告
している(Steigerwald et al., J. Am. Chem. Soc., 1
10, 3046 (1988))。
In the case of a material in which ultrafine particles are dispersed in a solution, a surfactant has been conventionally used as a method for preventing agglomeration of fine particles and is applied in various fields (surfactant handbook). Optical books). This depends on the system, but the surfactant adsorbs to the surface of the ultrafine particles and prevents aggregation due to its steric hindrance.For example, hydrophobic ultrafine particles become apparently hydrophilic by adsorption of the surfactant and become hydrophilic in the hydrophilic solution. It has been explained by various effects such as being stable, or changing the internal electric field of the ultrafine particles by the surfactant to prevent aggregation. On the other hand, Steigerwald et al. Preserved the independence of the fine particles due to the steric hindrance of the phenyl group not only in the solution but also after precipitation drying by adsorbing the phenyl group on the ultrafine particles of CdSe synthesized in the liquid phase. (Steigerwald et al., J. Am. Chem. Soc., 1
10, 3046 (1988)).

【0004】超微粒子の製造方法として古くから酸化還
元反応を用いたコロイド分散系が知られている。例えば
Auコロイドは塩化金酸カリウム溶液に過酸化水素やク
エン酸などの適当な還元剤を加えることで容易に生成で
きる。また化合物コロイドの例としてCdSの場合に
は、Cd(ClO42溶液にNa2S溶液を加えると酸
化還元反応が生じてCdS分散系が得られる(例えば
R. Rossetti et al.,J. Chem. Phys. 82, 552 (198
5))。いずれも作製条件によって得られる超微粒子の粒
径は異なるが、直径5nm以下でかつ分散が小さなコロ
イド粒子を容易に作製することができる。
As a method for producing ultrafine particles, a colloidal dispersion system using a redox reaction has long been known. For example, Au colloid can be easily produced by adding a suitable reducing agent such as hydrogen peroxide or citric acid to a potassium chloroaurate solution. Further, in the case of CdS as an example of the compound colloid, when a Na 2 S solution is added to a Cd (ClO 4 ) 2 solution, a redox reaction occurs and a CdS dispersion system is obtained (for example,
R. Rossetti et al., J. Chem. Phys. 82, 552 (198
Five)). Although the particle size of the obtained ultrafine particles varies depending on the production conditions, colloidal particles having a diameter of 5 nm or less and a small dispersion can be easily produced.

【0005】超微粒子の製造方法として上記の液相中で
の酸化還元・沈澱反応を利用した方法以外に、ガス中蒸
発法が知られている。これはArなどの不活性ガス雰囲
気中で物質を加熱蒸発させると、その蒸気が雰囲気ガス
分子と衝突して運動エネルギを失い、かつ急冷されるた
めに微粒子を形成する。粒子の大きさは蒸発源からの距
離に依存して変化し、蒸着源付近で捕集すると小さな粒
径の微粒子が得られる。また生成した粒子を例えばO2
ガスと反応させることにより、酸化物微粒子が作製でき
る。
As a method for producing ultrafine particles, an evaporation method in a gas is known in addition to the above method utilizing the oxidation-reduction / precipitation reaction in the liquid phase. This is because when a substance is heated and evaporated in an atmosphere of an inert gas such as Ar, the vapor collides with atmospheric gas molecules, loses kinetic energy, and is rapidly cooled to form fine particles. The size of the particles changes depending on the distance from the evaporation source, and when they are collected in the vicinity of the evaporation source, fine particles having a small particle size are obtained. In addition, the generated particles are treated with O 2
Oxide particles can be produced by reacting with a gas.

【0006】[0006]

【発明が解決しようとする課題】しかしながら界面活性
剤を用いた方法は、超微粒子の凝集の防止には効果的で
あるが超微粒子が溶液に分散していることが必須条件で
ある。ところが液相中の酸化還元反応で得られる超微粒
子は、貴金属やCdSなどの一部の物質に限られる。ま
たフェニル基の吸着を利用した方法で得られた乾燥粉末
は、水に対して耐久性が弱く、通常の方法では非常に不
安定である。さらにフェニル基を吸着する際、超微粒子
が溶液に分散していることが必要であり、また応用でき
る材料も硫化物やセレン化物に限られてしまうという欠
点を持つ。一方、ガス中蒸発法では種々の材料の超微粒
子を製造することが可能であるが、作製した超微粒子を
溶液に分散した形で取り出すことは容易ではなく、界面
活性剤やフェニル基の吸着を応用することはできない。
However, the method using a surfactant is effective in preventing the aggregation of ultrafine particles, but it is essential that the ultrafine particles are dispersed in a solution. However, the ultrafine particles obtained by the redox reaction in the liquid phase are limited to some substances such as precious metals and CdS. Further, the dry powder obtained by the method utilizing the adsorption of phenyl group has weak durability against water and is very unstable by the usual method. Further, when adsorbing phenyl groups, it is necessary that ultrafine particles are dispersed in a solution, and applicable materials are limited to sulfides and selenides. On the other hand, although it is possible to produce ultrafine particles of various materials by the gas evaporation method, it is not easy to take out the produced ultrafine particles in a form of being dispersed in a solution, and adsorption of a surfactant or a phenyl group is not possible. It cannot be applied.

【0007】本発明は上記従来の問題点を解決し、ガス
中蒸発法など気相中で合成した超微粒子をその特性を保
ちつつ、ガラス膜中に埋め込むことが可能な超微粒子分
散材料の製造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and manufactures an ultrafine particle dispersion material capable of being embedded in a glass film while maintaining the characteristics of ultrafine particles synthesized in a gas phase such as a gas evaporation method. The purpose is to provide a method.

【0008】[0008]

【課題を解決するための手段】請求項1の超微粒子分散
材料の製造方法は、超微粒子の原料となる材料を不活性
ガス中で加熱蒸発し、原料の蒸気と不活性ガスとの衝突
で蒸気を急冷することにより原料の超微粒子を形成し、
水素化シリコンあるいはシリコンアルコキシドと酸素の
混合気体あるいはそれらの希釈ガスを、熱、プラズマ、
光等で励起することにより作製したシリカガラス膜中
に、前記超微粒子を閉じ込めることを特徴とする。
According to a first aspect of the present invention, there is provided a method for producing an ultrafine particle-dispersed material, wherein a raw material of ultrafine particles is heated and evaporated in an inert gas, and a vapor of the raw material and an inert gas collide with each other. Ultra-fine particles of the raw material are formed by rapidly cooling the steam,
A mixed gas of silicon hydride or silicon alkoxide and oxygen, or a diluted gas thereof is used for heat, plasma,
The ultrafine particles are confined in a silica glass film produced by exciting with light or the like.

【0009】請求項2の超微粒子分散材料の製造方法
は、請求項1の超微粒子分散材料の製造方法において、
超微粒子の濃度を連続的または段階的に変化させること
により、シリカガラス膜の垂直方向に連続的あるいは周
期的な超微粒子の濃度分布を持つことを特徴とする。
The method for producing the ultrafine particle dispersed material according to claim 2 is the same as the method for producing the ultrafine particle dispersed material according to claim 1.
It is characterized by having a continuous or periodic concentration distribution of ultrafine particles in the vertical direction of the silica glass film by changing the concentration of ultrafine particles continuously or stepwise.

【0010】本発明の超微粒子分散材料の製造方法は、
超微粒子の原料となる材料を不活性ガス中で加熱蒸発
し、原料の蒸気と不活性ガスとの衝突で蒸気を急冷する
ことにより原料の超微粒子を形成し、水素化シリコン、
あるいはシリコンアルコキシドをはじめとする硅素原料
気体と酸素の混合気体を、熱、プラズマ、光等で励起す
ることにより気相での反応を利用して作製したSiO2
ガラス中に分散させることを特徴とする。
The method for producing the ultrafine particle dispersion material of the present invention comprises:
The raw material for the ultrafine particles is heated and evaporated in an inert gas, and the vapor is rapidly cooled by the collision between the vapor of the raw material and the inert gas to form the ultrafine particles of the raw material, silicon hydride,
Alternatively, SiO 2 produced by utilizing a reaction in a gas phase by exciting a mixed gas of a silicon source gas such as a silicon alkoxide and oxygen with heat, plasma, light or the like.
It is characterized by being dispersed in glass.

【0011】本発明は、気相中で合成した超微粒子を、
モノシランやジシラン等の水素化シリコン、あるいはT
MOS(テトラメトキシシラン)やTEOS(テトラエ
トキシシラン)等のシリコンアルコキシドをはじめとす
る硅素原料気体と酸素の混合気体中、あるいはそれらの
混合気体をArやN2等のガスで希釈した気体を、熱、
プラズマ、光等で励起することにより気相での反応を利
用して作製したSiO2ガラス中に分散させる。
The present invention provides ultrafine particles synthesized in a gas phase,
Silicon hydride such as monosilane or disilane, or T
In a mixed gas of silicon source gas such as silicon alkoxide such as MOS (tetramethoxysilane) and TEOS (tetraethoxysilane) and oxygen, or a gas obtained by diluting the mixed gas with a gas such as Ar or N 2 , heat,
It is dispersed in the SiO 2 glass produced by utilizing the reaction in the gas phase by exciting it with plasma, light or the like.

【0012】[0012]

【作用】本発明の製造法によれば、気相中で製造した微
粒子を気相中で作製したSiO2中に閉じ込めるため、
微粒子を一旦捕集する必要がなく、捕集の際に起きる微
粒子の凝集を防ぐことができる。
According to the production method of the present invention, since fine particles produced in the gas phase are confined in SiO 2 produced in the gas phase,
It is not necessary to collect the fine particles once, and it is possible to prevent aggregation of the fine particles that occurs during the collection.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は超微粒子分散材料を作製するために用いた
製造装置を示す。本装置は超微粒子をガス中で作製する
蒸発室1、ガラスマトリックスを気相から製造する反応
室2からなる。蒸発室1には原料である半導体多結晶タ
ーゲット5とレーザー光15を導入する窓14および不
活性ガスの導入管6を具備し、原料蒸発はターゲット5
にレーザー光15を照射することにより行う。反応室2
は石英管3とプラズマ励起用のコイル8およびガラスの
原料ガスを導入するガス導入管7からなり、反応室2内
のガスをプラズマにより励起できる構造となっている。
上下動可能な試料支持棒9上に石英基板11を設置し
た。蒸発室1と反応室2はパイプ4で結合されており、
差動排気により蒸発室1の圧力の方が反応室2の圧力よ
り高くなるように設定されている。反応室2の圧力が蒸
発室1の圧力よりも低いため、生成した超微粒子は差圧
によってパイプ4を経て反応室2へ導入される。これら
の差圧はガラスカプセル超微粒子を作製する上で非常に
重要なファクタで、蒸発室1と反応室2との間の圧力差
は超微粒子の粒径を決めるパラメータの一つである。な
お本製造装置において超微粒子の粒径は上記の圧力差以
外に蒸発室内の圧力、照射するレーザー光のパワー、タ
ーゲット5からパイプ4までの距離、パイプの太さなど
で決まる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a manufacturing apparatus used for producing an ultrafine particle dispersed material. This apparatus comprises an evaporation chamber 1 for producing ultrafine particles in a gas and a reaction chamber 2 for producing a glass matrix from a gas phase. The evaporation chamber 1 is equipped with a semiconductor polycrystalline target 5 as a raw material, a window 14 for introducing a laser beam 15, and an inert gas introduction pipe 6, and the raw material is vaporized by the target 5
It is performed by irradiating the laser light 15 on Reaction chamber 2
Is composed of a quartz tube 3, a coil 8 for plasma excitation, and a gas introduction tube 7 for introducing a glass source gas, and has a structure capable of exciting the gas in the reaction chamber 2 with plasma.
A quartz substrate 11 was placed on a sample support rod 9 that can move up and down. The evaporation chamber 1 and the reaction chamber 2 are connected by a pipe 4,
The pressure in the evaporation chamber 1 is set to be higher than the pressure in the reaction chamber 2 by differential evacuation. Since the pressure in the reaction chamber 2 is lower than the pressure in the evaporation chamber 1, the generated ultrafine particles are introduced into the reaction chamber 2 via the pipe 4 by the differential pressure. These pressure differences are very important factors for producing glass capsule ultrafine particles, and the pressure difference between the evaporation chamber 1 and the reaction chamber 2 is one of the parameters that determine the particle size of the ultrafine particles. In this manufacturing apparatus, the particle size of the ultrafine particles is determined by the pressure in the evaporation chamber, the power of the laser light to be irradiated, the distance from the target 5 to the pipe 4, the thickness of the pipe, etc., in addition to the pressure difference.

【0014】本装置を用いたCdTe超微粒子分散ガラ
スの製造方法について説明する。原料に市販のCdTe
多結晶ウェーハを用いた。蒸発室1にはArガスを導入
し、圧力を1Torr程度に制御した。反応室2内の圧
力を0.05TorrとしてCdTeを蒸発させ、輸送
パイプ4から噴出したCdTe超微粒子を捕集、分析し
たところ粒径が約6nmで粒径の分散が非常に小さいこ
とがわかった。この結果を基に、反応室にArガスで希
釈したTEOS蒸気と酸素の混合気体を導入し、その圧
力を約0.05Torrとした。高周波電圧をコイル8
に印加して反応室内のガスを励起した状態でCdTeタ
ーゲットにYAGレーザー第二高調波(532nm、25J/cm
2)を照射しCdTeを蒸発させた。この結果、石英基
板11上に目的のCdTe微粒子分散ガラスが形成され
た。
A method of manufacturing CdTe ultrafine particle dispersed glass using this apparatus will be described. Commercially available CdTe as raw material
A polycrystalline wafer was used. Ar gas was introduced into the evaporation chamber 1 and the pressure was controlled to about 1 Torr. The pressure in the reaction chamber 2 was set to 0.05 Torr to evaporate CdTe, and the ultrafine CdTe particles ejected from the transport pipe 4 were collected and analyzed, and it was found that the particle size was about 6 nm and the dispersion of the particle size was very small. .. Based on this result, a mixed gas of TEOS vapor diluted with Ar gas and oxygen was introduced into the reaction chamber, and the pressure thereof was set to about 0.05 Torr. High frequency voltage coil 8
The second harmonic of YAG laser (532 nm, 25 J / cm) was applied to the CdTe target in a state where the gas in the reaction chamber was excited by applying
2) was irradiated to evaporate CdTe. As a result, the intended CdTe fine particle-dispersed glass was formed on the quartz substrate 11.

【0015】基板上に形成されたCdTe微粒子分散ガ
ラスの近赤外・可視領域における光吸収特性を測定した
ところ、吸収端は760nmとバルクのCdTeの吸収
端の820nmよりも短波長側にシフトしていることが
わかった。さらに透過電子顕微鏡で作製したCdTe超
微粒子分散材料を観察したところ、粒径が約6nmのC
dTe微粒子を含んでいることがわかった。すなわち本
発明による微粒子分散ガラスにおいては、生成した超微
粒子を変化させることなくガラス中にその超微粒子を閉
じ込めことが可能である。
When the light absorption characteristics of the CdTe fine particle-dispersed glass formed on the substrate were measured in the near infrared / visible region, the absorption edge was 760 nm, which was shifted to a shorter wavelength side than the absorption edge of 820 nm of bulk CdTe. I found out. Further observation of the CdTe ultrafine particle dispersion material produced with a transmission electron microscope showed that the particle size of C was about 6 nm.
It was found to contain fine particles of dTe. That is, in the fine particle-dispersed glass according to the present invention, it is possible to confine the generated ultrafine particles in the glass without changing them.

【0016】また、製造中にTEOSのガス濃度を変化
させてCdTe微粒子分散材料を作製し、表面を徐々に
削りながらXPS(X線光電子分光法)により材料中の
微粒子濃度を求めたところ、TEOSガス濃度に依存し
て微粒子濃度が膜の深さ方向で1wt%から12wt%まで変
化していた。これにより、膜の深さ方向で微粒子濃度の
分布を持つような半導体微粒子分散材料が製造できるこ
とが確認できた。
In addition, when the gas concentration of TEOS was changed during production to prepare a CdTe fine particle dispersion material, and while gradually scraping the surface, the fine particle concentration in the material was determined by XPS (X-ray photoelectron spectroscopy). The particle concentration varied from 1 wt% to 12 wt% in the depth direction of the film depending on the gas concentration. From this, it was confirmed that a semiconductor fine particle dispersed material having a fine particle concentration distribution in the depth direction of the film could be produced.

【0017】今回、CdTe超微粒子について述べたが
これに限ることなく、例えばCdSSe、ZnSe、C
dTeをはじめとするII−VI族化合物半導体、Ga
As、InP、InGaAsPなどのIII−V族化合
物半導体、あるいは磁気記憶材料としてFe、Co、N
iあるいはそれらの合金や他の元素との化合物、酸素ガ
ス中での種々の金属の蒸発で得られる酸化物等気相中で
超微粒子化が可能ないかなる材料についても適用でき
る。原料の加熱蒸発に本実施例で用いたレーザー加熱以
外に誘導加熱、抵抗加熱、蒸発室内の圧力によっては電
子ビーム加熱、アーク放電など種々の方法を適用でき
る。
This time, the CdTe ultrafine particles have been described, but the present invention is not limited to this. For example, CdSSe, ZnSe, C
II-VI group compound semiconductors such as dTe, Ga
III-V group compound semiconductors such as As, InP, InGaAsP, or Fe, Co, N as magnetic storage materials
i or compounds thereof, compounds with other elements, oxides obtained by evaporation of various metals in oxygen gas, and any material capable of forming ultrafine particles in the vapor phase can be applied. In addition to the laser heating used in this embodiment, various methods such as induction heating, resistance heating, electron beam heating, and arc discharge may be applied to the heating and evaporation of the raw materials depending on the pressure in the evaporation chamber.

【0018】本実施例ではシリコンの原料としてTEO
Sを用いた場合についてのみ述べたが、他のシリコンア
ルコキシド、あるいはシランやジシラン等の種々のシリ
コン化合物を用いることができる。ただし高濃度のシラ
ンやジシランなどは、酸素との混合で直ちに反応してS
iO2を形成することがある。したがってこの場合、そ
れぞれのガスの希釈や希釈後の混合等を検討する必要が
ある。ここでは高周波電圧印加によってTEOSが分解
しSiO2を生成する反応を用いてガラスを作製した
が、これに限ることなく、例えば光により反応室のTE
OSと酸素の混合気体を励起してSiO2を成長させて
もよい。その場合の光源として、キセノンランプをはじ
め、大きな光パワー密度が得られるエキシマレーザを併
用することも可能である。またマトリックスの材料とし
てここではSiO2を用いているが、ガスの分解による
Siや種々の化合物半導体、金属アルコキシドの分解に
よるTiO2、ZrO2、Al23等の酸化物をはじめ、
反応室内で作製した超微粒子を損なうことなく分解や縮
合、重合反応で基板上に形成できる材料ならば、超微粒
子を保持するマトリックスとして使用が可能である。
In this embodiment, TEO is used as a silicon raw material.
Although only the case of using S has been described, other silicon alkoxides or various silicon compounds such as silane and disilane can be used. However, high-concentration silane, disilane, etc. will react immediately by mixing with oxygen and react with S
May form iO 2 . Therefore, in this case, it is necessary to consider dilution of each gas and mixing after dilution. Here, glass was produced using a reaction in which TEOS is decomposed by applying a high-frequency voltage to generate SiO 2 , but the glass is not limited to this, and for example, TE in the reaction chamber is exposed to light.
SiO 2 may be grown by exciting a mixed gas of OS and oxygen. In that case, as a light source, it is also possible to use a xenon lamp and an excimer laser capable of obtaining a large optical power density. Although SiO 2 is used here as the material for the matrix, Si and various compound semiconductors due to gas decomposition, and oxides such as TiO 2 , ZrO 2 and Al 2 O 3 due to decomposition of metal alkoxide,
Any material that can be formed on the substrate by decomposition, condensation, or polymerization reaction without damaging the ultrafine particles produced in the reaction chamber can be used as a matrix for holding the ultrafine particles.

【0019】気相中で超微粒子を製造する方法として、
ここで述べたガス中蒸発法以外にスパッタリング法、プ
ラズマ法等種々の方法が考案され、超微粒子の製造に用
いられているが本発明は生成した超微粒子を気流を利用
して反応室に輸送できればいかなる超微粒子の製造方法
にも適用できる。
As a method for producing ultrafine particles in the gas phase,
In addition to the gas evaporation method described here, various methods such as a sputtering method and a plasma method have been devised and used for the production of ultrafine particles.However, in the present invention, the produced ultrafine particles are transported to a reaction chamber by using an air flow. If possible, it can be applied to any ultrafine particle manufacturing method.

【0020】本実施例では、材料中の深さ方向の微粒子
濃度を変化させるために、材料製造中に単純にTEOS
流量を増加させただけであったが、TEOSガス流量
は、製造中に例えば周期的に変化さることも可能であ
る。したがって、材料の深さ方向により複雑な微粒子濃
度分布を持つような材料を製造する際にも適用できる。
In this embodiment, in order to change the concentration of fine particles in the material in the depth direction, TEOS is simply used during the material production.
Although only increasing the flow rate, the TEOS gas flow rate can also be varied during manufacture, for example periodically. Therefore, it can also be applied when manufacturing a material having a complicated fine particle concentration distribution in the depth direction of the material.

【0021】[0021]

【発明の効果】本発明によれば従来困難であった気相中
で合成した超微粒子を気相中で超微粒子としての特性を
保ちつつマトリックス中に埋め込むことが可能である。
また、材料の深さ方向に微粒子濃度分布を持つ超微粒子
分散材料が作製可能である。
EFFECTS OF THE INVENTION According to the present invention, it is possible to embed ultrafine particles synthesized in a gas phase, which has been difficult in the past, in a matrix while maintaining the characteristics of the ultrafine particles in a gas phase.
Further, an ultrafine particle dispersed material having a fine particle concentration distribution in the depth direction of the material can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す超微粒子分散材料を製造
するために用いた製造装置の模式図である。
FIG. 1 is a schematic view of a manufacturing apparatus used for manufacturing an ultrafine particle dispersed material showing an example of the present invention.

【符号の説明】[Explanation of symbols]

1 蒸発室 9 基板支持棒 2 反応室 10 ポンプ 3 石英管 11 基板(石英) 4 輸送パイプ 12 バルブ 5 ターゲット 13 マスフローコ
ントローラ 6 ガス導入管 14 窓 7 反応ガス導入管 15 レーザー光 8 誘導コイル
1 Evaporation Chamber 9 Substrate Support Rod 2 Reaction Chamber 10 Pump 3 Quartz Tube 11 Substrate (Quartz) 4 Transport Pipe 12 Valve 5 Target 13 Mass Flow Controller 6 Gas Introducing Tube 14 Window 7 Reactive Gas Introducing Tube 15 Laser Light 8 Induction Coil

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C03C 3/06 Z 21/00 C 7003−4G C23C 14/08 7308−4K (72)発明者 永田 久雄 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 田中 修平 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location C03C 3/06 Z 21/00 C 7003-4G C23C 14/08 7308-4K (72) Inventor Hisao Nagata Osaka Prefecture 3-5-11 Doshomachi, Chuo-ku, Osaka, Japan Nippon Sheet Glass Co., Ltd. (72) Inventor Shuhei Tanaka 3-5-11, Doshomachi, Chuo-ku, Osaka City, Osaka Prefecture Nippon Sheet Glass Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超微粒子の原料となる材料を不活性ガス
中で加熱蒸発し、原料の蒸気と不活性ガスとの衝突で蒸
気を急冷することにより原料の超微粒子を形成し、水素
化シリコンあるいはシリコンアルコキシドと酸素の混合
気体あるいはそれらの希釈ガスを、熱、プラズマ、光等
で励起することにより作製したシリカガラス膜中に、前
記超微粒子を閉じ込めることを特徴とする超微粒子分散
材料の製造方法。
1. A raw material for ultrafine particles is vaporized by heating in an inert gas, and the vapor is rapidly cooled by collision of the vapor of the raw material with the inert gas to form ultrafine particles of the raw material. Alternatively, production of an ultrafine particle dispersion material characterized by enclosing the ultrafine particles in a silica glass film produced by exciting a mixed gas of silicon alkoxide and oxygen or a diluted gas thereof with heat, plasma, light, etc. Method.
【請求項2】 請求項1の超微粒子分散材料の製造方法
において、超微粒子の濃度を連続的または段階的に変化
させることにより、シリカガラス膜の垂直方向に連続的
あるいは周期的な超微粒子の濃度分布を持つことを特徴
とする超微粒子分散材料の製造方法。
2. The method for producing an ultrafine particle dispersion material according to claim 1, wherein the concentration of the ultrafine particles is changed continuously or stepwise so that the ultrafine particles are continuously or periodically formed in the vertical direction of the silica glass film. A method for producing an ultrafine particle dispersed material having a concentration distribution.
JP04051222A 1992-03-10 1992-03-10 Manufacturing method of ultrafine particle dispersion material Expired - Fee Related JP3099501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04051222A JP3099501B2 (en) 1992-03-10 1992-03-10 Manufacturing method of ultrafine particle dispersion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04051222A JP3099501B2 (en) 1992-03-10 1992-03-10 Manufacturing method of ultrafine particle dispersion material

Publications (2)

Publication Number Publication Date
JPH05254883A true JPH05254883A (en) 1993-10-05
JP3099501B2 JP3099501B2 (en) 2000-10-16

Family

ID=12880913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04051222A Expired - Fee Related JP3099501B2 (en) 1992-03-10 1992-03-10 Manufacturing method of ultrafine particle dispersion material

Country Status (1)

Country Link
JP (1) JP3099501B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322033A (en) * 2005-05-18 2006-11-30 Kobe Steel Ltd Method for depositing functional film
US8399878B2 (en) 2007-01-03 2013-03-19 Nanogram Corporation Silicon/germanium oxide particle inks and processes for forming solar cell components and for forming optical components
US8435477B2 (en) 1997-07-21 2013-05-07 Nanogram Corporation Dispersions of submicron doped silicon particles
US8895962B2 (en) 2010-06-29 2014-11-25 Nanogram Corporation Silicon/germanium nanoparticle inks, laser pyrolysis reactors for the synthesis of nanoparticles and associated methods
US9000083B2 (en) 2001-08-03 2015-04-07 Nanogram Corporation Silicon nanoparticle dispersions
US9175174B2 (en) 2000-10-17 2015-11-03 Nanogram Corporation Dispersions of submicron doped silicon particles
US9199435B2 (en) 2001-01-26 2015-12-01 Nanogram Corporation Dispersions of silicon nanoparticles
US9475695B2 (en) 2013-05-24 2016-10-25 Nanogram Corporation Printable inks with silicon/germanium based nanoparticles with high viscosity alcohol solvents

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261811U (en) * 1985-10-08 1987-04-17
JPS6411215U (en) * 1987-07-09 1989-01-20
JPH05202569A (en) * 1992-01-28 1993-08-10 Shirayama:Kk Mullion fitting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261811U (en) * 1985-10-08 1987-04-17
JPS6411215U (en) * 1987-07-09 1989-01-20
JPH05202569A (en) * 1992-01-28 1993-08-10 Shirayama:Kk Mullion fitting

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435477B2 (en) 1997-07-21 2013-05-07 Nanogram Corporation Dispersions of submicron doped silicon particles
US9175174B2 (en) 2000-10-17 2015-11-03 Nanogram Corporation Dispersions of submicron doped silicon particles
US9199435B2 (en) 2001-01-26 2015-12-01 Nanogram Corporation Dispersions of silicon nanoparticles
US9448331B2 (en) 2001-01-26 2016-09-20 Nanogram Corporation Dispersions of blends of silicon nanoparticles and silica nanoparticles
US9000083B2 (en) 2001-08-03 2015-04-07 Nanogram Corporation Silicon nanoparticle dispersions
JP2006322033A (en) * 2005-05-18 2006-11-30 Kobe Steel Ltd Method for depositing functional film
US8399878B2 (en) 2007-01-03 2013-03-19 Nanogram Corporation Silicon/germanium oxide particle inks and processes for forming solar cell components and for forming optical components
US8632702B2 (en) 2007-01-03 2014-01-21 Nanogram Corporation Silicon/germanium particle inks, doped particles, printing and processes for semiconductor applications
US8895962B2 (en) 2010-06-29 2014-11-25 Nanogram Corporation Silicon/germanium nanoparticle inks, laser pyrolysis reactors for the synthesis of nanoparticles and associated methods
US9006720B2 (en) 2010-06-29 2015-04-14 Nanogram Corporation Silicon/germanium nanoparticles and inks having low metal contamination
US9475695B2 (en) 2013-05-24 2016-10-25 Nanogram Corporation Printable inks with silicon/germanium based nanoparticles with high viscosity alcohol solvents

Also Published As

Publication number Publication date
JP3099501B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
Bapat et al. Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications
KR100807655B1 (en) Self-assembled structures
US20130189446A1 (en) Low pressure high frequency pulsed plasma reactor for producing nanoparticles
Orii et al. Tunable, narrow-band light emission from size-selected Si nanoparticles produced by pulsed-laser ablation
TWI233161B (en) Method of forming nanotip arrays
WO1999047726A1 (en) Process for depositing atomic to nanometer particle coatings on host particles
Semaltianos et al. II–VI semiconductor nanoparticles synthesized by laser ablation
Boies et al. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition
Singhal et al. Electronic excitation induced tuning of surface plasmon resonance of Ag nanoparticles in fullerene C70 matrix
Rybaltovskiy et al. Synthesis of photoluminescent Si/SiO x core/shell nanoparticles by thermal disproportionation of SiO: structural and spectral characterization
JP3099501B2 (en) Manufacturing method of ultrafine particle dispersion material
Elisa et al. Pulsed laser deposition films based on CdSe-doped zinc aluminophosphate glass
WO2016013984A1 (en) Process for depositing metal or metalloid chalcogenides
JP3358203B2 (en) Method for producing semiconductor ultrafine particles
Ko et al. Phase transformation and optical characteristics of porous germanium thin film
Mohanty et al. Nanocrystalline SnO2 formation using energetic ion beam
WO2009107674A1 (en) Ultrafine zinc oxide particle dispersion, method for manufacturing the same, and zinc oxide membrane
Laguna et al. Optical properties of nanocrystalline silicon thin films produced by size-selected cluster beam deposition
JP3099430B2 (en) Manufacturing method of glass capsule enclosing ultrafine particles
JPH0596154A (en) Production of material dispersed with hyper-fine particles
Švrček et al. Formation of single-crystal spherical particle architectures by plasma-induced low-temperature coalescence of silicon nanocrystals synthesized by laser ablation in water
KR20210144832A (en) Method of making nanoparticles
JPH07278618A (en) Production of composite superfine particle
JP2002239377A (en) Highly pure standard particle former and highly pure standard particle made thereby
JP3341361B2 (en) Manufacturing method of ultrafine particle dispersion material

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees