JPH05254803A - Electrochemical regulator for oxygen concentration using solid polyelectrolyte film - Google Patents

Electrochemical regulator for oxygen concentration using solid polyelectrolyte film

Info

Publication number
JPH05254803A
JPH05254803A JP4053224A JP5322492A JPH05254803A JP H05254803 A JPH05254803 A JP H05254803A JP 4053224 A JP4053224 A JP 4053224A JP 5322492 A JP5322492 A JP 5322492A JP H05254803 A JPH05254803 A JP H05254803A
Authority
JP
Japan
Prior art keywords
cathode
anode
water
oxygen concentration
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4053224A
Other languages
Japanese (ja)
Other versions
JP3056578B2 (en
Inventor
Kenro Mitsuta
憲朗 光田
Toshiaki Murahashi
俊明 村橋
Shiro Yamauchi
四郎 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4053224A priority Critical patent/JP3056578B2/en
Priority to EP93301899A priority patent/EP0562747B1/en
Priority to US08/030,886 priority patent/US5302270A/en
Priority to EP97104027A priority patent/EP0781588A3/en
Priority to DE69319476T priority patent/DE69319476T2/en
Publication of JPH05254803A publication Critical patent/JPH05254803A/en
Application granted granted Critical
Publication of JP3056578B2 publication Critical patent/JP3056578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To improve the reverse diffusive migration of water by arranging the anode and the cathode sandwiching a solid polyelectrolyte film therebetween so as to provide the specific shortest distance. CONSTITUTION:The anode 1 for electrolyzing water and producing O2 is constructed of an anodic substrate 14 composed of an expanded metal of a Pt-plated Ti and an anodic catalyst layer 26 and the cathode 2 for producing water and consuming O2 is constructed of a cathodic substrate 15 and a cathodic catalyst layer 27. A solid polyelectrolyte film 3 having about 130mum thickness is sandwiched between the anodic substrate 14 and the cathodic substrate 15, hot pressed and bitten into both the electrode substrates to form the anodic catalyst layer 26 and the cathodic catalyst layer 27, which are arranged so as to provide <=50mum shortest distance 16 between both the electrodes. This eletrochemical regulator for the O2 concentration is capable of remarkably increasing the reverse diffusive migration of water from the cathode 2 into the anode 1. Water produced in the cathode 2 and water migrated into the cathode 2 are mostly returned through the solid polyelectrolyte film 3 to the anode 1. Thereby, a reservoir for the produced water, a reservoir for feed water and a pump can be omitted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体高分子電解質膜を用
いた電気化学的酸素濃度調整器に関する。さらに詳しく
は、冷蔵庫野菜室の酸素濃度を低下させる酸素貧化や室
内の酸素濃度を高める空調器の酸素富化などの用途に好
適に使用しうる固体高分子電解質膜を用いた電気化学的
酸素濃度調整器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical oxygen concentration regulator using a solid polymer electrolyte membrane. More specifically, electrochemical oxygen using a solid polymer electrolyte membrane that can be suitably used for applications such as oxygen depletion that lowers the oxygen concentration in a refrigerator vegetable compartment and oxygen enrichment in an air conditioner that increases the oxygen concentration in the refrigerator Concerning the concentration adjuster.

【0002】[0002]

【従来の技術】図4は、たとえば特公平2−44764
号公報に示された電気化学的酸素濃度調整器の構成図で
あり、図4において、1は陽極、2は陰極、3は固体高
分子電解質膜、4は集電体、5は酸素富化室、6は酸素
貧化室、7は酸素富化室へのガス入口、8は酸素富化室
のガス出口、9は酸素貧化室へのガス入口、10は酸素
貧化室のガス出口、11は生成水溜、12は供給水溜、
13はポンプである。ここで、酸素貧化とは気体中の酸
素濃度を減少せしめることをいい、酸素富化とは気体中
の酸素濃度を増加せしめることをいう。固体高分子電解
質膜3としては、たとえば特公昭63−52119号公
報に記載されているデユポン(Du Pont)社製の
ナフィオン(NAFION)−117などが用いられて
おり、その公称厚みは7ミルすなわち約170μmであ
り、陽極と陰極の最短距離は150μm程度である。
2. Description of the Related Art FIG.
FIG. 5 is a configuration diagram of an electrochemical oxygen concentration adjuster disclosed in Japanese Patent Publication No. JP-A-2003-242, in FIG. 4, 1 is an anode, 2 is a cathode, 3 is a solid polymer electrolyte membrane, 4 is a current collector, and 5 is oxygen enriched. Chamber, 6 is an oxygen depleted chamber, 7 is a gas inlet to the oxygen enriched chamber, 8 is a gas outlet of the oxygen enriched chamber, 9 is a gas inlet to the oxygen depleted chamber, and 10 is a gas outlet of the oxygen depleted chamber. , 11 is a generated water reservoir, 12 is a supply water reservoir,
13 is a pump. Here, oxygen depletion means reducing the oxygen concentration in the gas, and oxygen enrichment means increasing the oxygen concentration in the gas. As the solid polymer electrolyte membrane 3, for example, Nafion-117 manufactured by Du Pont, which is described in Japanese Patent Publication No. 63-52119, is used, and its nominal thickness is 7 mils. It is about 170 μm, and the shortest distance between the anode and the cathode is about 150 μm.

【0003】つぎに前記電気化学的酸素濃度調整器の動
作について説明する。
The operation of the electrochemical oxygen concentration regulator will be described below.

【0004】陽極1では外部電力により水が電気分解さ
れて式(1)の反応がおこり酸素富化室の酸素濃度が増
大する。
At the anode 1, water is electrolyzed by an external electric power to cause the reaction of the formula (1) to increase the oxygen concentration in the oxygen enrichment chamber.

【0005】 2HO → O + 4H + 4e (1) このとき発生するプロトン(H)は固体高分子電解質
膜を通り、電子(e)は外部回路を通って陰極に達
し、式(2)の反応により酸素を消費して酸素貧化室の
酸素濃度が減少する。
2H 2 O → O 2 + 4H + + 4e (1) Protons (H + ) generated at this time pass through the solid polymer electrolyte membrane, and electrons (e ) pass through an external circuit to reach the cathode. By the reaction of the equation (2), oxygen is consumed to reduce the oxygen concentration in the oxygen depleted chamber.

【0006】 O +4H + 4e → 2HO (2) さらに前記プロトン(H)とともに平均3分子程度の
水が陽極から陰極へ移動する。したがって陰極では式
(2)の反応により生成する水とともに、さらに余分の
水が陽極から移動し、一方陽極で水が必要になるのでポ
ンプ13を用いて生成水溜12へ水を移動させてやる必
要がある。
O 2 + 4H ++ 4e → 2H 2 O (2) Further, together with the proton (H + ), about 3 molecules of water move from the anode to the cathode on average. Therefore, at the cathode, along with the water produced by the reaction of the formula (2), extra water moves from the anode, and on the other hand, water is required at the anode. Therefore, it is necessary to move the water to the generated water reservoir 12 using the pump 13. There is.

【0007】図4に示される酸素貧化室を利用した電気
化学的酸素濃度調整器としては、特公昭55−2534
3号公報に記載されているような青果物貯蔵庫や冷蔵庫
の野菜室への応用がある。
An electrochemical oxygen concentration adjuster using the oxygen depletion chamber shown in FIG. 4 is disclosed in Japanese Examined Patent Publication No. 55-2534.
There is application to a vegetable storage such as a fruit and vegetable storage or a refrigerator as described in Japanese Patent Publication No.

【0008】また酸素富化室を利用したものとしては空
調機があり、前記空調機は病院などの室内の酸素濃度を
高めるのに用いられる。
There is an air conditioner that utilizes the oxygen enriched chamber, and the air conditioner is used to increase the oxygen concentration in a room such as a hospital.

【0009】[0009]

【発明が解決しようとする課題】従来の電気化学的酸素
濃度調整器は、以上のように生成水溜11と供給水溜1
2とが必要であり、またポンプ13により必要に応じて
水を移動させる必要があるという問題がある。
In the conventional electrochemical oxygen concentration regulator, the produced water reservoir 11 and the feed water reservoir 1 are as described above.
2 is required, and there is a problem that water needs to be moved by the pump 13 as needed.

【0010】本発明は、前記のような問題点を解消する
ためになされたもので生成水溜、供給水溜およびポンプ
を省くことのできる電気化学的酸素濃度調整器をうるこ
とを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain an electrochemical oxygen concentration regulator which can omit the generated water reservoir, the feed water reservoir and the pump.

【0011】[0011]

【課題を解決するための手段】本発明は、水を電解して
酸素を発生する陽極と水を発生して酸素を消費する陰極
と前記陽極および前記陰極により挾持された固体高分子
電解質膜とからなり、陽極での酸素発生または陰極での
酸素消費を用いて酸素の濃度を調整する電気化学的酸素
濃度調整器であって、陽極と陰極との最短距離が50μ
m以下であることを特徴とする固体高分子電解質膜を用
いた電気化学的酸素濃度調整器に関する。
Means for Solving the Problems The present invention comprises an anode for electrolyzing water to generate oxygen, a cathode for generating water to consume oxygen, the anode and a solid polymer electrolyte membrane held by the cathode. An electrochemical oxygen concentration adjuster, which comprises oxygen generation at the anode or oxygen consumption at the cathode to adjust the oxygen concentration, wherein the shortest distance between the anode and the cathode is 50 μm.
The present invention relates to an electrochemical oxygen concentration adjuster using a solid polymer electrolyte membrane, which is characterized by being m or less.

【0012】[0012]

【作用】本発明の固体高分子電解質膜を用いた電気化学
的酸素濃度調節器は、陽極と陰極との最短距離が50μ
m以下であるので、陰極から陽極への水の逆拡散移動が
著しくなり、陰極で発生した水分および陰極に移動して
きた水分の大半が陽極へ固体高分子電解質膜を介して戻
るため、生成水溜、供給水溜およびポンプを省くことが
できる。
In the electrochemical oxygen concentration controller using the solid polymer electrolyte membrane of the present invention, the shortest distance between the anode and the cathode is 50 μm.
Since it is less than m, the reverse diffusion movement of water from the cathode to the anode becomes remarkable, and most of the water generated at the cathode and the water moving to the cathode returns to the anode through the solid polymer electrolyte membrane, and , The supply sump and pump can be omitted.

【0013】[0013]

【実施例】以下、本発明の固体高分子電解質膜を用いた
電気化学的酸素濃度調節器(以下、酸素濃度調整器とい
う)の一実施例を図に基づいて説明する。
EXAMPLES An example of an electrochemical oxygen concentration regulator (hereinafter referred to as oxygen concentration regulator) using the solid polymer electrolyte membrane of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の酸素濃度調節器の一実施
例の構成を示す断面図である。
FIG. 1 is a sectional view showing the structure of an embodiment of the oxygen concentration controller of the present invention.

【0015】図1において、1は水を電解して酸素を発
生する陽極であり、陽極電極基材14と陽極触媒層26
から構成される。2は水を発生して酸素を消費する陰極
であり、陰極電極基材15と陰極触媒層27とから構成
される。3は前記陽極および前記陰極により挾持された
固体高分子電解質膜、14はPtメッキしたチタンのエ
キスパンドメタルからなる陽極電極基材、15はカーボ
ン繊維からなる陰極電極基材でともに多孔質である。
In FIG. 1, reference numeral 1 is an anode that electrolyzes water to generate oxygen, and includes an anode electrode substrate 14 and an anode catalyst layer 26.
Composed of. Reference numeral 2 denotes a cathode that generates water and consumes oxygen, and includes a cathode electrode base material 15 and a cathode catalyst layer 27. 3 is a solid polymer electrolyte membrane sandwiched by the anode and the cathode, 14 is an anode electrode base material made of Pt-plated titanium expanded metal, and 15 is a cathode electrode base material made of carbon fiber, both of which are porous.

【0016】図中、16と17の間の波線は、固体高分
子電解質膜3が陽極電極基材14と陰極電極基材15と
に食い込んでいることを示しており、前記の食い込んだ
層は白金触媒の存在する陽極触媒層26、陰極触媒層2
7であることも示している。
In the figure, the wavy line between 16 and 17 indicates that the solid polymer electrolyte membrane 3 bites into the anode electrode base material 14 and the cathode electrode base material 15, and the above-mentioned bitten layer is Anode catalyst layer 26 and cathode catalyst layer 2 in which platinum catalyst is present
It is also shown that it is 7.

【0017】16は陽極と陰極の最短距離を示し、17
は固体高分子電解質膜の厚さを示す。固体高分子電解質
膜3としてはデュポン社製のナフィオン−115が用い
られ、その厚さは約130μmである。また図1の陽極
と陰極の最短距離16は走査型電子顕微鏡による断面観
察により30μmであることが確認されている。
Reference numeral 16 represents the shortest distance between the anode and the cathode, and 17
Indicates the thickness of the solid polymer electrolyte membrane. Nafion-115 manufactured by DuPont is used as the solid polymer electrolyte membrane 3, and its thickness is about 130 μm. The shortest distance 16 between the anode and the cathode in FIG. 1 has been confirmed to be 30 μm by observing a cross section with a scanning electron microscope.

【0018】陽極および陰極の電極基材は、190℃、
50kgf/cm2の条件によるホットプレスによって
固体高分子電解質膜中に食い込んでおり、式(1)と式
(2)の反応が行なわれる白金触媒の存在する陽極触媒
層26、陰極触媒層27は固体高分子電解質膜中で陽極
基材または陰極基材が食い込んだ層中にそれぞれ三次元
的に分布して存在する。
The electrode base material for the anode and cathode is 190 ° C.
The positive electrode catalyst layer 26 and the negative electrode catalyst layer 27 in which the platinum catalyst existing in the solid polymer electrolyte membrane by hot pressing under the condition of 50 kgf / cm 2 is present to carry out the reactions of the formulas (1) and (2) are formed. In the solid polymer electrolyte membrane, the anode base material or the cathode base material is present in a three-dimensional distribution in the invaded layer.

【0019】18は電気絶縁性の樹脂であり、コイン型
の陽極1、陰極2および固体高分子電解質膜3からなる
構成物をはさんで酸素富化側19と酸素貧化側20に分
割されている。また、21は陰極から陽極への水の逆拡
散の方向を示す矢印である。なお生成水溜、供給水溜と
ポンプは一切設けられていない。
Reference numeral 18 denotes an electrically insulating resin, which is divided into an oxygen-enriched side 19 and an oxygen-poor side 20 with a coin-shaped anode 1, cathode 2 and solid polymer electrolyte membrane 3 in between. ing. Reference numeral 21 is an arrow indicating the direction of back diffusion of water from the cathode to the anode. In addition, no production water reservoir, supply water reservoir and pump are provided.

【0020】つぎに前記酸素濃度調節器の動作について
説明する。図2は、図1に示される本発明の酸素濃度調
整器を使用し、酸素富化側19を密閉室とし、外部の直
流電源を用いて陽極および陰極間に2.5Vの直流電圧
をかけて電流を流し、密閉室の相対湿度と酸素濃度の経
時変化を調べた結果をグラフに表わしたものであり、実
線22、23により示される。比較のために厚さ170
μmのデュポン社製のナフィオン−117が用いられた
従来型の酸素濃度調整器で、陽極と陰極との最短距離が
150μmのものを用いて本発明の酸素濃度調整器のば
あいと同様の実験を行ない、その結果を同じく図2に一
点鎖線で示す。実線23と一点鎖線25は、それぞれ前
記本発明の酸素濃度調整器と従来型の酸素濃度調整器の
相対湿度の変化を示し、実線22と一点鎖線24は、そ
れぞれ本発明の酸素濃度調整器と従来型の酸素濃度調整
器の酸素濃度の変化を示す。
Next, the operation of the oxygen concentration controller will be described. FIG. 2 uses the oxygen concentration regulator of the present invention shown in FIG. 1, uses the oxygen-enriched side 19 as a closed chamber, and applies a DC voltage of 2.5 V between the anode and the cathode using an external DC power source. The results of examining changes in relative humidity and oxygen concentration in the closed chamber over time are shown in graphs, and are indicated by solid lines 22 and 23. Thickness 170 for comparison
The same experiment as in the case of the oxygen concentration regulator of the present invention was performed by using a conventional oxygen concentration regulator using Nafion-117 manufactured by DuPont with a minimum distance of 150 μm between the anode and the cathode. The results are shown in FIG. 2 by the alternate long and short dash line. The solid line 23 and the alternate long and short dash line 25 indicate changes in relative humidity of the oxygen concentration regulator of the present invention and the conventional oxygen concentration regulator, respectively, and the solid line 22 and the alternate long and short dash line 24 indicate the oxygen concentration regulator of the present invention, respectively. 3 shows changes in oxygen concentration of a conventional oxygen concentration regulator.

【0021】陽極と陰極の最短距離が30μmの本発明
の酸素濃度調整器では酸素濃度が従来型とほぼ同程度に
上昇するが、相対湿度の低下は少ない。これは酸素富化
側19の密閉室で水が不足していないこと、すなわち図
1の矢印21で示した陰極から陽極への水の逆拡散量が
大きいことを示している。このように水の逆拡散量が大
きいのは、陽極と陰極間との距離が短くなったために陰
極から陽極への水の濃度差による逆拡散が容易となり、
陽極から水が蒸発するよりも早く陰極の水が陽極へ戻る
ためであると考えられる。
In the oxygen concentration regulator of the present invention in which the shortest distance between the anode and the cathode is 30 μm, the oxygen concentration rises to almost the same level as the conventional type, but the relative humidity does not decrease much. This indicates that there is no shortage of water in the sealed chamber on the oxygen-enriched side 19, that is, the amount of back diffusion of water from the cathode to the anode shown by the arrow 21 in FIG. 1 is large. In this way, the amount of back diffusion of water is large, because the distance between the anode and the cathode is shortened, the back diffusion due to the concentration difference of water from the cathode to the anode becomes easy,
It is considered that this is because the water in the cathode returns to the anode faster than the water evaporates from the anode.

【0022】一方、酸素は水への溶解度が小さく、陽極
と陰極間との距離が短くなっても固体高分子電解質膜に
水分が含まれている限り、酸素富化側19から酸素貧化
側20への酸素の拡散量は少なく、図2の実線22に示
されるように陽極と陰極間との距離が短くなったことの
影響をほとんど受けていない。すなわち従来型の酸素濃
度調整器のようにポンプを用いて水を陰極から陽極へ移
動させなくても、陽極と陰極間の距離を短くすることで
水の逆拡散量を大幅に増加させることができ、さらに酸
素濃度調整機能も損なわれないことが図2の結果より明
らかにわかる。
On the other hand, oxygen has a low solubility in water, and even if the distance between the anode and the cathode is shortened, as long as the solid polymer electrolyte membrane contains water, the oxygen-rich side 19 becomes the oxygen-poor side. The amount of oxygen diffused into 20 was small, and was hardly affected by the reduction in the distance between the anode and the cathode as shown by the solid line 22 in FIG. In other words, the reverse diffusion amount of water can be significantly increased by shortening the distance between the anode and the cathode without using a pump to move the water from the cathode to the anode as in the conventional oxygen concentration regulator. It can be clearly seen from the result of FIG. 2 that the oxygen concentration adjusting function is not impaired.

【0023】酸素貧化側20についても、酸素貧化側を
密閉室として同様の実験を行ない、酸素濃度調整効果が
あることなどを確認している。
With respect to the oxygen-poor side 20, the same experiment was conducted with the oxygen-poor side as a closed chamber, and it was confirmed that the oxygen concentration adjusting effect was obtained.

【0024】なお固体高分子電解質膜の厚さ17よりも
陽極と陰極間との距離16を大幅に短くする方が酸素の
拡散距離を水の逆拡散距離よりも大きくとることがで
き、しかも陰極から酸素貧化側20への水の蒸発を少な
くすることができ、その結果陰極から陽極への水の戻り
をより多く保ち、しかも酸素の陰極側への拡散をより確
実に防ぐことができる。
By making the distance 16 between the anode and the cathode much shorter than the thickness 17 of the solid polymer electrolyte membrane, the diffusion distance of oxygen can be made larger than the back diffusion distance of water, and the cathode From water to the oxygen-depleted side 20 can be reduced, and as a result, more water can be returned from the cathode to the anode, and oxygen can be more reliably prevented from diffusing to the cathode side.

【0025】実際に、本発明の酸素濃度調整器を用い、
陽極と陰極との最短距離と水の逆拡散量との関係を調べ
た結果を図3に示す。
Actually, using the oxygen concentration regulator of the present invention,
FIG. 3 shows the result of examining the relationship between the shortest distance between the anode and the cathode and the amount of back diffusion of water.

【0026】このばあい、陽極と陰極との最短距離を変
化させるため、固体高分子電解質膜の厚さおよび陽極電
極基材と陰極電極基材とをホットプレスして食い込ませ
る際のホットプレス条件を変化させた。
In this case, in order to change the shortest distance between the anode and the cathode, the thickness of the solid polymer electrolyte membrane and the hot pressing conditions for hot pressing the anode electrode base material and the cathode electrode base material Was changed.

【0027】使用した固体高分子電解質膜は、デュポン
社の商品名ナフィオン117(厚さ約170μm)を用
い、ホットプレスは190℃、50kgf/cmの面
圧で3分間行なったが、その際、一定の厚さのスペーサ
を用いて基材へ食い込む深さを調整した。
The solid polymer electrolyte membrane used was Nafion 117 (a thickness of about 170 μm) manufactured by DuPont, and hot pressing was performed at 190 ° C. and a surface pressure of 50 kgf / cm 2 for 3 minutes. The depth of biting into the substrate was adjusted using a spacer having a constant thickness.

【0028】また、そのほかの条件は、図2にその結果
が示されている酸素濃度および相対湿度と経過時間との
関係を調べたばあいと同じであり、図3では一定時間経
過後の相対湿度をプロットしている。
The other conditions are the same as in the case of examining the relationship between the oxygen concentration and relative humidity and the elapsed time, the results of which are shown in FIG. 2, and in FIG. The humidity is plotted.

【0029】図3の結果よりわかるように、陽極と陰極
との最短距離が50μm以下である本発明の酸素濃度調
整器では相対湿度が他に比べて明らかに高くなってお
り、このことは陽極側での水分消費量が少なくなってい
ることを示す。前記現象は、陰極から陽極への水の逆拡
散量が大きくなったためにおこると考えられる。
As can be seen from the results of FIG. 3, in the oxygen concentration regulator of the present invention in which the shortest distance between the anode and the cathode is 50 μm or less, the relative humidity is clearly higher than that of the other ones. It shows that the water consumption on the side is low. It is considered that the above phenomenon occurs because the amount of back diffusion of water from the cathode to the anode increased.

【0030】以上、前記一実施例に基づいて本発明を説
明したが、本発明の酸素濃度調整器では陽極と陰極によ
り固体高分子膜が挾持されているだけでよく、前記実施
例のように必ずしも陽極と陰極が固体高分子電解質膜に
食い込んでいる必要はなく、陽極と陰極との最短距離が
50μm以下、好ましくは20〜50μmであれば水の
逆拡散量が大きく、また酸素の陰極から陽極への拡散を
防止できる。このばあいは、たとえば固体高分子電解質
膜として50μm以下のものを用いることができる。
The present invention has been described based on the above-mentioned embodiment. However, in the oxygen concentration controller of the present invention, the solid polymer film may be sandwiched between the anode and the cathode, as in the above-mentioned embodiment. The anode and the cathode do not necessarily have to dig into the solid polymer electrolyte membrane, and if the shortest distance between the anode and the cathode is 50 μm or less, preferably 20 to 50 μm, the back diffusion amount of water is large, and the cathode of oxygen is The diffusion to the anode can be prevented. In this case, for example, a solid polymer electrolyte membrane having a thickness of 50 μm or less can be used.

【0031】また、陽極と陰極の少なくとも一方が固体
高分子電解質膜に食い込んだ多孔質な基材を有していれ
ば固体高分子電解質膜の厚さが50μm以上であって
も、陽極と陰極との最短距離を50μm以下とすること
で前記実施例のように水の逆拡散量を多くすることがで
きる。また、必ずしも前記実施例のように陽極と陰極の
基材が両方とも固体高分子電解質膜に食い込んでいなく
てもよい。
Further, if at least one of the anode and the cathode has a porous base material invading the solid polymer electrolyte membrane, even if the thickness of the solid polymer electrolyte membrane is 50 μm or more, the anode and the cathode are formed. By setting the shortest distance to and from 50 μm or less, the back diffusion amount of water can be increased as in the above embodiment. In addition, both the anode and cathode substrates do not necessarily have to dig into the solid polymer electrolyte membrane as in the above-mentioned embodiment.

【0032】本発明の酸素濃度調整器は、陽極と陰極の
少なくとも一方が固体高分子電解質膜に食い込んだ多孔
質な基材を有するばあい、酸素の陰極から陽性への拡散
をより有効に防止できる効果がある。
In the oxygen concentration regulator of the present invention, when at least one of the anode and the cathode has a porous base material which is invaded in the solid polymer electrolyte membrane, the diffusion of oxygen from the cathode to the positive is more effectively prevented. There is an effect that can be done.

【0033】本発明の電気化学的酸素濃度調整器におい
て、電極基材としては耐食性のある電気伝導性の多孔質
体であればとくに限定されないが、陽極電極基材として
は、前記多孔質エキスパンドメタルのほか、たとえば通
常陽極電極材料として用いられるステンレス製の繊維や
ステンレス製の繊維に白金メッキを施したものなどがあ
げられ、陰極電極基材としては、前記カーボン繊維のほ
か、たとえば通常電極材料として用いられるステンレス
製の繊維やニッケル製の繊維などがあげられる。
In the electrochemical oxygen concentration regulator of the present invention, the electrode base material is not particularly limited as long as it is a corrosion-resistant and electrically conductive porous body, but the anode electrode base material is the porous expanded metal described above. In addition, for example, a stainless steel fiber or a stainless steel fiber usually used as an anode electrode material is plated with platinum, and the cathode electrode base material is, in addition to the carbon fiber, for example, an ordinary electrode material. The stainless steel fibers and nickel fibers used may be used.

【0034】また、固体高分子電解質膜としては、プロ
トンを伝導するものであればよく、これらの点から、前
記デュポン社製のナフィオン−117やナフィオン−1
15のほか、たとえば通常固体高分子電解質膜として用
いられるダウケミカル社のXUS−13.204.10
などがあげられる。
The solid polymer electrolyte membrane may be any one that conducts protons. From these points, Nafion-117 and Nafion-1 manufactured by DuPont can be used.
15, XUS-13.204.10 manufactured by Dow Chemical Co., which is usually used as a solid polymer electrolyte membrane.
Etc.

【0035】また、本発明の酸素濃度調整器は、陽極と
陰極およびその両者により挟持された固体高分子電解質
膜から構成されていればよく、その大きさは形はとくに
限定されないが、できるだけコンパクトにするために折
り曲げられていてもよい。
The oxygen concentration controller of the present invention may be composed of an anode and a cathode and a solid polymer electrolyte membrane sandwiched by both of them, and the size thereof is not particularly limited, but is as compact as possible. It may be bent to be

【0036】本発明の酸素濃度調整器の能力は、その大
きさなどにより異なり、一概に決めることはできない
が、たとえば電極の面積が100cmの酸素濃度調整
器で酸素発生量は20〜200cc/分 、脱酸素量は
20〜200cc/分となる。
The capacity of the oxygen concentration regulator of the present invention varies depending on its size and cannot be determined unconditionally. For example, an oxygen concentration regulator having an electrode area of 100 cm 2 produces 20 to 200 cc / oxygen. The amount of oxygen and the amount of deoxidization are 20 to 200 cc / min.

【0037】[0037]

【発明の効果】本発明によれば、陽極と陰極の最短距離
を50μm以下にしたので、陰極から陽極への水の逆拡
散移動を著しく増加させることができ、陰極で発生した
水分および陰極へ移動した水分の大半が陽極へ固体高分
子電解質膜を介して戻るために、生成水溜、供給水溜、
およびポンプを省くことができ、安価な装置を提供でき
るという効果を奏する。
According to the present invention, since the shortest distance between the anode and the cathode is set to 50 μm or less, the reverse diffusion movement of water from the cathode to the anode can be remarkably increased, and the water generated at the cathode and the cathode can be transferred. Since most of the transferred water returns to the anode through the solid polymer electrolyte membrane, the generated water reservoir, the feed water reservoir,
Further, it is possible to omit the pump and provide an inexpensive device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による固体高分子電解質膜を
用いた電気化学的酸素濃度調整器の断面図である。
FIG. 1 is a sectional view of an electrochemical oxygen concentration regulator using a solid polymer electrolyte membrane according to an embodiment of the present invention.

【図2】固体高分子電解質膜を用いた酸素濃度調整器の
相対湿度と酸素濃度の経時変化を示すグラフである。
FIG. 2 is a graph showing changes with time in relative humidity and oxygen concentration of an oxygen concentration regulator using a solid polymer electrolyte membrane.

【図3】固体高分子電解質膜を用いた酸素濃度調整器の
陽極と陰極の最短距離と相対湿度との関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between the relative distance and the shortest distance between the anode and the cathode of an oxygen concentration regulator using a solid polymer electrolyte membrane.

【図4】従来の固体高分子電解質膜を用いた電気化学的
酸素濃度調整器の断面図である。
FIG. 4 is a cross-sectional view of a conventional electrochemical oxygen concentration adjuster using a solid polymer electrolyte membrane.

【符号の説明】[Explanation of symbols]

1 陽極 2 陰極 3 固体高分子電解質膜 14 陽極電極基材 15 陰極電極基材 16 陽極と陰極との最短距離 17 固体高分子電解質膜の厚さ 1 Anode 2 Cathode 3 Solid Polymer Electrolyte Membrane 14 Anode Electrode Base Material 15 Cathode Electrode Base Material 16 Shortest Distance between Anode and Cathode 17 Solid Polymer Electrolyte Membrane Thickness

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水を電解して酸素を発生する陽極と水を
発生して酸素を消費する陰極と前記陽極および前記陰極
により挾持された固体高分子電解質膜とからなり、陽極
での酸素発生または陰極での酸素消費を用いて酸素の濃
度を調整する電気化学的酸素濃度調整器であって、陽極
と陰極との最短距離が50μm以下であることを特徴と
する固体高分子電解質膜を用いた電気化学的酸素濃度調
整器。
1. Oxygen generation at the anode, comprising an anode for electrolyzing water to generate oxygen, a cathode for generating water to consume oxygen, and the anode and a solid polymer electrolyte membrane sandwiched by the cathode. Alternatively, an electrochemical oxygen concentration adjuster for adjusting oxygen concentration by using oxygen consumption at the cathode, wherein a solid polymer electrolyte membrane having a shortest distance between the anode and the cathode of 50 μm or less is used. There was an electrochemical oxygen concentration regulator.
【請求項2】 陽極と陰極の少なくとも一方は固体高分
子電解質膜に食い込んだ多孔質な電極基材を有すること
を特徴とする請求項1記載の電気化学的酸素濃度調整
器。
2. The electrochemical oxygen concentration adjuster according to claim 1, wherein at least one of the anode and the cathode has a porous electrode base material that is digged into the solid polymer electrolyte membrane.
JP4053224A 1992-03-12 1992-03-12 Electrochemical oxygen concentration regulator using solid polymer electrolyte membrane Expired - Fee Related JP3056578B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4053224A JP3056578B2 (en) 1992-03-12 1992-03-12 Electrochemical oxygen concentration regulator using solid polymer electrolyte membrane
EP93301899A EP0562747B1 (en) 1992-03-12 1993-03-12 Oxygen concentration or humidity controlling apparatus
US08/030,886 US5302270A (en) 1992-03-12 1993-03-12 Oxygen concentration or humidity controlling apparatus
EP97104027A EP0781588A3 (en) 1992-03-12 1993-03-12 Oxygen concentration or humidity controlling apparatus
DE69319476T DE69319476T2 (en) 1992-03-12 1993-03-12 Device for regulating the oxygen concentration or the humidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4053224A JP3056578B2 (en) 1992-03-12 1992-03-12 Electrochemical oxygen concentration regulator using solid polymer electrolyte membrane

Publications (2)

Publication Number Publication Date
JPH05254803A true JPH05254803A (en) 1993-10-05
JP3056578B2 JP3056578B2 (en) 2000-06-26

Family

ID=12936857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4053224A Expired - Fee Related JP3056578B2 (en) 1992-03-12 1992-03-12 Electrochemical oxygen concentration regulator using solid polymer electrolyte membrane

Country Status (1)

Country Link
JP (1) JP3056578B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996028589A1 (en) * 1995-03-16 1996-09-19 Matsushita Electric Industrial Co., Ltd. Gas-permselective pneumatic pump and incubator using the same
JPH0923969A (en) * 1995-07-13 1997-01-28 Matsushita Electric Ind Co Ltd Electrochemical gas pump for rice cooling and heat instulating device and manufacture therefor
CN1333208C (en) * 2003-07-09 2007-08-22 松下电器产业株式会社 Air conditioner
JP2013067851A (en) * 2011-09-26 2013-04-18 Toshiba Corp Oxygen depletion unit and refrigerator
JP2013537262A (en) * 2010-09-13 2013-09-30 イノテック エーエムディー リミティド Oxygen concentrator and method
JP2014206305A (en) * 2013-04-11 2014-10-30 株式会社東芝 Refrigerator
JP2015168581A (en) * 2014-03-04 2015-09-28 株式会社東芝 Oxygen reduction device, and refrigerator
JP2016003803A (en) * 2014-06-16 2016-01-12 株式会社東芝 Oxygen reduction device and refrigerator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996028589A1 (en) * 1995-03-16 1996-09-19 Matsushita Electric Industrial Co., Ltd. Gas-permselective pneumatic pump and incubator using the same
US5860359A (en) * 1995-03-16 1999-01-19 Matsushita Electric Industrial Co., Ltd. Gas-permselective gas pump and warmer for using same
JPH0923969A (en) * 1995-07-13 1997-01-28 Matsushita Electric Ind Co Ltd Electrochemical gas pump for rice cooling and heat instulating device and manufacture therefor
CN1333208C (en) * 2003-07-09 2007-08-22 松下电器产业株式会社 Air conditioner
JP2013537262A (en) * 2010-09-13 2013-09-30 イノテック エーエムディー リミティド Oxygen concentrator and method
JP2013067851A (en) * 2011-09-26 2013-04-18 Toshiba Corp Oxygen depletion unit and refrigerator
JP2014206305A (en) * 2013-04-11 2014-10-30 株式会社東芝 Refrigerator
JP2015168581A (en) * 2014-03-04 2015-09-28 株式会社東芝 Oxygen reduction device, and refrigerator
JP2016003803A (en) * 2014-06-16 2016-01-12 株式会社東芝 Oxygen reduction device and refrigerator

Also Published As

Publication number Publication date
JP3056578B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
EP2148941B1 (en) Pem water electrolysis for oxygen generation method and apparatus
EP0198483A2 (en) Planar multi-junction electrochemical cell
JP4601612B2 (en) Electrolytic ozone generator
US20130264218A1 (en) Oxygen concentration and method
JPH04259759A (en) Diaphragm humidifying structure for solid high polymer electrolytic fuel cell and electrolytic cell
EP3550056A1 (en) Hydrogen supply system
EP0562747B1 (en) Oxygen concentration or humidity controlling apparatus
JP4121491B2 (en) Liquid fuel mixing apparatus and direct liquid fuel cell using the same
CN101015078B (en) Extended catalyzed layer for minimizing cross-over oxygen and consuming peroxide
JP2020015930A (en) Electrochemical type hydrogen pump
US7029782B2 (en) Electrochemical hydrogen flow rate control system
JPH05254803A (en) Electrochemical regulator for oxygen concentration using solid polyelectrolyte film
US5296110A (en) Apparatus and method for separating oxygen from air
KR100896900B1 (en) Oxygen generator using a fuel cell and water electrolysis
US20140099565A1 (en) Fuel cell comprising a proton-exchange membrane, having an increased service life
Katoh et al. Polymer electrolyte-type electrochemical ozone generator with an oxygen cathode
JP4643393B2 (en) Fuel cell
EP2173001A1 (en) Fuel cell, and electronic device
US20070274872A1 (en) Reactant delivery system and reactor
JPS60500190A (en) electrochemical cell with at least one gas electrode
JP3454838B2 (en) Solid polymer electrolyte membrane fuel cell
JPH10208757A (en) Fuel cell generating set
WO2021111774A1 (en) Electrochemical device
JPH07176307A (en) Fuel cell
US3514335A (en) Process and apparatus for electrochemically oxidizing alcohol to generate electrical energy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees