JPH05254500A - Detection and pulverizing method for space floating object - Google Patents

Detection and pulverizing method for space floating object

Info

Publication number
JPH05254500A
JPH05254500A JP5505092A JP5505092A JPH05254500A JP H05254500 A JPH05254500 A JP H05254500A JP 5505092 A JP5505092 A JP 5505092A JP 5505092 A JP5505092 A JP 5505092A JP H05254500 A JPH05254500 A JP H05254500A
Authority
JP
Japan
Prior art keywords
artificial satellite
fragment
command
control station
floating object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5505092A
Other languages
Japanese (ja)
Inventor
Ikuko Hirashima
郁子 平嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5505092A priority Critical patent/JPH05254500A/en
Publication of JPH05254500A publication Critical patent/JPH05254500A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate detection of the position of a fragment so as to source pulverization by transmitting a command containing distance measurement information to an artificial satellite and a beam for detecting a floating object, computing and detecting the position of the floating object, and irradiating the floating object with laser for pulverizing after necessity for pulverizing a floating object and a risk are discussed with a control station on the ground. CONSTITUTION:Simultaneously with transmission of research radio wave 5 from transmission equipment 3, a command 7 containing distance measurement information is transmitted from a control station 4 to an artificial satellite 2. The artificial satellite 2 detects a distance (a phase difference) from distance measurement information for scattered waves 6 and distance measurement information of the received command 7. Based on position data of the fragment 1, the artificial satellite is made to approach the fragment 1, and image data of the fragment by means of an optical sensor mounted on the artificial satellite is transmitted as telemetry 8 to the control station 4. Necessity for the fragment 1 to be pulverized and a risk are decided by the control station 4 based on image data, and when the fragment is pulverized, pulverization execution is contained in the command 7 for transmission. The artificial satellite 2 irradiates the fragment with laser beams 9 for pulverization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は宇宙空間に浮遊する破
片(Debris)を検出および粉砕する方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a method for detecting and crushing debris floating in outer space.

【0002】[0002]

【従来の技術】宇宙空間に浮遊する破片(Debri
s)(以下破片と称す。)を検出するには従来からレー
ダが用いられた。破片には人工衛星に見られるようなト
ランスポンダを搭載している訳ではないので、一次レー
ダを使用しなければならない。図7は一次レーダの構成
を示したものであり、図において62はレーダ、63は
送信波、64は反射波、1は破片である。
2. Description of the Related Art Debris floating in space (Debris)
Conventionally, a radar has been used to detect s) (hereinafter referred to as "fragments"). The debris does not carry the transponder found on satellites, so the primary radar must be used. FIG. 7 shows the structure of a primary radar. In the figure, 62 is a radar, 63 is a transmitted wave, 64 is a reflected wave, and 1 is a fragment.

【0003】レーダ62は目標である破片に対し利得の
高いアンテナでビームを絞った電波63を照射する。こ
の電波は破片の有効断面積(Cross Sectio
n)に比例した反射波(Echo)を生じ、この散乱波
を再びレーダ62で受信する。このようなレーダの送受
信は地上設備において行なわれるため、破片の映像取得
および破片の粉砕までは行なわれていない。
A radar 62 irradiates a target fragment with a radio wave 63 whose beam is focused by an antenna having a high gain. This radio wave has an effective cross-sectional area (Cross Sectio)
A reflected wave (Echo) proportional to n) is generated, and this scattered wave is received by the radar 62 again. Since such radar transmission / reception is carried out on the ground facility, image acquisition of fragments and crushing of fragments are not performed.

【0004】[0004]

【数1】 [Equation 1]

【0005】[0005]

【発明が解決しようとする課題】一次レーダの特性は上
記“数1”が適用される。この応用例では破片の存在領
域が高度200Km付近より高高度の所に存在するの
で、レーダの受信電力はRの4乗に比例して減衰し、微
弱なものになる。これに対しては送信電力を増強するこ
ととアンテナの利得を大きくすることが必要になるが、
それを実現するためハードウェアを大型にするので各種
の問題点が発生する。例えば送信電力の増大は送信装置
の大型化を招くが、なかでもパルスを繰り返し送信する
方法は、破片がほとんど200Km付近より上の高度を
軌道運動しているので地上から200Kmの間に電波の
ビームが無効に拡がっていくため、電力を有効に使って
いない。また200Km以上離れた破片をレーダにより
検出するだけで破片の実像についてはわからず、破片の
粉砕も行なわれていない。
The above-mentioned "Equation 1" is applied to the characteristics of the primary radar. In this application example, the existence region of the debris exists at a higher altitude than around 200 Km, so the received power of the radar is attenuated in proportion to the fourth power of R and becomes weak. For this, it is necessary to increase the transmission power and increase the antenna gain,
In order to realize it, the hardware becomes large, so various problems occur. For example, an increase in transmission power leads to an increase in the size of a transmission device. Among them, the method of repeatedly transmitting pulses is because the fragments are orbiting at an altitude above about 200 km, so that the beam of the radio wave can be reached within 200 km from the ground. Does not use power effectively, as it spreads ineffectively. Further, the actual image of the fragment is unknown only by detecting the fragment separated by 200 km or more by the radar, and the fragment is not crushed.

【0006】この発明は、かかる課題を解決するために
なされたものであり、宇宙空間に浮遊する破片の位置を
容易に検出し、また破片の実像を検出することで破片の
必要性、粉砕による危険性を判断した上で破片を粉砕す
るを提供するものである。
The present invention has been made to solve the above problems, and it is necessary to easily detect the position of the debris floating in outer space and to detect the real image of the debris. It is intended to provide crushing of debris after judging the danger.

【0007】[0007]

【課題を解決するための手段】この発明に係わる宇宙浮
遊物検出方法は、軌道高度200Km〜250Kmの同
じ軌道に位相差を持たせ複数人工衛星を投入し、これに
受信装置あるいは送信装置を備え、地上に送信装置及び
管制装置を備え、これらを組合せた送受信システムを構
成し、送受が分離されているので捜索電波に連続波を容
易に使うことができるようにしたものであり、またほぼ
同高度に人工衛星を介在させているため、この人工衛星
に航法誘導機能と画像処理機能およびレーダ粉砕装置を
持たせることにより、破片に接近し、破片の画像を取得
し、粉砕の必要性と危険性を判断した上で破片を粉砕す
ることを可能にし、また複数の人工衛星により宇宙浮遊
物の検出確率を上げたものである。
A method for detecting space suspended matter according to the present invention is provided with a plurality of artificial satellites with a phase difference in the same orbit at an orbital altitude of 200 km to 250 km, and a receiving device or a transmitting device. , A transmitter and a controller on the ground are combined, and a transmitter / receiver system that combines them is configured, and since transmission and reception are separated, continuous waves can be easily used for search radio waves, and almost the same. Since a satellite is highly intervened, this satellite has a navigation guidance function, an image processing function, and a radar crushing device to approach the debris and obtain an image of the debris, and the necessity and danger of crushing It is possible to crush the debris after judging the sex, and the probability of detection of space suspended matter is increased by multiple satellites.

【0008】[0008]

【作用】この発明において捜索電波は一方向のみの電波
伝播により検出が行なわれるので、“数1”のRを等価
的に縮めることができ、かつ送受が分離されているの
で、連続波を捜索に使用することができる。また検出し
た破片の位置データと人工衛星の位置および姿勢データ
をもとに人工衛星の航法誘導を行ない、ある程度の距離
まで接近した後は人工衛星に搭載したレーダ送受信器を
用いて破片との相対位置データを検出しながら接近し、
至近距離から人工衛星のカメラにより破片の画像を撮影
することで破片の実像を検出するものである。また人工
衛星において取得した画像データはテレメトリにより地
上へ送信され、地上において破片の粉砕の必要性、危険
性を判断した上で地上からのコマンドにより人工衛星の
レーザ照射による破片の粉砕が可能となる。また複数の
人工衛星を投入することにより常にいずれかの人工衛星
と送受信可能とし、宇宙浮遊物の検出確率を上げるもの
である。
In the present invention, since the search radio wave is detected by propagation of the radio wave in only one direction, R of "Equation 1" can be shortened equivalently, and the transmission and reception are separated, so that the continuous wave is searched for. Can be used for In addition, the navigation guidance of the artificial satellite is performed based on the detected position data of the fragment and the position and attitude data of the artificial satellite, and after approaching to a certain distance, the radar transceiver mounted on the artificial satellite is used Approach while detecting position data,
The actual image of the fragment is detected by capturing an image of the fragment with an artificial satellite camera from a very short distance. Also, the image data acquired by the artificial satellite is transmitted to the ground by telemetry, and it becomes possible to crush the fragments by laser irradiation of the artificial satellite by a command from the ground after judging the necessity and danger of crushing the fragments on the ground. .. Also, by introducing multiple artificial satellites, it is possible to transmit and receive with any one of the artificial satellites at all times, thereby increasing the detection probability of space suspended matter.

【0009】[0009]

【実施例】【Example】

実施例1 この発明の基本構成を図1に示す。図中1は破片、2は
複数の人工衛星のうちのある人工衛星、3は送信設備、
4は管制局、5は送信設備4から送信する破片1の捜索
電波、6は破片1で散乱した後の散乱波、7は管制局か
ら人工衛星へのコマンド、8は人工衛星から管制局への
テレメトリ、9はレーザ光線である。
Example 1 The basic configuration of the present invention is shown in FIG. In the figure, 1 is a fragment, 2 is an artificial satellite among a plurality of artificial satellites, 3 is transmission equipment,
4 is a control station, 5 is a search radio wave of the fragment 1 transmitted from the transmission equipment 4, 6 is a scattered wave after being scattered by the fragment 1, 7 is a command from the control station to the artificial satellite, 8 is from the artificial satellite to the control station , And 9 is a laser beam.

【0010】人工衛星2は破片1の観測に適した軌道に
投入する。送信設備3より破片1の捜索電波5を送信す
る。捜索電波5が破片1に照射されると、破片の有効断
面積に応じた散乱をおこし、この散乱波6は人工衛星2
により受信される。散乱波6が人工衛星2により受信さ
れた時の検索電波送信方位角(アジマス角)及び仰角
(エレベーション角)は高精度で設定できるものとす
る。送信設備3より捜索電波5を送信すると同時に管制
局4より人工衛星2へ測距情報を含むコマンド7を送信
する人工衛星2より受信した散乱波6の測距情報と受信
したコマンド7の測距情報より距離(位相差)を検出す
ることができる。人工衛星2軌道は管制局4により正確
に決定できているので、時刻が判明すれば破片の位置は
高精度で求めることができる。また検出した破片の位置
データをもとに人工衛星を航行誘導し、破片に接近さ
せ、人工衛星に搭載している光学センサにより破片の画
像データを取得し、この画像データをテレメトリ8とし
て管制局4へ送信する。管制局4において画像データを
もとに破片1の粉砕の必要性、危険性を判断し、粉砕す
る場合には粉砕実行コマンドをコマンド7に含め送信す
る。人工衛星2は粉砕実行コマンドを受信すると、破片
にレーザの照準を合わせレーザ光9を照射し破片を粉砕
する。
The artificial satellite 2 is placed in an orbit suitable for observing the fragment 1. The search radio wave 5 of the fragment 1 is transmitted from the transmission equipment 3. When the search radio wave 5 is irradiated on the fragment 1, the scattered wave 6 is scattered according to the effective area of the fragment, and the scattered wave 6 is generated by the artificial satellite 2
Received by. It is assumed that the search radio wave transmission azimuth angle (azimuth angle) and elevation angle (elevation angle) when the scattered wave 6 is received by the artificial satellite 2 can be set with high accuracy. At the same time as transmitting the search radio wave 5 from the transmission equipment 3, the control station 4 transmits the command 7 including the distance measurement information to the artificial satellite 2 The distance measurement information of the scattered wave 6 received from the artificial satellite 2 and the distance measurement of the received command 7 The distance (phase difference) can be detected from the information. Since the orbit of the artificial satellite 2 can be accurately determined by the control station 4, the position of the fragment can be obtained with high accuracy if the time is known. In addition, based on the detected position data of the debris, the artificial satellite is guided by navigation, approached to the debris, the image data of the debris is acquired by the optical sensor mounted on the artificial satellite, and this image data is used as the telemetry 8 control station. Send to 4. The control station 4 judges the necessity and risk of crushing the fragment 1 based on the image data, and when crushing, sends a command 7 including a crushing execution command. Upon receiving the crushing execution command, the artificial satellite 2 focuses the laser on the fragment and irradiates the laser beam 9 to crush the fragment.

【0011】コマンドの測距情報には擬似ランダム雑音
符号(Psuedo RandomNoise符号、略
称PN符号)を用い、捜索電波にも同様に擬似ランダム
雑音符号に変調された連続波を使用する。人工衛星2が
受信するコマンド10のPN符号と散乱波11のPN符
号の関係を図2に示す。10はコマンド、11は散乱波
の測距情報となるPN符号、12及び13はPN符号の
1ブロックを示す。14はコマンドと散乱波の間の伝播
遅延時間である。
A pseudo random noise code (Psuedo Random Noise code, abbreviated as PN code) is used for the distance measurement information of the command, and a continuous wave similarly modulated to the pseudo random noise code is used for the search radio wave. The relationship between the PN code of the command 10 and the PN code of the scattered wave 11 received by the artificial satellite 2 is shown in FIG. Reference numeral 10 is a command, 11 is a PN code serving as distance measurement information of scattered waves, and 12 and 13 are one block of the PN code. 14 is the propagation delay time between the command and the scattered wave.

【0012】12,13のPN符号のブロックはi,
j,kのような擬似ランダム符号になっており、実際は
図中に示す0と1の一連の組み合わせより成立つ。0と
1の長さは、PN符号の種類を選択することによって決
まる値であり、i,j,k…,aのどの文字長も同一
で、一つのブロックはこの文字を連続させ構成されてい
る。人工衛星2はこのPN符号の相関器を備えており、
コマンドのPN符号10と散乱波のPN符号11の位相
を読み取ることができる。この2つの位相差を比較すれ
ば、コマンド10と散乱波11の時間遅れ14を検出す
ることができる。
Blocks of PN code 12 and 13 are i,
It is a pseudo-random code such as j and k, and is actually formed by a series of combinations of 0 and 1 shown in the figure. The lengths of 0 and 1 are values determined by selecting the type of PN code, and all the character lengths of i, j, k ..., A are the same, and one block is formed by connecting these characters consecutively. There is. The artificial satellite 2 is equipped with this PN code correlator,
The phases of the PN code 10 of the command and the PN code 11 of the scattered wave can be read. By comparing the two phase differences, the time delay 14 between the command 10 and the scattered wave 11 can be detected.

【0013】人工衛星2と送信設備3の位置が判明して
いて、二つの符号間の時間遅れが判明しているので、図
3にこの関係を簡単な幾何モデルで表現する。図中15
はx軸、16はy軸、17,18は楕円の焦点、19は
楕円、20は楕円上の点と二つの焦点を結ぶ線分、21
は楕円上の一点、22はA点から見た破片1の方向、2
3は破片1の位置である。
Since the positions of the artificial satellite 2 and the transmitting equipment 3 are known and the time delay between the two codes is known, this relationship is represented in FIG. 3 by a simple geometric model. 15 in the figure
Is the x-axis, 16 is the y-axis, 17 and 18 are the focal points of the ellipse, 19 is the ellipse, 20 is a line segment connecting the points on the ellipse and the two focal points, 21
Is a point on the ellipse, 22 is the direction of the fragment 1 viewed from point A, 2
3 is the position of the fragment 1.

【0014】人工衛星2の位置をB点18とし、送信設
備3の位置をA点17とすると、両者を貫く線分として
x軸15が定義できる。AB間の距離は軌道決定から判
明している。送信設備3、破片1と人工衛星2の経路の
距離は、AB間の距離に相当する時間と捜索電波5を経
て散乱波6が人工衛星2に到達する時間との差である距
離差遅延時間14に相当する距離と、AB間の距離の和
より求めることができる。この二つの距離より次の構図
が作成できる。即ち、人工衛星2と送信設備3の距離離
れた点A17と点B18を焦点とし、楕円上の一点P′
21が距離差遅延時間14に相当する距離とAB間の距
離の和になるような楕円19を描くことができる。2次
元で考えれば、破片1はこの楕円上に存在することにな
る。実際には3次元であるから破片1は、楕円19をx
軸回りに回転した時できる回転楕円体の表面上に存在す
ることがわかる。一方A点17は送信設備3を想定し、
送信設備3から破片1への捜索電波5の照射設定方位角
と仰角の二つの角度情報を得ている。したがってA点1
7より照射方向22に直線を描き、前に述べた回転楕円
体との交点P23を求めれば、このP点23が破片1の
位置となる。
Assuming that the position of the artificial satellite 2 is B point 18 and the position of the transmission equipment 3 is A point 17, the x-axis 15 can be defined as a line segment penetrating both. The distance between AB is known from the orbit determination. The distance between the transmission equipment 3, the fragment 1 and the path of the artificial satellite 2 is the distance difference delay time which is the difference between the time corresponding to the distance between AB and the time when the scattered wave 6 reaches the artificial satellite 2 via the search radio wave 5. It can be obtained from the sum of the distance corresponding to 14 and the distance between AB. The following composition can be created from these two distances. That is, the point A17 and the point B18, which are separated by the distance between the artificial satellite 2 and the transmission equipment 3, are focused, and one point P'on the ellipse
An ellipse 19 can be drawn such that 21 is the sum of the distance corresponding to the distance difference delay time 14 and the distance between AB. Considering in two dimensions, the fragment 1 exists on this ellipse. Since it is actually three-dimensional, the fragment 1 has an ellipse 19 of x
It can be seen that it exists on the surface of the spheroid that is formed when it is rotated about the axis. On the other hand, A point 17 assumes the transmission equipment 3,
Two pieces of angle information, that is, the azimuth setting and the elevation angle of irradiation of the search radio wave 5 from the transmission equipment 3 to the fragment 1 are obtained. Therefore, point A 1
When a straight line is drawn in the irradiation direction 22 from 7 and the intersection point P23 with the spheroid described above is obtained, this P point 23 is the position of the fragment 1.

【0015】図4に人工衛星2における距離差を検出す
る回路構成を示す。24は散乱波6の受信用アンテナ、
25はコマンド7の受信用アンテナ、26,27は受信
機、30,31は局部PN符号発生器、28,29は比
較回路、32,33は積分器及び符号追尾回路、34は
符号差の検出回路である。
FIG. 4 shows a circuit configuration for detecting a distance difference in the artificial satellite 2. 24 is an antenna for receiving the scattered wave 6,
Reference numeral 25 is a command receiving antenna, 26 and 27 are receivers, 30 and 31 are local PN code generators, 28 and 29 are comparison circuits, 32 and 33 are integrators and code tracking circuits, and 34 is a code difference detection. Circuit.

【0016】アンテナ24は散乱波6を受信し、受信機
26において受信した搬送波よりビデオ出力を得る。こ
の出力は送信設備3と管制局4が持っているのと同じP
N符号より構成される局部PN符号発生器30の出力と
比較され、相関の強さが比較回路28で検出され、符号
のアクイジションの設定及び符号の追尾が積分器及び符
号追尾回路32によって行なわれる。同様にアンテナ2
5はコマンド7を受信し、受信機27、比較回路29、
積分器及び符号追尾回路33、局部PN符号発生器31
により、前述の散乱と同様の処理を行なう。両方の符号
について、アクイジションを達成した後の局部PN符号
発生器30,31は受信符号と常に同一の位相を示すの
で、そのPN符号を符号差検出回路34に入力すること
により、コマンド7と散乱波6の間の位相差、即ち距離
差を検出することができる。
The antenna 24 receives the scattered wave 6 and obtains a video output from the carrier wave received by the receiver 26. This output is the same P that the transmission equipment 3 and the control station 4 have.
The output of a local PN code generator 30 composed of N codes is compared, the strength of the correlation is detected by a comparison circuit 28, and the acquisition of the code and the tracking of the code are performed by an integrator and the code tracking circuit 32. .. Similarly antenna 2
5 receives the command 7, the receiver 27, the comparison circuit 29,
Integrator and code tracking circuit 33, local PN code generator 31
Thus, processing similar to the above-mentioned scattering is performed. For both codes, the local PN code generators 30 and 31 after achieving the acquisition always show the same phase as the received code. Therefore, by inputting the PN code to the code difference detection circuit 34, the command 7 and the scattered The phase difference between the waves 6, ie the distance difference, can be detected.

【0017】図5は破片1の位置検出アルゴリズムをま
とめたものである。35は検出時刻、36は散乱波コマ
ンドの距離差データ、37は管制局の位置データ、38
は送信設備の位置データ、39はGPSRにより得られ
た人工衛星の位置データ、40は捜索電波の照射方位角
および仰角データ、41は管制局と人工衛星の距離を送
信設備から人工衛星の距離に補正する補正データ、42
は送信設備と人工衛星の距離データ、43は補正データ
41により補正された後の距離差データ、44は立体楕
円方程式、45は破片の位置データである。
FIG. 5 is a summary of the position detection algorithm of the fragment 1. 35 is the detection time, 36 is the distance difference data of the scattered wave command, 37 is the position data of the control station, 38
Is the position data of the transmitting equipment, 39 is the position data of the satellite obtained by GPSR, 40 is the irradiation azimuth and elevation data of the search radio waves, 41 is the distance between the control station and the artificial satellite, and the distance from the transmitting equipment to the satellite. Correction data to correct, 42
Is the distance data between the transmitting equipment and the artificial satellite, 43 is the distance difference data after being corrected by the correction data 41, 44 is the three-dimensional elliptic equation, and 45 is the position data of the fragments.

【0018】45の破片位置を検出するためには、42
の送信設備から人工衛星への距離データと、43の送信
設備から人工衛星までの距離と送信設備から破片を経由
した人工衛星までの距離との距離差データと、40の送
信設備における捜索電波の照射方向が必要である。これ
ら三つのデータが演算で使用される時は、検出指定時刻
35が指定値として決められ、特定な時刻におけるデー
タによる演算が行なわれる。人工衛星2の位置はGPS
Rにより得られた人工衛星の位置データ39と検出時刻
35により求められる。このデータと管制局4の位置デ
ータ37と送信設備3の位置データ38から、管制局4
と人工衛星2の距離を送信設備3から人工衛星2の距離
に補正する補正データ41と、送信設備3から人工衛星
2への距離データ42が得られる。散乱波6とコマンド
7の距離差データ36は、41の補正データにより送信
設備3から人工衛星2までの距離と送信設備3から破片
を経由した人工衛星までの距離との距離差データ43に
補正される。送信設備3から人工衛星2への距離データ
42と補正後の距離差データ43により立体楕円の方程
式44が得られ、この立体楕円の方程式44と捜索電波
5の照射方位角及び仰角データ40により決まる直線と
の交点である破片の位置45を得ることができる。
To detect the position of the 45 fragments, 42
Of the distance from the transmitting equipment to the artificial satellite, the distance difference data between the distance from the transmitting equipment of 43 to the artificial satellite and the distance from the transmitting equipment to the artificial satellite via the fragment, and the search radio wave of the transmitting equipment of 40. Irradiation direction is required. When these three data are used in the calculation, the detection designated time 35 is determined as the designated value, and the calculation is performed by the data at the specific time. The position of the artificial satellite 2 is GPS
It is obtained from the satellite position data 39 obtained by R and the detection time 35. From this data, the position data 37 of the control station 4 and the position data 38 of the transmission equipment 3, the control station 4
And correction data 41 for correcting the distance of the artificial satellite 2 to the distance of the artificial satellite 2 from the transmitting equipment 3 and the distance data 42 from the transmitting equipment 3 to the artificial satellite 2 are obtained. The distance difference data 36 between the scattered wave 6 and the command 7 is corrected to the distance difference data 43 between the distance from the transmitting equipment 3 to the artificial satellite 2 and the distance from the transmitting equipment 3 to the artificial satellite via the fragment by the correction data of 41. To be done. A solid ellipse equation 44 is obtained from the distance data 42 from the transmission equipment 3 to the artificial satellite 2 and the corrected distance difference data 43, and is determined by the solid ellipse equation 44 and the irradiation azimuth and elevation angle data 40 of the search radio wave 5. The position 45 of the debris, which is the intersection with the straight line, can be obtained.

【0019】図6は人工衛星、送信設備、管制局の送受
信システムにより破片の位置を検出した後、人工衛星の
自律的航法誘導機能により破片に接近し、破片の画像デ
ータを取得およびテレメトリ送信し、管制局より破片の
粉砕を実行するコマンドが送信された場合破片にレーザ
光線を照射するまでの処理の流れを示したものである。
図において46は追尾コマンド、47は軌道制御マヌー
バの時刻、制御方法、制御量を設定する搭載ソフトウェ
アの処理、48は人工衛星と破片の相対位置データ、4
9は軌道制御の実施、50は第一接近完了ステータス、
51は姿勢センサによる姿勢データ、52はレーダ座標
系における破片の相対姿勢データ、53はアクチュエー
タによる姿勢制御、54はレーダによる破片の検出およ
び破片への接近航法誘導、55は最終接近完了ステータ
ス、56は破片の画像処理、57は画像データのテレメ
トリ、58は破片の粉砕実行コマンド、59はレーザー
照準制御、60は照準一致、61はレーザー照射を示
す。
In FIG. 6, after detecting the position of the fragment by the artificial satellite, the transmission equipment, and the transmission / reception system of the control station, the artificial navigation approach of the artificial satellite approaches the fragment, and the image data of the fragment is acquired and telemetry transmitted. When the command to crush the fragments is sent from the control station, the process flow until the fragments are irradiated with the laser beam is shown.
In the figure, 46 is a tracking command, 47 is processing of on-board software that sets the time, control method and control amount of the orbit control maneuver, 48 is relative position data of artificial satellite and fragments, 4
9 is the orbit control, 50 is the first approach completion status,
Reference numeral 51 is attitude data from an attitude sensor, 52 is relative attitude data of fragments in a radar coordinate system, 53 is attitude control by an actuator, 54 is detection of fragments by the radar and approach navigation guidance to the fragments, 55 is a final approach completion status, 56 Is image processing of fragments, 57 is telemetry of image data, 58 is a fragment crushing execution command, 59 is laser aiming control, 60 is aiming coincidence, and 61 is laser irradiation.

【0020】45の破片位置データを検出した後、破片
位置が人工衛星から追尾可能な位置であるか、また他の
人工衛星の軌道から大きくはずれず簡単な制御で元の軌
道に戻れるかを判断し、管制局より追尾コマンド45を
送信する。追尾コマンドにより人工衛星の搭載ソフトウ
ェアにおいて、35の検出時刻、39の人工衛星位置デ
ータ、45の破片の位置データにより相対位置データ4
8の計算と人工衛星が破片に接近するための軌道制御マ
ヌーバの時刻、方法、制御量の計算47を行なう。47
に従って軌道制御49が実施される。破片を人工衛星に
搭載したレーダが十分検出できる相対位置まで接近する
と、第一接近完了ステータス50がオンとなる。第一接
近完了ステータス50がオンになると、人工衛星のレー
ダ座標系における破片の方向(相対姿勢)を算出し、レ
ーダの感度軸を破片に向けるよう姿勢制御53が実施さ
れる。レーダが破片をとらえるとさらに画像を撮るのに
適した位置および姿勢まで航法制御と姿勢制御54が実
施される。画像を撮るのに適した位置および姿勢になる
と最終接近完了ステータス55がオンとなり、破片の画
像処理56が行なわれる。破片の画像データはテレメト
リ57として管制局へ送信され、管制局において破片の
粉砕の必要性、危険性を画像データより判断する。管制
局より粉砕実行を指示するコマンド58が送信され、人
工衛星が受信した場合、人工衛星の搭載ソフトウェアに
よりレーザ照準を破片に合わせる制御59が行なわれ、
照準一致ステータス60がオンになった時レーザ照射6
1が行なわれる。
After detecting the debris position data of 45, it is judged whether the debris position can be tracked by the artificial satellite, or whether the debris position can be returned to the original orbit by a simple control without largely deviating from the orbits of other artificial satellites. Then, the tracking command 45 is transmitted from the control station. In the software installed on the artificial satellite by the tracking command, the relative position data 4 by the detection time 35, the artificial satellite position data 39, and the fragment position data 45
8 and the orbit control maneuver time, method, and control amount calculation 47 for the artificial satellite to approach the debris. 47
The orbit control 49 is carried out according to. When the debris approaches the relative position where it can be sufficiently detected by the radar mounted on the artificial satellite, the first approach completion status 50 is turned on. When the first approach completion status 50 is turned on, the direction (relative attitude) of the fragment in the radar coordinate system of the artificial satellite is calculated, and the attitude control 53 is executed to direct the sensitivity axis of the radar to the fragment. When the radar catches the debris, the navigation control and attitude control 54 is executed to a position and attitude suitable for taking an image. When the position and posture are suitable for taking an image, the final approach completion status 55 is turned on, and the image processing 56 of the fragments is performed. The image data of the fragments is transmitted as telemetry 57 to the control station, and the control station determines the necessity and risk of fragmentation from the image data. When the control station transmits a command 58 for instructing the crushing and the artificial satellite receives the command, the software installed on the artificial satellite performs a control 59 for adjusting the laser aiming at the fragment.
Laser irradiation 6 when aiming status 60 is turned on 6
1 is performed.

【0021】以上の実施例にもとづく人工衛星を、破片
の多く存在する付近の軌道へ位相を変え複数投入する。
管制局と個々の人工衛星の可視時間帯は限られるが、管
制局は次々に別の人工衛星と送受信可能となる。
A plurality of artificial satellites based on the above-described embodiment are injected into the orbits near many debris in which the phases are changed.
The control station and individual satellites are limited in visible time, but the control station can transmit and receive to and from another satellite one after another.

【0022】[0022]

【発明の効果】この発明は、以下に記載されるような効
果を奏する。
The present invention has the following effects.

【0023】宇宙空間に浮遊する破片が周回している付
近に人工衛星の軌道を設定し、測距情報を含むコマンド
を管制局から人工衛星へ、同様に捜索電波を送信設備か
ら破片へ送信することにより一方向の電波伝播検出の組
み合わせによって破片の位置を求めるため、破片への双
方向の電波伝播による受信電力密度を表すレーダ方程式
前記“数1”においてR4 の項が大きくなり無効に電波
が拡がってしまう軌道高度においても、破片の位置検出
が容易にできる。
The orbit of the artificial satellite is set in the vicinity of the orbiting debris floating in outer space, and a command including ranging information is transmitted from the control station to the artificial satellite, and similarly search radio waves are transmitted from the transmitting equipment to the debris. Since the position of the debris is obtained by the combination of one-way radio wave propagation detection, the R 4 term in the above-mentioned “Equation 1” that represents the received power density due to the bidirectional radio wave propagation to the debris becomes large and the radio wave becomes invalid. It is possible to easily detect the position of a fragment even at an orbital height at which the area spreads.

【0024】さらに人工衛星の航法誘導機能と画像処理
機能により至近距離からの破片の画像を撮ることがで
き、この画像データより破片の実体、破片を粉砕する必
要性、破片を粉砕する際の危険性を判断した上でレーザ
光線により破片を粉砕することができる。
Furthermore, the navigation guidance function and the image processing function of the artificial satellite can take an image of debris from a close range, and from this image data, the substance of the debris, the necessity of crushing the debris, and the danger of crushing the debris. The fragment can be crushed by a laser beam after determining the sex.

【0025】さらに位相の異なる複数の人工衛星を用い
ることにより、常に破片の検出が可能となり、検出確率
も上がる。
Furthermore, by using a plurality of artificial satellites having different phases, it is possible to detect fragments at any time, and the detection probability increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の基本構成である。FIG. 1 is a basic configuration of the present invention.

【図2】コマンドと散乱波のPN符号の関係を示す図で
ある。
FIG. 2 is a diagram showing a relationship between a command and a PN code of a scattered wave.

【図3】送信設備と人工衛星と破片との幾何学モデルを
示す図である。
FIG. 3 is a diagram showing a geometric model of a transmission facility, an artificial satellite, and fragments.

【図4】人工衛星において距離差を検出する回路構成を
示す図である。
FIG. 4 is a diagram showing a circuit configuration for detecting a distance difference in an artificial satellite.

【図5】破片位置検出アルゴリズムを示す図である。FIG. 5 is a diagram showing a fragment position detection algorithm.

【図6】人工衛星の自律的航法誘導機能により破片に接
近し、破片の画像データを取得するまでの処理のながれ
を示した図である。
FIG. 6 is a diagram showing a process flow until a fragment is approached and image data of the fragment is acquired by an autonomous navigation guidance function of an artificial satellite.

【図7】従来の一次レーダの構成を示す図である。FIG. 7 is a diagram showing a configuration of a conventional primary radar.

【符号の説明】[Explanation of symbols]

1 破片 2 人工衛星 3 送信設備 4 管制局 5 捜索電波 6 散乱波 7 コマンド 8 テレメトリ 9 レーザ光線 10 コマンドのPN符号 11 散乱波のPN符号 12 コマンドのPN符号1ブロック 13 散乱波のPN符号1ブロック 14 コマンドと散乱波との間の伝播遅延時間 15 X軸 16 Y軸 17 楕円の焦点A点 18 楕円の焦点B点 19 楕円 20 楕円の二つの焦点を結ぶ線分 21 楕円上の一点 22 A点から見た破片の方位 23 破片の位置 24 散乱波の受信アンテナ 25 コマンド受信アンテナ 26 散乱波用受信機 27 コマンド用受信機 28 散乱波用比較回路 29 コマンド用比較回路 30 散乱波用局部PN符号発生器 31 コマンド用局部PN符号発生器 32 散乱波用積分器および符号追尾回路 33 コマンド用積分器および符号追尾回路 34 符号差の検出回路 35 検出時刻 36 散乱波とコマンドの距離差データ 37 管制局の位置データ 38 送信設備の位置データ 39 GPSRにより得られた人工衛星の位置データ 40 捜索伝播の照射方向 41 補正データ 42 送信設備と人工衛星の距離データ 43 補正データにより補正された後の距離差データ 44 立体楕円方程式 45 破片の位置データ 46 追尾コマンド 47 軌道制御マヌーバの時刻・方法・制御量の計算 48 破片と人工衛星の相対位置データ 49 軌道制御 50 第一接近完了ステータス 51 人工衛星の姿勢データ 52 レーダ座標系における破片の相対姿勢データ 53 姿勢制御 54 レーダによる航法誘導および姿勢制御 55 最終接近完了ステータス 56 画像処理 57 画像データテレメトリ 58 粉砕実行コマンド 59 レーザ照準制御 60 照準一致ステータス 61 レーザ照射 1 Fragment 2 Artificial Satellite 3 Transmission Equipment 4 Control Station 5 Search Radio Wave 6 Scattered Wave 7 Command 8 Telemetry 9 Laser Beam 10 PN Code of Command 11 PN Code of Scattered Wave 12 PN Code 1 Block of Command 13 PN Code 1 Block of Scattered Wave 14 Propagation delay time between command and scattered wave 15 X-axis 16 Y-axis 17 Focus point A of ellipse 18 Focus point B of ellipse 19 Ellipse 20 Line segment connecting two foci of ellipse 21 Point on ellipse 22 A point Direction of fragment as seen from 23 Fragment position 24 Scattered wave reception antenna 25 Command reception antenna 26 Scattered wave receiver 27 Command receiver 28 Scattered wave comparison circuit 29 Command comparison circuit 30 Scattered wave local PN code generation 31 Command local PN code generator 32 Scattered wave integrator and code tracking circuit 33 Command integrator And code tracking circuit 34 Detection circuit of code difference 35 Detection time 36 Distance data of scattered wave and command 37 Position data of control station 38 Position data of transmitting equipment 39 Position data of satellite obtained by GPSR 40 Irradiation of search propagation Direction 41 Correction data 42 Distance data between transmitting equipment and satellite 43 Distance difference data after correction by correction data 44 Solid elliptic equation 45 Fragment position data 46 Tracking command 47 Orbit control Maneuver time / method / control amount calculation 48 Relative position data of fragment and artificial satellite 49 Orbit control 50 First approach completion status 51 Attitude data of artificial satellite 52 Relative attitude data of fragment in radar coordinate system 53 Attitude control 54 Navigation guidance and attitude control by radar 55 Final approach completion status 56 image processing 57 image data Remetry 58 Grinding execution command 59 Laser aiming control 60 Aiming coincidence status 61 Laser irradiation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 宇宙浮遊物が存在する付近の軌道上に位
相差を持たせ複数の人工衛星を投入し、地表の管制局よ
り可視な人工衛星へ測距情報を含むコマンドを送信し、
同時に測距情報を含むコマンドとは別の周波数のビーム
を浮遊物を検出しようとする方向に照射し、このビーム
に宇宙浮遊物が照射された時発生する宇宙浮遊物の持つ
固有な電波の有効断面積に応じた散乱波を人工衛星によ
り受信し、人工衛星において前記のコマンドと前記の散
乱波の間の位相差より求められる距離差のデータと、別
に管制局で得られている人工衛星の位置データと、送信
局におけるビーム照射方向を入力とし演算することによ
り宇宙浮遊物の位置を検出し、またこの検出位置データ
をもとに航行および元の軌道に戻ることが可能な位置で
あれば人工衛星を航行誘導し宇宙浮遊物に接近させ、さ
らに最終的接近時には人工衛星に搭載したレーダ送受信
器により至近距離まで接近し、宇宙浮遊物の画像を人工
衛星に搭載している光学センサにより取得およびこの画
像データを管制局へ送信し、地上の管制局において宇宙
浮遊物粉砕の必要性と危険性を判断し、その場合には管
制局より人工衛星へコマンドが送信され人工衛星が宇宙
浮遊物にレーザを照射し粉砕することを特徴とする宇宙
浮遊物検出および粉砕方法。
1. A plurality of artificial satellites are introduced with a phase difference in orbit in the vicinity of the presence of space suspended matter, and a command including ranging information is transmitted to a visible artificial satellite from a ground control station,
At the same time, a beam with a frequency different from the command containing distance measurement information is emitted in the direction in which a floating object is detected, and the effective radio wave of the space floating object generated when this beam is irradiated with the space floating object. The scattered wave corresponding to the cross-sectional area is received by the artificial satellite, and the data of the distance difference obtained from the phase difference between the command and the scattered wave on the artificial satellite and the satellite separately obtained by the control station. Position data and the beam irradiation direction at the transmitting station are used as input to detect the position of space suspended matter, and if it is a position that can return to the original orbit based on this detected position data. An artificial satellite is navigated to approach a space floating object, and at the final approach, a radar transceiver mounted on the artificial satellite approaches to a close range, and the image of the space floating object is mounted on the artificial satellite. An optical sensor acquires and sends this image data to the control station, and the control station on the ground judges the necessity and danger of crushing space suspended matter.In that case, the control station sends a command to the artificial satellite and the satellite A method for detecting and crushing space suspended matter characterized by irradiating a space suspended matter with a laser and crushing.
JP5505092A 1992-03-13 1992-03-13 Detection and pulverizing method for space floating object Pending JPH05254500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5505092A JPH05254500A (en) 1992-03-13 1992-03-13 Detection and pulverizing method for space floating object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5505092A JPH05254500A (en) 1992-03-13 1992-03-13 Detection and pulverizing method for space floating object

Publications (1)

Publication Number Publication Date
JPH05254500A true JPH05254500A (en) 1993-10-05

Family

ID=12987849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5505092A Pending JPH05254500A (en) 1992-03-13 1992-03-13 Detection and pulverizing method for space floating object

Country Status (1)

Country Link
JP (1) JPH05254500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6313507B1 (en) * 2017-05-19 2018-04-18 株式会社アストロスケール Navigation system, spacecraft and optical marker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6313507B1 (en) * 2017-05-19 2018-04-18 株式会社アストロスケール Navigation system, spacecraft and optical marker
JP2018192998A (en) * 2017-05-19 2018-12-06 株式会社アストロスケール Navigation system, space flight body, and optical marker

Similar Documents

Publication Publication Date Title
US5949371A (en) Laser based reflectors for GPS positioning augmentation
CN106470901B (en) Improve the Global Navigation Satellite System framework of performance and cost
US7266445B1 (en) Method and a system for navigating around real site by creating and accessing database of positional reality images of real site
US8279119B2 (en) Systems and methods for transparency mapping using multipath signals
KR920010026B1 (en) Vehicle location system accuracy enhancement for airborne vehicles
US7973716B2 (en) Systems and methods for transparency mapping using multipath signals
EP2698644A1 (en) Methods and systems for enhanced navigational performance
US6700527B1 (en) Coherent two-dimensional image formation by passive synthetic aperture collection and processing of multi-frequency radio signals scattered by cultural features of terrestrial region
JP2008530551A (en) Radio and optical 3D positioning system
Scheinfeild et al. Acquisition system for microsatellites laser communication in space
WO2004029807A2 (en) Methods and apparatus for evaluating operational integrity of a data processing system using moment bounding
CN110286354B (en) Multi-target detection and discrimination method, apparatus and computer-readable storage medium
Maaref et al. Integrity monitoring of LTE signals of opportunity-based navigation for autonomous ground vehicles
US6259403B1 (en) GPS positioning utilizing laser based reflectors augmentation
US8604965B2 (en) Apparatus and method to generate and detect virtual targets
Zeng Passive bistatic SAR with GNSS transmitter and a stationary receiver
JPH05254500A (en) Detection and pulverizing method for space floating object
Joerger Carrier phase GPS augmentation using laser scanners and using low earth orbiting satellites
JP5298730B2 (en) Interference synthetic aperture radar system, processing method, directivity angle correction apparatus, directivity angle correction method, and program
JPH10147300A (en) Detecting method for space suspended matter
JPH04292300A (en) Space-suspended matter detection and comminuting method
JPH03295488A (en) Detecting method for space floating body
Cherniakov et al. Experiences Gained during the Development of a Passive BSAR with GNSS Transmitters of Opportunity
CN115769513A (en) Inter-satellite link acquisition supported by machine vision
JP3664956B2 (en) On-orbit work machine guidance system