JPH0525309B2 - - Google Patents
Info
- Publication number
- JPH0525309B2 JPH0525309B2 JP62221589A JP22158987A JPH0525309B2 JP H0525309 B2 JPH0525309 B2 JP H0525309B2 JP 62221589 A JP62221589 A JP 62221589A JP 22158987 A JP22158987 A JP 22158987A JP H0525309 B2 JPH0525309 B2 JP H0525309B2
- Authority
- JP
- Japan
- Prior art keywords
- communication
- mobile
- signals
- positioning
- base station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000006854 communication Effects 0.000 claims description 138
- 238000004891 communication Methods 0.000 claims description 138
- 230000005540 biological transmission Effects 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007175 bidirectional communication Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
- Radar Systems Or Details Thereof (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Mobile Radio Communication Systems (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は移動体衛星通信/測位方式に係り、特
に1または2以上の基地局が通信衛星を介して多
数の移動体と双方向通信を行うとともに、2個の
通信衛星を利用して移動体の位置を測定しそれを
該移動体へ伝達できる移動体衛星通信/測位方式
に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mobile satellite communication/positioning system, and particularly to a mobile satellite communication/positioning system in which one or more base stations perform two-way communication with a large number of mobile objects via communication satellites. The present invention relates to a mobile satellite communication/positioning method that can measure the position of a mobile object and transmit the position to the mobile object using two communication satellites.
(従来の技術)
衛星通信技術の進展に伴い移動体衛星通信シス
テムに大きな期待が寄せられている。この移動体
衛星通信システムを構築する場合、衛星通信の広
域性という特徴を活かし、移動体との通信と併行
して移動体の測位をなし得る通信/測位の機能を
どのように実現するかがひとつの開発課題となつ
ており、例えば第2図に示す如き移動体衛星通
信/測位方式が提案されている。(Prior Art) As satellite communication technology advances, great expectations are placed on mobile satellite communication systems. When constructing this mobile satellite communication system, it is important to take advantage of the wide-area characteristics of satellite communication and realize communication/positioning functions that can perform positioning of mobile objects in parallel with communication with mobile objects. This has become a development issue, and for example, a mobile satellite communication/positioning system as shown in FIG. 2 has been proposed.
この方式は米国のGEOSTAR社の開発(米国
特許No.4359733)に係るもので、スペクトル拡散
技術に基づく符号分割多重(CDM)方式によつ
て、通信衛星1−1と同1−2の2個の通信衛星
のうちの一方の通信衛星(第1の通信衛星)1−
1を介して移動体2と基地局3が通信を行うと共
に、他方の通信衛星(第2の通信衛星)1−2を
も加えた2個の通信衛星を利用して基地局3が移
動体2の測位をしそれを該当移動体へ送信する移
動体衛星通信/測位方式である。 This system was developed by the American company GEOSTAR (US Patent No. 4359733), and uses the code division multiplexing (CDM) system based on spread spectrum technology to transmit two communication satellites, 1-1 and 1-2. One of the communication satellites (first communication satellite) 1-
The mobile unit 2 and the base station 3 communicate via the mobile unit 1, and the base station 3 communicates with the mobile unit using two communication satellites including the other communication satellite (second communication satellite) 1-2. This is a mobile satellite communication/positioning method that performs positioning as described in Section 2 and transmits it to the corresponding mobile object.
移動体2は、低指向性アンテナからなる移動体
アンテナ2−1と、分波器2−2と、低雑音増幅
器2−3、ダウンコンバータ2−4、スペクトル
拡散復調器2−5およびデータ復調器2−6から
なる受信部と、移動体端末2−7と、データ変調
器2−8、スペクトル拡散変調器2−9、アツプ
コンバータ2−10および高電力増幅器2−11
からなる送信部とを備える。 The mobile body 2 includes a mobile antenna 2-1 consisting of a low-directivity antenna, a duplexer 2-2, a low-noise amplifier 2-3, a down converter 2-4, a spread spectrum demodulator 2-5, and a data demodulator. a receiving section consisting of a receiver 2-6, a mobile terminal 2-7, a data modulator 2-8, a spread spectrum modulator 2-9, an up converter 2-10 and a high power amplifier 2-11.
and a transmitting section.
また、基地局3は、2個の通信衛星(1−1,
1−2)のそれぞれと1対1に対応して設けられ
る高指向性アンテナからなる基地局アンテナ3−
1および同3−2と、分波器3−3と、第1の受
信部(低雑音増幅器3−4、ダウンコンバータ3
−5、スペクトル拡散復調器3−6およびデータ
復調器3−7)と、送信部(データ変調器3−
8,スペクトル拡散変調器3−9、アツプコンバ
ータ3−10および高電力増幅器3−11)と、
第2の受信部(低雑音増幅器3−12、ダウンコ
ンバータ3−13およびスペクトル拡散復調器3
−14)と、通信/測位動作端末3−15とを備
える。 The base station 3 also has two communication satellites (1-1,
A base station antenna 3- consisting of a highly directional antenna provided in one-to-one correspondence with each of 1-2).
1 and 3-2, the duplexer 3-3, and the first receiving section (low noise amplifier 3-4, down converter 3
-5, spread spectrum demodulator 3-6 and data demodulator 3-7), and a transmitter (data modulator 3-7);
8, spread spectrum modulator 3-9, up converter 3-10 and high power amplifier 3-11);
Second receiving section (low noise amplifier 3-12, down converter 3-13 and spread spectrum demodulator 3)
-14) and a communication/positioning operation terminal 3-15.
この従来方式の要旨は前述した通りであり、ま
た詳細は前記米国特許を参照するとしてその説明
を割愛するが、概要を列記すれば次の如くであ
る。 The gist of this conventional system is as described above, and the detailed explanation will be omitted as the reference will be made to the above-mentioned US patent, but the outline will be listed as follows.
(1) 測定精度を高めるために高速度のPN符号
(ランダム符号)によるスペクトル拡散変調を
用い、衛星中継器の全帯域幅(14MHz)を使用
する。(1) To improve measurement accuracy, use spread spectrum modulation with high-speed PN codes (random codes) and use the full bandwidth (14MHz) of the satellite repeater.
(2) 基地局3では通信/測位動作端末3−15か
らスペクトル拡散変調器3−9へ送信タイミン
グ信号が発せられ、これに応答してデータ変調
器3−8の出力信号がスペクトル拡散変調さ
れ、それがアツプコンバータ3−10、高電力
増幅器3−11、分波器3−3および基地局ア
ンテナ3−1を介して通信衛星1−1へ向けて
送信される。(2) In the base station 3, a transmission timing signal is issued from the communication/positioning operation terminal 3-15 to the spread spectrum modulator 3-9, and in response to this, the output signal of the data modulator 3-8 is spread spectrum modulated. , which is transmitted to the communication satellite 1-1 via an up-converter 3-10, a high-power amplifier 3-11, a duplexer 3-3, and a base station antenna 3-1.
移動体2では、移動体アンテナ2−1および
分波器2−2を介した受信部のスペクトル拡散
復調器2−5において高速PN符号同期を確立
して逆拡散処理をし、その結果をデータを復調
器2−6に与えるとともに、確立したPN符号
の受信タイミング信号をスペクトル拡散変調器
2−9に与える。データ復調器2−6ではデー
タ再生が行われ、移動体端末2−7に与えられ
る。 In the mobile unit 2, high-speed PN code synchronization is established in the spread spectrum demodulator 2-5 of the receiving section via the mobile antenna 2-1 and the demultiplexer 2-2, and despreading processing is performed, and the result is transmitted as data. is applied to the demodulator 2-6, and a reception timing signal of the established PN code is applied to the spread spectrum modulator 2-9. The data demodulator 2-6 reproduces the data and provides it to the mobile terminal 2-7.
(3) 次に、移動体2では、移動体端末2−7が送
出する自局の送出データがデータ変調器2−8
を介してスペクトル拡散変調器2−9へ入り、
ここで送信PN符号によつてスペクトル拡散変
調される。このとき、スペクトル拡散変調器2
−9の送信PN符号のチツプクロツクおよび
PN符号タイミングはスペクトル拡散復調器2
−5の出力に基づく、即ち、PN符号タイミン
グに関しては、基地局送信信号をそのまま折り
返して送信するのと同等である。(3) Next, in the mobile unit 2, the data transmitted by the mobile terminal 2-7 is transmitted to the data modulator 2-8.
into the spread spectrum modulator 2-9 via
Here, it is spread spectrum modulated by the transmission PN code. At this time, the spread spectrum modulator 2
-9 transmit PN code chip clock and
PN code timing is spread spectrum demodulator 2
Based on the output of -5, that is, regarding the PN code timing, it is equivalent to returning and transmitting the base station transmission signal as it is.
スペクトル拡散変調器2−9の出力はアツプ
コンバータ2−10、高電力増幅器2−11、
分波器2−2および移動体アンテナ2−1を介
して2個の通信衛星へ向けて送出される。 The output of the spread spectrum modulator 2-9 is connected to an up converter 2-10, a high power amplifier 2-11,
The signal is transmitted to two communication satellites via a duplexer 2-2 and a mobile antenna 2-1.
(4) 基地局では、移動体送出信号を通信衛星1−
1を介した高指向性アンテナ3−1および通信
衛星1−2を介した高指向性アンテナ3−2で
それぞれ別個に受信され、分波器3−3を介し
た第1の受信部のスペクトル拡散復調器3−6
および第2の受信部のスペクトル拡散復調器3
−14でそれぞれ別個にPN同期をとつて逆拡
散復調される。データ復調器3−7では、スペ
クトル拡散復調器3−6の出力を受けてデータ
再生を行う。また、通信/測位動作端末3−1
5では、スペクトル拡散変調器3−9に供給し
た送信タイミングとスペクトル拡散復調器3−
6および同3−14の出力タイミングとを比較
し、既知の通信衛星の位置情報に基づき3角測
量の原理によつて移動体の位置を決定し、その
情報を移動体へ送信する。(4) The base station transmits the mobile transmission signal to the communication satellite 1-
The spectrum of the first receiving section is received separately by the high directional antenna 3-1 via the communication satellite 1 and the high directional antenna 3-2 via the communication satellite 1-2. Spreading demodulator 3-6
and a spread spectrum demodulator 3 of the second receiving section.
-14, PN synchronization is established separately and despread demodulation is performed. The data demodulator 3-7 receives the output of the spread spectrum demodulator 3-6 and reproduces the data. In addition, communication/positioning operation terminal 3-1
5, the transmission timing supplied to the spread spectrum modulator 3-9 and the spread spectrum demodulator 3-
6 and 3-14, the position of the moving object is determined by the principle of triangulation based on the position information of known communication satellites, and the information is transmitted to the moving object.
(5) 各移動体は全帯域幅(14MHz)を使用して送
信を行うので、衛星の全電力を利用することと
なり、衛星の中継器を時分割的に使用すること
になる。つまり、パケツト通信によるランダム
アクセス方式を用いている。(5) Since each mobile unit transmits using the entire bandwidth (14MHz), the entire power of the satellite is used, and the satellite's repeater is used in a time-sharing manner. In other words, a random access method using packet communication is used.
(発明が解決しようとする問題点)
以上説明したように、GEOSTAR社の提案に
係る方式は、スペクトル拡散技術を利用して衛星
中継器の全帯域(14MHz)を使用する広帯域通信
であるので、非常に高い精度での時間測定がで
き、数mの精度で位置決定を行うことができる。(Problems to be Solved by the Invention) As explained above, the method proposed by GEOSTAR is a wideband communication that uses the entire band (14MHz) of the satellite repeater using spread spectrum technology. It is possible to measure time with very high precision and to determine position with an accuracy of several meters.
しかしながら、本方式にあつては、スペクトル
拡散変調器およびスペクトル拡散復調器を用いる
ので回路規模が増大し、小形軽量を本旨とする移
動体に不向きである。また、通信は時分割的に行
うのであるから、信号はバースト状となり、音声
通信等のリアルタイムな通信は不可能である。 However, since this method uses a spread spectrum modulator and a spread spectrum demodulator, the circuit scale increases, making it unsuitable for mobile objects that are designed to be small and lightweight. Furthermore, since communication is performed in a time-division manner, the signals are in a burst form, making real-time communication such as voice communication impossible.
要するに、本方式は、測位機能に重点が置か
れ、通信機能は極めて限定されたものとなつてい
るという問題点がある。 In short, this method has a problem in that the emphasis is placed on the positioning function, and the communication function is extremely limited.
本発明は、このような問題点に鑑みなされたも
ので、その目的は、回路規模を増大させることな
く、音声通信やデータ通信が行えるだけでなく、
測位をも行える移動体衛星通信/測位方式を提供
することにある。 The present invention was made in view of these problems, and its purpose is not only to enable voice communication and data communication without increasing the circuit scale, but also to
The object of the present invention is to provide a mobile satellite communication/positioning method that can also perform positioning.
(問題点を解決するための手段)
前記目的を達成するために、本発明の移動体衛
星通信/測位方式は次の如き構成を有する。(Means for Solving the Problems) In order to achieve the above object, the mobile satellite communication/positioning system of the present invention has the following configuration.
即ち、本発明の移動体衛星通信/測位方式は、
第1および第2の2個の通信衛星と、1または多
数の移動体と、少なくとも1個の基地局とで構成
され;前記移動体は、前記2個の通信衛星と電波
授受を行う低指向性アンテナと;通信信号を自局
に割り当てられた通信周波数チヤネルにて低指向
性アンテナから前記2個の通信衛星へ向けて送信
するとともに、低指向性アンテナが受けた複数の
周波数チヤネルの信号からの自局に割り当てられ
た通信周波数チヤネルの信号を周波数選択受信し
それを自局向けの通信信号として取り込む第1の
移動体送受信手段と;測位時において低指向性ア
ンテナが受けた複数の周波数チヤネルの信号から
特定周波数チヤネルのパイロツト信号を周波数選
択受信してそれを自局に割り当てらてた周波数チ
ヤネルに挿入し低指向性アンテナから前記2個の
通信衛星へ向けて折り返し送信する第2の移動体
送受信手段と;を備え、前記基地局は、前記2個
の通信衛星のそれぞれと1対1の対応関係で電波
授受を行う2個の高指向性アンテナと;通信信号
が挿入される1または複数の通信周波数チヤネル
とパイロツト信号が挿入される前記特定周波数チ
ヤネルとからなる前記複数の周波数チヤネルの信
号を2個の高指向性アンテナのいずれか一方から
前記2個の通信衛星のうちの対応する通信衛星へ
向けて送信するとともに、そのいずれか一方の高
指向性アンテナが受けた1または複数の通信周波
数チヤネルの信号を周波数選択受信しそれを移動
体からの通信信号として取り込む基地局送受信手
段と;測位時において前記2個の高指向性アンテ
ナが対応する前記第1および第2の通信衛星を介
して個別に受けた通信周波数チヤネルのパイロツ
ト信号のそれぞれについて受信処理をするパイロ
ツト信号受信手段と;前記受信処理した2系統の
パイロツト信号の受信タイミングと前記特定周波
数チヤネルによるパイロツト信号の送信タイミン
グとの時間差から当該測位に係る移動体と前記2
個の通信衛星との距離を算出して3角測量の原理
に基づきその移動体の位置を決定し、その測位結
果を該当移動体へ伝達すべく前記基地局送受信手
段に与える測位演算手段と;を備えたことを特徴
とするものである。 That is, the mobile satellite communication/positioning method of the present invention is as follows:
It is composed of two communication satellites, a first and a second, one or a plurality of mobile bodies, and at least one base station; transmits communication signals from the low-directivity antenna toward the two communication satellites on the communication frequency channel assigned to its own station, and also receives signals from multiple frequency channels received by the low-directivity antenna. a first mobile transmitting/receiving means for frequency-selectively receiving signals of communication frequency channels assigned to the own station and taking them in as communication signals for the own station; a plurality of frequency channels received by the low directional antenna during positioning; A second movement in which the pilot signal of a specific frequency channel is frequency-selectively received from the signal of the station, inserted into the frequency channel assigned to the own station, and then transmitted back from the low directional antenna toward the two communication satellites. The base station includes two highly directional antennas that transmit and receive radio waves in a one-to-one correspondence with each of the two communication satellites; The signals of the plurality of frequency channels, which are composed of a plurality of communication frequency channels and the specific frequency channel into which a pilot signal is inserted, are transmitted from one of the two highly directional antennas to the corresponding one of the two communication satellites. a base station transmitting/receiving means for frequency-selectively receiving signals of one or more communication frequency channels transmitted to a communication satellite, received by one of the highly directional antennas, and capturing the signals as communication signals from a mobile body; a pilot signal receiving means for receiving and processing each pilot signal of a communication frequency channel individually received by the two highly directional antennas via the corresponding first and second communication satellites during positioning; Based on the time difference between the reception timing of the received and processed pilot signals of the two systems and the transmission timing of the pilot signal by the specific frequency channel, the positioning of the mobile object and the two
positioning calculation means for determining the position of the mobile body based on the principle of triangulation by calculating the distance to each communication satellite, and providing the positioning result to the base station transmitting/receiving means in order to transmit the positioning result to the corresponding mobile body; It is characterized by having the following.
(作用)
次に、前記の如く構成される本発明の移動体衛
星通信/測位方式の作用を説明する。(Operation) Next, the operation of the mobile satellite communication/positioning system of the present invention configured as described above will be explained.
まず、基地局と移動体間の双方向通信(音声/
データ)は次の如くして行われる。基地局では、
基地局送受信手段の送信部が、通信信号が挿入さ
れる1または複数の通信周波数チヤネルとパイロ
ツト信号が挿入される前記特定周波数チヤネルと
からなる複数の周波数チヤネルの信号を2個の高
指向性アンテナのいずれか一方から2個の通信衛
星のうちの対応する例えば第1の通信衛星へ向け
て送信する。つまり、基地局は通信信号とパイロ
ツト信号を周波数分割多重(FDM)方式で第1
の通信衛星へ向けての送信するから、基地局送信
に係るFDM信号は第1の通信衛星から放送モー
ドで1または多数の移動体へ伝達される。そこ
で、移動体では、第1の移動体送受信手段の受信
部が、低指向性アンテナが受けた複数の周波数チ
ヤネルの信号から自局に割り当てられた通信周波
数チヤネルの信号を周波数選択受信しそれを自局
向けの通信信号として取り込むことを行う。 First, two-way communication (voice/
data) is performed as follows. At the base station,
The transmitting unit of the base station transmitting/receiving means transmits signals of a plurality of frequency channels consisting of one or more communication frequency channels into which a communication signal is inserted and the specific frequency channel into which a pilot signal is inserted, to two highly directional antennas. The data is transmitted from one of the two communication satellites to the corresponding one of the two communication satellites, for example, the first communication satellite. In other words, the base station transmits communication signals and pilot signals using frequency division multiplexing (FDM).
The FDM signal associated with the base station transmission is transmitted from the first communications satellite in broadcast mode to one or more mobile units. Therefore, in the mobile body, the receiving section of the first mobile body transmitting/receiving means frequency-selectively receives the signal of the communication frequency channel assigned to the own station from among the signals of the plurality of frequency channels received by the low-directivity antenna. Capture it as a communication signal for your own station.
逆に、移動体では、第1の移動体送受信手段の
送信部が、通信信号を自局に割り当てられた通信
周波数チヤネルにて低指向性アンテナから2個の
通信衛星へ向けて送信する。この移動体送信に係
る通信信号は2個の通信衛星を介して基地局の2
個の高指向性アンテナへ伝達されるが、基地局で
は、基地局送受信手段の受信部が、前記2個の高
指向性アンテナのいずれか一方の高指向性アンテ
ナが受けた1または複数の通信周波数チヤネルの
信号を周波数選択受信しそれを移動体からの通信
信号として取り込むことを行う。 Conversely, in the mobile body, the transmitting section of the first mobile body transmitting/receiving means transmits the communication signal from the low directivity antenna to the two communication satellites on the communication frequency channel assigned to the mobile body. Communication signals related to this mobile transmission are sent to two base stations via two communication satellites.
However, at the base station, the receiving section of the base station transmitting/receiving means receives one or more communications received by one of the two high-directivity antennas. It performs frequency selective reception of signals on frequency channels and captures them as communication signals from mobile bodies.
そして、測位は次の如くして行われる。移動体
の位置測定を行うためには移動体と基地局間で一
定の手順が必要となることは言うまでもないが、
測位の必要性は移動体側で発生するのが通常であ
るから、まず移動体では、測位時において、第2
の送受信手段が、低指向性アンテナが受けた複数
の周波数チヤネルの信号から特定周波数チヤネル
のパイロツト信号を周波数選択受信しそれを自局
に割り当てられた周波数チヤネルに挿入し低指向
性アンテナから前記2個の通信衛星へ向けて折り
返し送信する。つまり、基地局では、この折り返
されたパイロツト信号を異なる2つの伝搬路を介
して受信することになる。基地局が異なる2つの
伝搬路を介して受信する形態は通常の通信の場合
と同様であるが、測位時においてはパイロツト信
号受信手段と測位演算手段が作動する点で異な
る。 Then, positioning is performed as follows. It goes without saying that certain procedures are required between the mobile body and the base station in order to measure the position of the mobile body.
Since the need for positioning usually occurs on the mobile body side, firstly, when positioning the mobile body, the second
The transmitting/receiving means frequency-selectively receives a pilot signal of a specific frequency channel from the signals of a plurality of frequency channels received by the low-directivity antenna, inserts it into the frequency channel assigned to its own station, and transmits the pilot signal from the low-directivity antenna to the second frequency channel. The signal is then sent back to each communication satellite. In other words, the base station receives this folded pilot signal via two different propagation paths. The form in which the base station receives signals via two different propagation paths is similar to that of normal communication, but the difference is that during positioning, the pilot signal receiving means and positioning calculating means operate.
パイロツト信号受信手段は、測位時において前
記2個の高指向性アンテナが対応する前記第1お
よび第2の通信衛星を介して個別に受けた通信周
波数チヤネルのパイロツト信号のそれぞれについ
て受信処理をし、それを測位演算手段へ与える。 The pilot signal receiving means performs reception processing on each of the pilot signals of the communication frequency channel individually received by the two highly directional antennas via the corresponding first and second communication satellites during positioning, It gives it to the positioning calculation means.
測位演算手段では、前記受信処理した2系統の
パイロツト信号の受信タイミングと前記特定周波
数チヤネルによるパイロツト信号の送信タイミン
グとの時間差から当該測位に係る移動体と前記2
個の通信衛星との距離を算出して3角測量の原理
に基づきその移動体の位置を決定し、その測位結
果を該当移動体へ伝達すべく前記基地局送受信手
段に与えることを行う。ここに、測位は、実用上
和分な精度で行うことができる。 The positioning calculation means uses the time difference between the reception timing of the two systems of pilot signals that have been received and processed and the transmission timing of the pilot signal through the specific frequency channel to determine whether the mobile object related to the positioning and the two
The distance to each communication satellite is calculated to determine the position of the mobile body based on the principle of triangulation, and the positioning result is provided to the base station transmitting/receiving means for transmitting the positioning result to the corresponding mobile body. Here, positioning can be performed with sufficient accuracy for practical purposes.
なお、基地局は、2以上あつても良いことは以
上の説明から明らかである。 Note that it is clear from the above description that there may be two or more base stations.
このように、本発明の移動体衛星通信/測位方
式によれば、通常のSCPC(Single Carrier Per
Channel)−FDMA(周波数分割多重多元接続)方
式において1つは周波数チヤネルにパイロツト信
号を挿入しそれを折り返させるようにしたので、
移動体側の回路規模を増大させることなく、音声
通信やデータ通信が行えるだけでなく、側位も併
行して行うことができる。 As described above, according to the mobile satellite communication/positioning method of the present invention, the normal SCPC (Single Carrier Per
Channel) - In the FDMA (Frequency Division Multiple Access) system, one inserts a pilot signal into the frequency channel and loops it back.
Not only can voice communication and data communication be performed without increasing the circuit scale on the mobile side, but also side communication can be performed concurrently.
本発明方式によれば、基地局を2以上設けるこ
とができることも手伝つて、全地球的な移動体衛
星通信/測位方式の構築を可能とする効果があ
る。 According to the system of the present invention, the ability to provide two or more base stations has the effect of making it possible to construct a global mobile satellite communication/positioning system.
(実施例)
以下、本発明の実施例を図面を参照して説明す
る。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図は、本発明の一実施例に係る移動体衛星
通信/測位方式を示す。なお、第2図に示す従来
例と同一構成部分には同一符号名称を付してあ
る。 FIG. 1 shows a mobile satellite communication/positioning system according to an embodiment of the present invention. Components that are the same as those of the conventional example shown in FIG. 2 are designated by the same reference numerals.
第1図において、本発明の移動体20は、低指
向性アンテナからなる移動体アンテナ2−1と、
分波器2−2と、低雑音増幅器3−3、ダウンコ
ンバータ2−4、周波数変換回路20−5および
データ復調器2−6からなる受信部と、移動体端
末20−7と、データ変調器2−8、選択回路2
0−9、周波数変換回路20−10、アツプコン
バータ2−10および高電力増幅器2−11から
なる送信部を備える。 In FIG. 1, a mobile body 20 of the present invention includes a mobile body antenna 2-1 consisting of a low directivity antenna,
A receiving section consisting of a duplexer 2-2, a low-noise amplifier 3-3, a down converter 2-4, a frequency conversion circuit 20-5, and a data demodulator 2-6, a mobile terminal 20-7, and a data modulator. device 2-8, selection circuit 2
0-9, a frequency conversion circuit 20-10, an up converter 2-10, and a high power amplifier 2-11.
また、基地局30は、2個の通信衛星(1−
1,1−2)のそれぞれと1対1に対応して設け
られる高指向性アンテナからなる基地局アンテナ
3−1および同3−2と分波器3−3と、第1の
受信部(低雑音増幅器3−4、ダウンコンバータ
3−5、信号分岐回路30−1、周波数変換回路
30−2−1〜同30−2−N、データ復調器3
0−3−1〜同30−3−N)と、送信部(デー
タ変調器30−4−0〜同30−4−N、周波数
変換回路30−5−0〜同30−5−N、信号合
成回路30−6、アツプコンバータ3−10、高
電力増幅器3−11)と、第2の受信部(低雑音
増幅器3−12、ダウンコンバータ3−13、信
号分岐回路30−7、周波数変換回路30−8−
1〜同30−8−L、データ復調器30−9−1
〜同30−9−L)と、測位演算部30−10
と、基地局端末30−11を備える。 The base station 30 also has two communication satellites (1-
The base station antennas 3-1 and 3-2, each consisting of a highly directional antenna provided in one-to-one correspondence with each of the base station antennas 3-1 and 1-2), the branching filter 3-3, and the first receiving section ( Low noise amplifier 3-4, down converter 3-5, signal branch circuit 30-1, frequency conversion circuits 30-2-1 to 30-2-N, data demodulator 3
0-3-1 to 30-3-N), a transmitter (data modulators 30-4-0 to 30-4-N, frequency conversion circuits 30-5-0 to 30-5-N, signal synthesis circuit 30-6, up converter 3-10, high power amplifier 3-11), and second receiving section (low noise amplifier 3-12, down converter 3-13, signal branch circuit 30-7, frequency conversion Circuit 30-8-
1 to 30-8-L, data demodulator 30-9-1
~30-9-L) and positioning calculation section 30-10
and a base station terminal 30-11.
以上の構成から明らかな如く、本発明の移動体
衛星通信/測位方式は、周知のSCPC−FDMA方
式を基調とするものである。本実施例では、基地
局は、送信部がN+1個の周波数チヤネルを有
し、その中の1つの周波数チヤネルを測位演算部
30−,10の出力(例えば特定信号系列をデイ
ジタル変調した変調データ系列からなるパイロツ
ト信号)が挿入される特定周波数チヤネル(パイ
ロツトチヤネル:ChP)とし、残余のN個の周波
数チヤネル(Ch1〜ChN)を基地局端末30−1
1の出力(音声信号やデータ信号等からなる通信
信号)が挿入される通信周波数チヤネルとなつて
いる。 As is clear from the above configuration, the mobile satellite communication/positioning system of the present invention is based on the well-known SCPC-FDMA system. In this embodiment, the base station has a transmitter having N+1 frequency channels, and transmits one of the frequency channels to the outputs of the positioning calculation units 30- and 10 (for example, a modulated data sequence obtained by digitally modulating a specific signal sequence). The remaining N frequency channels (Ch1 to ChN) are designated as a specific frequency channel (pilot channel: ChP) into which a pilot signal consisting of
1 (a communication signal consisting of an audio signal, a data signal, etc.) is inserted into a communication frequency channel.
また、第1の受信部は前記N個の通信周波数チ
ヤネル(Ch1〜ChN)を有する。これは多数の移
動体との双方向通信を念頭に置いた構成である。
一方、第2の受信部は、L個の通信周波数チヤネ
ル(Ch1〜ChL)を有する。この第2の受信部は
測位を念頭に置いた構成であるから、NとLの関
係はN≫Lとなる。そして、送信部と第1の受信
部と基地局端末30−11は全体として基地局送
受信手段を構成し、第1の受信部と第2の受信部
と基地局端末30−11は全体としてパイロツト
信号受信手段を構成しているのである。 Further, the first receiving section has the N communication frequency channels (Ch1 to ChN). This configuration is designed with bidirectional communication with a large number of mobile objects in mind.
On the other hand, the second receiving section has L communication frequency channels (Ch1 to ChL). Since this second receiving section is configured with positioning in mind, the relationship between N and L is N>>L. The transmitter, the first receiver, and the base station terminal 30-11 collectively constitute a base station transmitting/receiving means, and the first receiver, the second receiver, and the base station terminal 30-11 collectively constitute a pilot. It constitutes a signal receiving means.
また、移動体20では、受信部の周波数変換回
路20−5が、移動体端末20−7からの指令a
を受けて、双方向通信時には自局に割り当てられ
た通信周波数チヤネルを周波数選択しそこに含ま
れる通信信号をデータ復調器2−6へ与え、また
測位時にはパイロツトチヤネルChPを周波数選択
しそこに含まれるパイロツト信号をとり出してそ
のまま選択回路20−9へ与える。一方、送信部
では周波数変換回路20−10が自局に割り当て
られた通信周波数チヤネルChnに設定され、その
前段に設けられる選択回路20−9が、移動体端
末20−7からの指令bを受けて、双方向通信時
にはデータ変調器2−8の出力(通信信号)を、
測位時には周波数変換回路20−5の出力(パイ
ロツト信号)をそれぞれ選択して周波数変換回路
20−10へ与えることを行う。故に、受信部と
送信部と移動体端末20−7とは全体として第1
および第2の移動体送受信手段を構成している。 Further, in the mobile body 20, the frequency conversion circuit 20-5 of the receiving section receives the command a from the mobile terminal 20-7.
Then, during two-way communication, the communication frequency channel assigned to the own station is selected and the communication signal contained therein is given to the data demodulator 2-6, and during positioning, the frequency of the pilot channel ChP is selected and the communication signal contained therein is selected. The selected pilot signal is taken out and applied as it is to the selection circuit 20-9. On the other hand, in the transmitter, the frequency conversion circuit 20-10 is set to the communication frequency channel Chn assigned to the own station, and the selection circuit 20-9 provided in the previous stage receives the command b from the mobile terminal 20-7. During bidirectional communication, the output (communication signal) of data modulator 2-8 is
During positioning, the outputs (pilot signals) of the frequency conversion circuit 20-5 are selected and applied to the frequency conversion circuit 20-10. Therefore, the receiving section, the transmitting section, and the mobile terminal 20-7 as a whole are connected to the first
and constitutes a second mobile body transmitting/receiving means.
以上の構成において、基地局30では、基地局
端末30−11が出力する通信信号はN個の通信
周波数チヤネル(Ch1〜ChN)の対応するチヤネ
ルに挿入され、また測位演算部30−10が出力
するパイロツト信号がパイロツトチヤネルChPに
挿入され、これらは信号合成回路30−6で
FDMされてアツプコンバータ3−10、高電力
増幅器3−11、分波器3−3および基地局アン
テナ3−1を介して通信衛星1−1へ向けて送信
される。パイロツト信号は放送モードで常時送信
されるのである。 In the above configuration, in the base station 30, the communication signal output from the base station terminal 30-11 is inserted into the corresponding channel of N communication frequency channels (Ch1 to ChN), and the positioning calculation unit 30-10 outputs the communication signal. The pilot signals for the
The signal is subjected to FDM and transmitted to the communication satellite 1-1 via an up-converter 3-10, a high-power amplifier 3-11, a duplexer 3-3, and a base station antenna 3-1. The pilot signal is constantly transmitted in broadcast mode.
移動体20では、「測位」ではないので周波数
変換回路20−5が自局に割り当てられた通信周
波数チヤネルに設定されその通信周波数チヤネル
の信号を自局向けの通信信号として取り込む。 Since the mobile unit 20 is not performing "positioning", the frequency conversion circuit 20-5 is set to the communication frequency channel assigned to the mobile unit 20, and takes in the signal of the communication frequency channel as the communication signal for the mobile unit.
また、移動体20では、移動体端末20−7が
出力する通信信号を周波数変換回路20−10に
おいて自局に割り当てられた通信周波数チヤネル
Chnに挿入し、それが移動体アンテナ2−1から
2個の通信衛星(1−1,1−2)へ向けて送信
される。 Furthermore, in the mobile unit 20, the communication signal output from the mobile terminal 20-7 is converted into a communication frequency channel assigned to the own station in the frequency conversion circuit 20-10.
Chn, and it is transmitted from the mobile antenna 2-1 to the two communication satellites (1-1, 1-2).
基地局では、基地局アンテナ3−1と同3−2
の両者で受信されるが、「測位」ではないので、
基地局端末30−11は第1の受信部からの入力
を移動体送信に係る通信信号として取り込む。 At the base station, base station antennas 3-1 and 3-2
Although it is received by both, it is not "positioning", so
The base station terminal 30-11 receives input from the first receiving section as a communication signal related to mobile transmission.
このように、双方向通信を行つている過程で、
移動体20側において測位の必要性が生じたとす
ると、移動体20では基地局30通信信号により
測位依頼を送出し、同様に通信信号により基地局
30からパイロツト信号を受信すべき旨の指示を
受けると、移動体端末20−7は指令aと同bの
内容を測位に変更設定する。 In this way, in the process of two-way communication,
When the need for positioning arises on the mobile body 20 side, the mobile body 20 sends a positioning request using a communication signal from the base station 30, and similarly receives an instruction to receive a pilot signal from the base station 30 using a communication signal. Then, the mobile terminal 20-7 changes the contents of commands a and b to positioning.
すると、パイロツトチヤネルChPで受信された
パイロツト信号が自局の通信周波数チヤネルChn
に乗り移つて基地局30へ返送される。 Then, the pilot signal received on the pilot channel ChP is transferred to the own station's communication frequency channel Chn.
and is returned to the base station 30.
ここで、パイロツト信号は単に周波数変換のみ
を受けて返送されるので、ここにおける時間遅れ
は無視できる。 Here, since the pilot signal is simply frequency-converted and returned, the time delay here can be ignored.
一方、基地局30では、角移動体の送信信号が
基地局アンテナ3−1と同3−2の両者で受信さ
れるが、「測位」であるから、基地局端末30−
11は第1および第2の受信部の出力のうち移動
体20の周波数チヤネルの信号(パイロツト信
号)をそれぞれ検出し、それを測位演算部30−
10へ与える。測位演算部30−10では、基地
局端末30−11の2つの出力(パイロツト信
号)とパイロツト信号受信指示を発した後のパイ
ロツト信号の送信タイミングとの時間差から移動
体20と2個の通信衛星(1−1,1−2)との
距離を算出して従来と同様の3角測量法に基づき
移動体20の位置を決定し、その結果を基地局端
末30−11へ与える。基地局端末30−11は
該当通信周波数チヤネルに測位結果を挿入させる
ので、その測位結果は移動体20へ伝達され移動
体端末20−7に取り込まれる。 On the other hand, in the base station 30, the transmission signal of the mobile object is received by both the base station antennas 3-1 and 3-2, but since it is "positioning", the base station terminal 30-
11 detects the signal (pilot signal) of the frequency channel of the mobile object 20 from among the outputs of the first and second receiving sections, and transmits it to the positioning calculation section 30-
Give to 10. The positioning calculation unit 30-10 determines whether the mobile object 20 and the two communication satellites (1-1, 1-2), the position of the mobile object 20 is determined based on the conventional triangulation method, and the result is given to the base station terminal 30-11. Since the base station terminal 30-11 inserts the positioning result into the corresponding communication frequency channel, the positioning result is transmitted to the mobile unit 20 and taken into the mobile terminal 20-7.
なお、測位は全チヤネル使用される場合は少な
いので、前述した通り、N≫Lで良く、基地局3
0の回路規模を低減できる。 Note that it is rare for all channels to be used for positioning, so as mentioned above, N≫L is sufficient, and base station 3
0 circuit scale can be reduced.
次に、本発明方式による測位精度は次の如くに
説明できる。 Next, the positioning accuracy according to the method of the present invention can be explained as follows.
今、伝送速度を4.8Kb/sとすると、基地局3
0におけるクロツク再生によつて±3.6(1周期の
1/100)の位相誤差で時間測定を行うことは十分
可能であるので、測定時間精度は
Δt=1/4.8(KHz)×100=2.08×10-6(sec)
従つて、測定距離精度は、光速をCとして、
Δl=C・Δt=625(m)
即ち、1Km以下の測定距離精度が得られ、通常
の応用には十分である。 Now, if the transmission speed is 4.8Kb/s, base station 3
It is sufficiently possible to measure time with a phase error of ±3.6 (1/100 of one cycle) by clock reproduction at 0, so the measurement time accuracy is Δt = 1/4.8 (KHz) x 100 = 2.08 x 10 -6 (sec) Therefore, the measurement distance accuracy is as follows, where C is the speed of light: Δl=C·Δt=625 (m) In other words, a measurement distance accuracy of 1 km or less can be obtained, which is sufficient for normal applications.
(発明の効果)
以上詳述したように、本発明の移動体衛星通
信/測位方式によれば、通常のSCPC(Single
Carrier Per Channel)−FDMA(周波数分割多重
多元接続)方式において1つの周波数チヤネルに
パイロツト信号を挿入しそれを折り返させるよう
にしたので、移動体側の回路規模を増大させるこ
となく、音声通信やデータ通信が行えるだけでな
く、測位も併行して行うことができる。(Effects of the Invention) As detailed above, according to the mobile satellite communication/positioning system of the present invention, the normal SCPC (Single
Carrier Per Channel) - In the FDMA (Frequency Division Multiple Access) system, a pilot signal is inserted into one frequency channel and then looped back, allowing voice and data communications to be carried out without increasing the circuit scale on the mobile side. Not only can this be done, but positioning can also be done at the same time.
本発明方式によれば、基地局を2以上設けるこ
とができることも手伝つて、全地球的な移動体衛
星通信/測位方式の構築を可能とする効果があ
る。 According to the system of the present invention, the ability to provide two or more base stations has the effect of making it possible to construct a global mobile satellite communication/positioning system.
第1図は本発明の一実施例に係る移動体衛星通
信/測位方式の構成ブロツク図、第2図は従来の
移動体衛星通信/測位方式の構成ブロツク図であ
る。
1−1,1−2……通信衛星、2,20……移
動体、3,30……基地局。
FIG. 1 is a block diagram of a mobile satellite communication/positioning system according to an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional mobile satellite communication/positioning system. 1-1, 1-2... Communication satellite, 2, 20... Mobile object, 3, 30... Base station.
Claims (1)
は多数の移動体と、少なくとも1個の基地局とで
構成され;前記移動体は、前記2個の通信衛星と
電波授受を行う低指向性アンテナと;通信信号を
自局に割り当てられた通信周波数チヤネルにて低
指向性アンテナから前記2個の通信衛星へ向けて
送信するとともに、低指向性アンテナが受けた複
数の周波数チヤネルの信号から自局に割り当てら
れた通信周波数チヤネルの信号を周波数選択受信
しそれを自局向けの通信信号として取り込む第1
の移動体送受信手段と;測位時において低指向性
アンテナが受けた複数の周波数チヤネルの信号か
ら特定周波数チヤネルのパイロツト信号を周波数
選択受信しそれを自局に割り当てられた周波数チ
ヤネルに挿入し低指向性アンテナから前記2個の
通信衛星へ向けて折り返し送信する第2の移動体
送受信手段と;を備え、前記基地局は、前記2個
の通信衛星のそれぞれと1対1の対応関係で電波
授受を行う2個の高指向性アンテナと;通信信号
が挿入される1または複数の通信周波数チヤネル
とパイロツト信号が挿入される前記特定周波数チ
ヤネルとからなる前記複数の周波数チヤネルの信
号を2個の高指向性アンテナのいずれか一方から
前記2個の通信衛星のうちの対応する通信衛星へ
向けて送信するとともに、そのいずれか一方の高
指向性アンテナが受けた1または複数の通信周波
数チヤネルの信号を周波数選択受信しそれを移動
体からの通信信号として取り込む基地局送受信手
段と;測位時において前記2個の高指向性アンテ
ナが対応する前記第1および第2の通信衛星を介
して個別に受けた通信周波数チヤネルのパイロツ
ト信号のそれぞれについて受信処理をするパイロ
ツト信号受信手段と;前記受信処理した2系統の
パイロツト信号の受信タイミングと前記特定周波
数チヤネルによるパイロツト信号の送信タイミン
グとの時間差からの当該測位に係る移動体と前記
2個の通信衛星との距離を算出して3角測量の原
理に基づきその移動体の位置を決定し、その測位
結果を該当移動体へ伝達すべく前記基地局送受信
手段に与える測位演算手段と;を備えたことを特
徴とする移動体衛星通信/測位方式。1 Consists of two communication satellites, a first and a second, one or a number of mobile objects, and at least one base station; Directional antenna; transmits communication signals from a low directional antenna toward the two communication satellites on a communication frequency channel assigned to its own station, and receives signals from multiple frequency channels by the low directional antenna. The first step is to frequency-selectively receive the signal of the communication frequency channel assigned to the own station from the station and take it in as a communication signal for the own station.
A mobile transmitting/receiving means; frequency selectively receives a pilot signal of a specific frequency channel from signals of multiple frequency channels received by a low directivity antenna during positioning, inserts it into the frequency channel assigned to the own station, and performs low directivity. a second mobile body transmitting/receiving means for returning transmission from a mobile antenna to the two communication satellites, and the base station transmits and receives radio waves in a one-to-one correspondence with each of the two communication satellites. two high-directivity antennas that transmit signals of the plurality of frequency channels consisting of one or more communication frequency channels into which a communication signal is inserted and the specific frequency channel into which a pilot signal is inserted; transmitting signals from one of the directional antennas toward a corresponding one of the two communication satellites, and transmitting signals of one or more communication frequency channels received by one of the high directional antennas; a base station transmitting/receiving means for selectively receiving a frequency and taking it in as a communication signal from a mobile body; during positioning, the two highly directional antennas individually receive signals via the corresponding first and second communication satellites; a pilot signal receiving means for receiving and processing each of the pilot signals of the communication frequency channels; and determining the position based on the time difference between the reception timing of the two systems of pilot signals subjected to the reception processing and the transmission timing of the pilot signal by the specific frequency channel. The distance between the mobile object and the two communication satellites is calculated, the position of the mobile object is determined based on the principle of triangulation, and the positioning result is transmitted to the base station transmitting/receiving means to the corresponding mobile object. A mobile satellite communication/positioning system characterized by comprising: positioning calculation means for providing;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62221589A JPS6465474A (en) | 1987-09-04 | 1987-09-04 | Satellite communicate and position measurement system for moving body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62221589A JPS6465474A (en) | 1987-09-04 | 1987-09-04 | Satellite communicate and position measurement system for moving body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6465474A JPS6465474A (en) | 1989-03-10 |
JPH0525309B2 true JPH0525309B2 (en) | 1993-04-12 |
Family
ID=16769119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62221589A Granted JPS6465474A (en) | 1987-09-04 | 1987-09-04 | Satellite communicate and position measurement system for moving body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6465474A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9919525D0 (en) * | 1999-08-19 | 1999-10-20 | Secr Defence | Method and apparatus for locating the source of an unknown signal |
-
1987
- 1987-09-04 JP JP62221589A patent/JPS6465474A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6465474A (en) | 1989-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2915851B2 (en) | Time synchronous communication system | |
US20030157943A1 (en) | Method and apparatus for auxiliary pilot signal for mobile phone location | |
EP0865223B1 (en) | Mobile station position estimation for cellular mobile communication system | |
US6574478B1 (en) | System and method for locating mobile devices | |
JP4457118B2 (en) | Radiotelephone system for subscriber location measurement with diversity transmission | |
JPH0569472B2 (en) | ||
US6466163B2 (en) | GPS receiver and portable communication apparatus | |
JP3078997B2 (en) | Multiple access method of direct spreading communication system and multiple access device used therefor | |
CN101600250B (en) | Method and apparatus for estimating the position of a terminal based on identification codes for transmission sources | |
CN112398506B (en) | Satellite-ground/relay integrated measurement and control system | |
US5455961A (en) | Telecommunication system with increased channels by use of orbiting communication satellites | |
KR100911614B1 (en) | Multiple antenna radio channel measurement system and method for two-way radio channel measurement | |
TW351886B (en) | Using two classes of channels with different capacity | |
SG146449A1 (en) | Inter-network operation of multiple location networks | |
CN103003716A (en) | Navigation signal transmitter, navigation signal transmission method, and position information provision device | |
JPH0525309B2 (en) | ||
JPH05227124A (en) | Code division multiple access communication system | |
AU2003200955B2 (en) | Passive position determination using two low-earth orbit satellites | |
JP2602246B2 (en) | Mobile satellite communication / positioning method | |
JPH0565114B2 (en) | ||
US7046718B1 (en) | Coherent phase synchronous code division multiple access communications from multiple transponder platforms | |
JPH01288023A (en) | Millimeter wave private branch radio communication system | |
WO2004056149A3 (en) | Method for subscriber transmission of data in a heterogeneous network | |
JPS58178639A (en) | Satellite communication system | |
AU2003209433A1 (en) | Method and apparatus for auxiliary pilot signal for mobile phone location |