JPH0525286A - Method for evaluating state of conductive coating layer and preparation of conductive resin material - Google Patents

Method for evaluating state of conductive coating layer and preparation of conductive resin material

Info

Publication number
JPH0525286A
JPH0525286A JP20397291A JP20397291A JPH0525286A JP H0525286 A JPH0525286 A JP H0525286A JP 20397291 A JP20397291 A JP 20397291A JP 20397291 A JP20397291 A JP 20397291A JP H0525286 A JPH0525286 A JP H0525286A
Authority
JP
Japan
Prior art keywords
conductive
coating
particles
resin
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20397291A
Other languages
Japanese (ja)
Inventor
Mikio Azuma
幹雄 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP20397291A priority Critical patent/JPH0525286A/en
Publication of JPH0525286A publication Critical patent/JPH0525286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide a method for evaluating easily and objectively the state of a conductive coating layer formed on the surface of a resin particle and to prepare a conductive resin material by this method. CONSTITUTION:A great number of resin particles S each having a surface coated with a conductive layer are compressed to give a molded specimen, of which the volume resistivity or dielectric dissipation factor is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電磁シールド材、帯電
防止材等を成形するための成形材料として用いられる、
樹脂粒子の表面に導電性被覆が被覆された導電性樹脂材
料における、上記導電性被覆の被覆状態の評価方法と、
これを適用した、導電性樹脂材料の製造方法に関するも
のである。
FIELD OF THE INVENTION The present invention is used as a molding material for molding an electromagnetic shield material, an antistatic material, and the like.
In the conductive resin material coated with a conductive coating on the surface of the resin particles, a method of evaluating the coating state of the conductive coating,
The present invention relates to a method for producing a conductive resin material, to which this is applied.

【0002】[0002]

【従来の技術】従来、熱可塑性樹脂と導電性粉末(金属
微粒子、カーボンなど)とをミキサー、ボールミルなど
で混合し、加熱ロール、押出機などで溶融混練して得ら
れた成形材料では、たとえ混合、混練に長時間をかけた
としても、導電性粉末を熱可塑性樹脂中に均一に分散さ
せることが困難であるため、充分に高い導電性を有する
成形品を得ることができなかった。
2. Description of the Related Art Conventionally, a molding material obtained by mixing a thermoplastic resin and a conductive powder (fine metal particles, carbon, etc.) with a mixer, a ball mill, etc. and melt-kneading them with a heating roll, an extruder, etc. Even if the mixing and kneading takes a long time, it is difficult to uniformly disperse the conductive powder in the thermoplastic resin, so that a molded product having sufficiently high conductivity cannot be obtained.

【0003】そこで、本発明者らは、先に、樹脂粒子
と、この樹脂粒子より十分に小さい導電性微粒子とを高
剪断力かつ高圧縮力で混合する単一工程により、粒子状
の導電性樹脂材料を製造し、これを前記電磁シールド材
等の、導電性を有する成形品用の成形材料に使用するこ
とを提案した(特開平3−84038号公報参照)。こ
の方法によれば、導電性微粒子が高剪断力により一次粒
子状に粉砕されて、樹脂粒子の表面に均一に分散される
とともに、高圧縮力により、樹脂粒子の表面上に機械的
に強く押圧されて固着される。そして、樹脂粒子の表面
に、多数の導電性微粒子からなる導電性被覆が被覆され
た導電性樹脂材料が得られる。
Therefore, the present inventors previously conducted a single step of mixing the resin particles and the conductive fine particles sufficiently smaller than the resin particles with a high shearing force and a high compressing force, so that the particulate conductive particles are electrically conductive. It has been proposed to produce a resin material and use it as a molding material for a conductive molded article such as the electromagnetic shield material (see Japanese Patent Laid-Open No. 3-84038). According to this method, the conductive fine particles are crushed into primary particles by high shearing force and uniformly dispersed on the surface of the resin particles, and the high compression force mechanically strongly presses them on the surface of the resin particles. And it is fixed. Then, a conductive resin material in which the surface of the resin particles is coated with a conductive coating composed of a large number of conductive fine particles is obtained.

【0004】また、上記導電性微粒子として、展性また
は延性を有する金属微粒子を使用した場合には、この金
属微粒子が、高剪断力かつ高圧縮力で混合された際に一
体化して、樹脂粒子の表面に、上記金属の薄膜からなる
導電性被覆が被覆された導電性樹脂材料が得られる。
When metal particles having malleability or ductility are used as the above-mentioned conductive particles, the metal particles are integrated when they are mixed with high shearing force and high compressive force to form resin particles. A conductive resin material having the surface thereof coated with a conductive coating made of a thin film of the above metal is obtained.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記方法に
よる導電性樹脂材料の製造においては、導電性被覆の樹
脂粒子表面への被覆状態を、客観的に測定する手段がな
いため、樹脂粒子の表面を電子顕微鏡によって直接観察
して、被覆状態を評価していた。このため、サンプルの
作製に手間がかかる上、評価が観察者の主観的な判断に
左右され易く、同品質の製品を安定に製造するのが困難
であった。また、製造後にも、製品の品質を簡便に評価
する方法が要望されていた。
However, in the production of the conductive resin material by the above method, since there is no means for objectively measuring the coating state of the conductive coating on the resin particle surface, the surface of the resin particle is not measured. Was directly observed by an electron microscope to evaluate the coating state. Therefore, it takes time and effort to prepare the sample, and the evaluation is easily influenced by the subjective judgment of the observer, which makes it difficult to stably manufacture a product of the same quality. Further, there has been a demand for a method for easily evaluating the quality of products even after manufacturing.

【0006】本発明の主たる目的は、樹脂粒子表面にお
ける導電性被覆の被覆状態を客観的かつ容易に評価する
ことができる導電性被覆の被覆状態評価方法を提供する
ことを目的とする。本発明の他の目的は、上記導電性被
覆の被覆状態評価方法を利用して、同品質の導電性樹脂
材料を安定して製造することができる導電性樹脂材料の
製造方法を提供することにある。
A main object of the present invention is to provide a method for evaluating the coating state of a conductive coating, which can objectively and easily evaluate the coating state of the conductive coating on the surface of resin particles. Another object of the present invention is to provide a method for producing a conductive resin material, which can stably produce a conductive resin material of the same quality by using the coating state evaluation method for the conductive coating. is there.

【0007】[0007]

【課題を解決するための手段および作用】上記課題を解
決するため、本発明者らは、導電性樹脂材料の電気特性
から、樹脂粒子表面における導電性被覆の被覆状態を評
価する方法について種々検討を行った。その結果、粉体
状の導電性樹脂材料を圧縮した圧縮体の体積固有抵抗値
または誘電正接を測定すれば、樹脂粒子表面における導
電性被覆の被覆状態を評価できることを見出した。
In order to solve the above problems, the present inventors have made various studies on a method for evaluating the coating state of the conductive coating on the resin particle surface from the electrical characteristics of the conductive resin material. I went. As a result, they have found that the coating state of the conductive coating on the surface of the resin particles can be evaluated by measuring the volume resistivity or dielectric loss tangent of the compressed body obtained by compressing the powdery conductive resin material.

【0008】したがって、本発明の導電性被覆の被覆状
態評価方法は、表面に導電性被覆が被覆された多数の樹
脂粒子を圧縮し、圧縮体の体積固有抵抗値、および、誘
電正接のうちの少なくとも一方を測定して、樹脂粒子表
面における導電性被覆の被覆状態を評価することを特徴
とする。また、本発明の導電性樹脂材料の製造方法は、
樹脂粒子と導電性微粒子とを高剪断力かつ高圧縮力で混
合して、樹脂粒子の表面に導電性被覆を被覆する導電性
樹脂材料の製造方法において、両成分の混合中または混
合後に混合物の一部を採取して圧縮し、圧縮体の体積固
有抵抗値、および、誘電正接のうちの少なくとも一方を
測定して、樹脂粒子表面における導電性被覆の被覆状態
を評価することを特徴とする。
Therefore, the method for evaluating the coating state of the conductive coating of the present invention compresses a large number of resin particles whose surfaces are coated with the conductive coating, and calculates the volume specific resistance value and dielectric loss tangent of the compressed body. At least one of them is measured to evaluate the coating state of the conductive coating on the surface of the resin particles. Further, the method for producing a conductive resin material of the present invention,
By mixing the resin particles and the conductive fine particles with a high shearing force and a high compressive force, in the method for producing a conductive resin material for coating the conductive coating on the surface of the resin particles, during or after mixing of both components A part is sampled and compressed, and at least one of the volume resistivity value and the dielectric loss tangent of the compressed body is measured to evaluate the coating state of the conductive coating on the resin particle surface.

【0009】図2に示すように、樹脂粒子同士が圧縮さ
れて接触した圧縮体の状態では、圧縮体全体の抵抗値R
は、個々の樹脂粒子の表面抵抗RL と、内部抵抗R
S と、樹脂粒子同士の接触抵抗RC とから、図3の等価
回路により求められる。そして、樹脂粒子は絶縁体であ
るため、上記等価回路においては、無限大に近い内部抵
抗RS と接触抵抗RCとを無視でき、結果として、圧縮
体の抵抗値Rを、近似的に、個々の樹脂粒子の表面抵抗
L で表すことができる。
As shown in FIG. 2, when the resin particles are in contact with each other by being compressed, the resistance value R of the entire compression body is R.
Is the surface resistance R L of each resin particle and the internal resistance R
It can be obtained from S and the contact resistance R C between the resin particles by the equivalent circuit of FIG. Since the resin particles are an insulator, the infinite internal resistance R S and the contact resistance R C can be ignored in the above equivalent circuit, and as a result, the resistance value R of the compression body can be approximated to It can be represented by the surface resistance R L of each resin particle.

【0010】樹脂粒子の表面に導電性微粒子が固着した
導電性樹脂材料についても同様であって、圧縮体の抵抗
値Rは、近似的に、個々の導電性樹脂材料の表面抵抗R
T で表すことができる。なぜなら、樹脂粒子自体の内部
抵抗RS と、樹脂粒子同士の接触抵抗RC とは、前記の
ように無視することができ、また、導電性樹脂材料間に
導電性微粒子が介在したとしても、その全抵抗RM は著
しく小さいため、同様に無視できるからである。
The same applies to the conductive resin material in which the conductive fine particles are fixed on the surface of the resin particles, and the resistance value R of the compressed body is approximately the surface resistance R of each conductive resin material.
It can be represented by T. This is because the internal resistance R S of the resin particles themselves and the contact resistance R C between the resin particles can be ignored as described above, and even if the conductive fine particles are present between the conductive resin materials, Because its total resistance R M is extremely small, it can be ignored as well.

【0011】導電性樹脂材料の表面抵抗RT は、樹脂粒
子表面への導電性微粒子の固着状態、つまり、導電性被
覆の被覆状態の変化に応じて変化する。例えば、図4に
示すように、導電性微粒子Mが、樹脂粒子Pの表面に一
点で接触した状態では、個々の導電性樹脂材料の表面抵
抗RT は、樹脂粒子固有の表面抵抗RL (=RL1
L2)と、導電性微粒子の全抵抗RM とから、図5の等
価回路により求められる。そして、図から明らかなよう
に、導電性微粒子の全抵抗RM は表面抵抗RT に関与し
ないので、RT =RL1+RL2=RL となり、圧縮体の抵
抗値Rは、近似的に、個々の樹脂粒子の表面抵抗RL
表される。
The surface resistance R T of the conductive resin material changes according to the state of adhesion of the conductive fine particles to the surface of the resin particles, that is, the change of the covering state of the conductive coating. For example, as shown in FIG. 4, when the conductive fine particles M are in contact with the surfaces of the resin particles P at one point, the surface resistance R T of each conductive resin material is the surface resistance R L ( = R L1 +
RL2 ) and the total resistance R M of the conductive fine particles, it is obtained by the equivalent circuit of FIG. As is clear from the figure, since the total resistance R M of the conductive fine particles does not contribute to the surface resistance R T , R T = R L1 + R L2 = R L , and the resistance value R of the compressed body is approximately , The surface resistance R L of each resin particle.

【0012】一方、図6に示すように、導電性微粒子M
が、樹脂粒子Pの表面に固着して一体化した状態では、
個々の導電性樹脂材料の表面抵抗RT は、樹脂粒子固有
の表面抵抗RL (=RL1+RL2)と、導電性微粒子の全
抵抗RM とから、図7の等価回路により求められる。そ
して、導電性微粒子の全抵抗RM は、RM ≪RL2である
ため、導電性樹脂材料の表面抵抗RT ≒RL1となり、圧
縮体の抵抗値Rは、近時的に、個々の樹脂粒子の表面抵
抗RL の一部であるRL1で表され、先の場合より低下す
る。
On the other hand, as shown in FIG.
However, in the state where the resin particles P are fixed and integrated on the surface,
The surface resistance R T of each conductive resin material is obtained from the surface resistance R L (= R L1 + R L2 ) peculiar to the resin particles and the total resistance R M of the conductive particles by the equivalent circuit of FIG. 7. Then, the total resistance R M of the conductive fine particles are the R M «R L2, the surface resistance R T ≒ R L1 becomes conductive resin material, the resistance value R of the compression body, in recent, the individual It is represented by R L1 , which is a part of the surface resistance R L of the resin particles, and is lower than in the previous case.

【0013】以上のことから明らかなように、圧縮体の
抵抗値Rは、樹脂粒子表面への導電性微粒子の固着状
態、つまり、導電性被覆の被覆状態に応じて変化するの
で、逆に、圧縮体の抵抗値Rを測定すれば、樹脂粒子表
面における導電性被覆の被覆状態を評価できることがわ
かる。そこで、上記圧縮体の寸法の差による抵抗値Rの
ばらつきを下記式(I) で補正した体積固有抵抗値ρを求
めれば、導電性被覆の被覆状態を客観的に評価すること
が可能となる。
As is clear from the above, the resistance value R of the compressed body changes depending on the adhered state of the conductive fine particles on the surface of the resin particles, that is, the covered state of the conductive coating. By measuring the resistance value R of the compressed body, it can be understood that the coating state of the conductive coating on the resin particle surface can be evaluated. Therefore, it is possible to objectively evaluate the coating state of the conductive coating by obtaining the volume resistivity ρ by correcting the variation of the resistance value R due to the size difference of the compression body by the following formula (I). .

【0014】ρ=R(S/d) …(I) (但し、上記式中Sは圧縮体の断面積、dは圧縮体の厚
みを表す。) また、上記体積固有抵抗値ρと、下記式(II)の関係にあ
る誘電正接 tanδを測定することでも、同様に、導電性
被覆の被覆状態を評価することができる。 tanδ=X/ρ …(II) 上記式(II)中のXは、圧縮体に交流電圧を印加した際の
リアクタンスであるが、通常の導電性樹脂材料では、こ
のリアクタンスXに影響を与える導電性微粒子の添加率
が10〜25重量%と小さく、その体積分率も1〜5体
積%と小さいので、リアクタンスXは、導電性被覆の被
覆状態に関係なくほぼ一定の値を示す。したがって、圧
縮体の誘電正接 tanδを測定すれば、体積固有抵抗値ρ
と同様に、導電性被覆の被覆状態を客観的に評価するこ
とができる。
Ρ = R (S / d) (I) (where S is the cross-sectional area of the compression body and d is the thickness of the compression body.) Further, the volume resistivity value ρ and Similarly, the coating state of the conductive coating can be evaluated by measuring the dielectric loss tangent tan δ having the relationship of the formula (II). tan δ = X / ρ (II) X in the above formula (II) is the reactance when an AC voltage is applied to the compressed body, but in a normal conductive resin material, the conductivity that affects this reactance X is Since the addition rate of the conductive fine particles is as small as 10 to 25% by weight and the volume fraction thereof is also as small as 1 to 5% by volume, the reactance X shows a substantially constant value regardless of the coating state of the conductive coating. Therefore, if the dielectric loss tangent tan δ of the compressed body is measured, the volume resistivity ρ
Similarly, the coating state of the conductive coating can be objectively evaluated.

【0015】また上記リアクタンスXは、圧縮体におけ
るリアクタンス実測値X′の、圧縮体の寸法の差による
ばらつきを、下記式(III) にて補正して一般化した値で
あるため、上記式(II)から明らかなように、この誘電正
接 tanδを導電性被覆の被覆状態の評価に用いる場合に
は、圧縮体の寸法の差による補正を行う必要がないとい
う利点がある。
Since the reactance X is a value obtained by generalizing the variation of the measured reactance value X'in the compressed body due to the difference in the size of the compressed body by the following equation (III), the above equation (3) is obtained. As is clear from II), when this dielectric loss tangent tan δ is used to evaluate the coating state of the conductive coating, there is an advantage that it is not necessary to make a correction due to the difference in the dimensions of the compressed body.

【0016】X=X′(S/d) …(III) (但し、上記式中S,dは、先の式(I) と同じであ
る。) 上記理論に基づく、本発明の導電性被覆の被覆状態評価
方法は、例えば、図1に示す測定装置により実施するこ
とができる。図1に示す測定装置は、円筒状のシールド
ケース11内に、フランジ付きのシリンダ状電極12,
13と、リング体14とを、それぞれ、絶縁リング15
を介して電気的に独立した状態で保持したもので、上記
シリンダ状電極12,13は、電気特性測定器16に接
続され、リング体14は接地されている。
X = X '(S / d) (III) (where S and d in the above formula are the same as those in the above formula (I).) The conductive coating of the present invention based on the above theory. The covering state evaluation method can be carried out by the measuring device shown in FIG. 1, for example. The measuring device shown in FIG. 1 includes a cylindrical shield case 11, a cylindrical electrode 12 with a flange,
13 and the ring body 14, respectively, the insulating ring 15
The cylinder-shaped electrodes 12 and 13 are connected to an electric characteristic measuring device 16 and the ring body 14 is grounded.

【0017】そして、上記測定装置においては、シリン
ダ状電極12,13とリング体14とで構成される空隙
内に粉体状の試料Sを充填し、上側のシリンダ状電極1
2を、図中矢印で示すように下方へ押圧して試料Sを圧
縮しつつ、両シリンダ状電極12,13間に、電気特性
測定器16から所定の周波数の交流電圧を印加して、圧
縮状態の試料Sの電気特性(抵抗値R、誘電正接 tanδ
等)が測定される。
In the above measuring apparatus, the powdery sample S is filled in the void formed by the cylindrical electrodes 12 and 13 and the ring body 14, and the upper cylindrical electrode 1
2 is pressed downward as indicated by an arrow in the figure to compress the sample S, and an AC voltage of a predetermined frequency is applied from the electrical characteristic measuring device 16 between the cylindrical electrodes 12 and 13 to compress the sample S. Characteristics of the sample S in the state (resistance value R, dielectric loss tangent tanδ
Etc.) is measured.

【0018】なお、上記電気特性測定器16としては、
横河ヒューレットパッカード社製のインピーダンスアナ
ライザが好適に用いられる。上記測定装置によれば、試
料Sを予め圧縮成形する必要がないので、試料を圧縮成
形してから、その成形品の電気特性を測定する場合に比
べて、より簡便に、導電性被覆の被覆状態を評価するこ
とができる。
The electrical characteristic measuring device 16 is as follows.
An impedance analyzer manufactured by Yokogawa Hewlett-Packard Company is preferably used. According to the above measuring apparatus, since it is not necessary to perform compression molding of the sample S in advance, the coating of the conductive coating can be performed more easily than the case where the electrical characteristics of the molded product is measured after compression molding the sample. The condition can be evaluated.

【0019】上記本発明の導電性被覆の被覆状態評価方
法は、例えば、製品として供給された導電性樹脂材料の
品質の評価等に使用できる他、導電性樹脂材料の製造工
程に応用することで、同品質の導電性樹脂材料の、安定
的な製造を可能とする。すなわち、上記導電性被覆の被
覆状態評価方法を応用した、本発明の導電性樹脂材料の
製造方法においては、樹脂粒子と導電性微粒子とを高剪
断力かつ高圧縮力で混合する工程の途中または工程終了
時に、混合物の一部を採取して、樹脂粒子の表面に形成
された導電性被覆の被覆状態を評価し、その結果を混合
工程にフィードバックすることで、同じ被覆状態の導電
性被覆を有する導電性樹脂材料を、安定的に大量生産す
ることが可能となる。
The method for evaluating the coating state of the conductive coating of the present invention can be used, for example, for evaluating the quality of the conductive resin material supplied as a product, and can also be applied to the manufacturing process of the conductive resin material. It enables stable production of conductive resin materials of the same quality. That is, applying the coating state evaluation method of the conductive coating, in the method for producing a conductive resin material of the present invention, during the step of mixing the resin particles and the conductive fine particles at high shear and high compression force or At the end of the process, a part of the mixture is sampled, the coating state of the conductive coating formed on the surface of the resin particles is evaluated, and by feeding back the result to the mixing process, the conductive coating having the same coating state is obtained. It is possible to stably mass-produce the conductive resin material that it has.

【0020】本発明の導電性樹脂材料の製造方法におい
て、樹脂粒子と導電性微粒子とを高剪断力かつ高圧縮力
で混合する方法としては、粉体粒子の表面改質法として
知られる、いわゆるメカノケミカル法が例示される。こ
のメカノケミカル法の実施には、例えばホソカワミクロ
ン(株)製の混合装置「オングミル」が好適に採用され
る。この混合装置の概略を図8に示す。なお、従来より
広く用いられている混合装置としてボールミルがある
が、ボールミルでは圧縮力が殆ど認められず、導電性微
粒子を樹脂粒子の表面に強く固着させるのが困難である
ため、好ましくない。
In the method for producing a conductive resin material of the present invention, a method of mixing resin particles and conductive fine particles with high shearing force and high compressing force is known as a surface modification method of powder particles, so-called. The mechanochemical method is exemplified. For carrying out the mechanochemical method, for example, a mixing device “Angmill” manufactured by Hosokawa Micron Co., Ltd. is preferably adopted. The outline of this mixing apparatus is shown in FIG. A ball mill has been widely used as a mixing device, but it is not preferable because a compression force is hardly recognized in the ball mill and it is difficult to firmly adhere the conductive fine particles to the surface of the resin particles.

【0021】図8に示す混合装置は、回転ケーシング1
と、この回転ケーシング1内の回転中心に、当該回転ケ
ーシング1と同方向に回転可能に設けた回転軸2と、こ
の回転軸2に取り付けたインナーピース3およびかき取
り用のスクレーパー4とで構成されている。混合操作に
あたっては、混合対象物としての、予備混合していない
粉体粒子5(本発明の場合は樹脂粒子と導電性微粒子)
を回転ケーシング1内に投入したのち、この回転ケーシ
ング1を高速回転させる(回転速度をv1 とする)。こ
れにより、粉体粒子5は遠心力を受けて回転ケーシング
1の内壁面1aに強く押圧される。一方、回転軸2は回
転ケーシング1よりも遅い速度v2 で回転ケーシング1
と同方向に回転される。
The mixing device shown in FIG.
And a rotary shaft 2 provided at the center of rotation in the rotary casing 1 so as to be rotatable in the same direction as the rotary casing 1, an inner piece 3 attached to the rotary shaft 2 and a scraper 4 for scraping. Has been done. In the mixing operation, powder particles 5 that are not premixed as the objects to be mixed (in the case of the present invention, resin particles and conductive fine particles)
After being charged into the rotary casing 1, the rotary casing 1 is rotated at a high speed (the rotation speed is v 1 ). As a result, the powder particles 5 receive a centrifugal force and are strongly pressed against the inner wall surface 1 a of the rotary casing 1. On the other hand, the rotating shaft 2 rotates at a speed v 2 slower than that of the rotating casing 1
Is rotated in the same direction as.

【0022】かかる回転ケーシング1と回転軸2との速
度差により、粉体粒子5は、回転ケーシング1と、回転
軸2に取り付けられたインナーピース3との間で強い機
械的エネルギー(剪断力および圧縮力)を受ける。すな
わち、図8に示すように、粉体粒子5は矢印x方向に強
い圧縮力を受け、矢印y方向に強い剪断力を受けること
になる。
Due to the difference in speed between the rotating casing 1 and the rotating shaft 2, the powder particles 5 generate strong mechanical energy (shearing force and shearing force) between the rotating casing 1 and the inner piece 3 attached to the rotating shaft 2. Receive compressive force). That is, as shown in FIG. 8, the powder particles 5 receive a strong compressive force in the arrow x direction and a strong shearing force in the arrow y direction.

【0023】なお、インナーピース3およびスクレーパ
ー4は回転しない固定したものであってもよい(すなわ
ち回転軸2の回転速度v2 が0、以下「固定型」とい
う)。一方、上記のように、回転軸2も同方向に回転す
る型のものを、「共回転型」という。かかる混合装置を
用いて、本発明の導電性樹脂材料の製造方法を実施する
にあたっては、まず、樹脂粒子と導電性微粒子とを、回
転ケーシング1内へ投入して、上述したように混合操作
を行う。
The inner piece 3 and the scraper 4 may be fixed so as not to rotate (that is, the rotation speed v 2 of the rotary shaft 2 is 0, and hereinafter referred to as "fixed type"). On the other hand, as described above, a type in which the rotating shaft 2 also rotates in the same direction is referred to as a "co-rotating type". In carrying out the method for producing a conductive resin material of the present invention using such a mixing device, first, the resin particles and the conductive fine particles are put into the rotating casing 1 and the mixing operation is performed as described above. To do.

【0024】つぎに、回転ケーシング1内の混合物の一
部を採取し、前記図1に示す測定装置を用いて、導電性
被覆の被覆状態を評価し、その結果に基づいて、混合操
作を続けるか否か、混合装置の回転速度を変えるか否か
等を判断し、それを、混合装置の操作にフィードバック
する。以上の操作を、導電性被覆が所定の被覆状態にな
るまで、繰り返し行えば、同品質の導電性樹脂材料が安
定に製造される。
Next, a part of the mixture in the rotary casing 1 is sampled, the coating state of the conductive coating is evaluated using the measuring device shown in FIG. 1, and the mixing operation is continued based on the result. It is determined whether or not the rotation speed of the mixing device is changed, and the like is fed back to the operation of the mixing device. By repeating the above operation until the conductive coating reaches a predetermined coating state, a conductive resin material of the same quality can be stably manufactured.

【0025】樹脂粒子としては、例えばアクリル樹脂、
ポリスチレン樹脂、ポリアセタール、ポリアミド、ポリ
ブチレンテレフタレート、ポリカーボネート、ボリフェ
ニレンサルファイド、ポリサルホン、ポリ塩化ビニル、
ポリアミドイミド、ポリエチレン、ポリプロピレンなど
のオレフィン樹脂といった熱可塑性樹脂のほか、エポキ
シ樹脂、フェノール樹脂、ポリエステル、ポリウレタン
などの熱硬化性樹脂もあげられる。
As the resin particles, for example, acrylic resin,
Polystyrene resin, polyacetal, polyamide, polybutylene terephthalate, polycarbonate, polyphenylene sulfide, polysulfone, polyvinyl chloride,
In addition to thermoplastic resins such as olefin resins such as polyamide-imide, polyethylene and polypropylene, thermosetting resins such as epoxy resins, phenolic resins, polyesters and polyurethanes are also included.

【0026】これらの樹脂粒子は球形、不定形いずれで
もよく、粒径は数μm以上、具体的には約3〜100μ
mが好ましく、約8〜50μmであるのがより好まし
い。粒径が前記範囲よりも小なるときは粒子にかかる圧
縮力および剪断力が過小となり、また前記範囲よりも大
なるときは導電度が少なくなり、かつ圧縮成形も困難と
なる。
These resin particles may be spherical or amorphous, and have a particle size of several μm or more, specifically about 3 to 100 μm.
m is preferred, and more preferably about 8-50 μm. When the particle size is smaller than the above range, the compressive force and shearing force applied to the particles are too small, and when the particle size is larger than the range, the conductivity is low and the compression molding becomes difficult.

【0027】導電性微粒子としては、例えばAg,Al,F
e,Au,Cu,Sn,Niなどの、展性または延性を有する金
属微粒子が使用できる他、例えばカーボンや、導電性金
属酸化物微粉末、表面を金属(銀など)でコートした酸
化チタンなどの、展性および延性を有さない導電性微粒
子を使用することもできる。導電性微粒子として、展性
または延性を有する金属微粒子を使用した場合には、高
剪断力かつ高圧縮力の混合により変形一体化し、部分的
に溶融して、樹脂粒子の表面に、導電性被覆としての連
続的な金属膜が形成される。
Examples of the conductive fine particles include Ag, Al, F
In addition to malleable or ductile metal particles such as e, Au, Cu, Sn, Ni, etc., for example, carbon, conductive metal oxide fine powder, titanium oxide whose surface is coated with metal (silver etc.), etc. It is also possible to use conductive fine particles having no malleability and ductility. When metal particles having malleability or ductility are used as the conductive particles, they are deformed and integrated by mixing with high shearing force and high compressive force and partially melted to form a conductive coating on the surface of the resin particles. As a result, a continuous metal film is formed.

【0028】また、導電性微粒子として、展性および延
性を有さない導電性微粒子を使用した場合には、この導
電性微粒子が、高剪断力かつ高圧縮力の混合によって、
樹脂粒子の表面に均一に分散されて固着し、多数の導電
性微粒子からなる導電性被覆が形成される。さらに、上
記展性または延性を有する金属微粒子と展性および延性
を有さない導電性微粒子とを併用した場合には、樹脂粒
子の表面に、導電性被覆として、両者の複合膜が形成さ
れる。
When conductive fine particles having no malleability and ductility are used as the conductive fine particles, the conductive fine particles are mixed by a high shearing force and a high compressive force.
The resin particles are uniformly dispersed and fixed on the surface of the resin particles to form a conductive coating composed of a large number of conductive fine particles. Furthermore, when the metal fine particles having malleability or ductility and the conductive fine particles not having malleability and ductility are used in combination, a composite film of both is formed as a conductive coating on the surface of the resin particles. .

【0029】導電性微粒子の回転ケーシング1内への投
入量は、樹脂粒子の投入量に対する、導電性微粒子の割
合(重量%)に換算して、5〜66重量%の範囲内が好
ましい。導電性微粒子の割合がこの範囲よりも大なると
きは、得られた導電性樹脂材料が機械的強度に劣ったも
のになり、またこの範囲よりも小なるときは、得られた
導電性樹脂材料が導電性に劣ったもにになり、いずれも
好ましくない。
The amount of the conductive fine particles charged into the rotary casing 1 is preferably in the range of 5 to 66% by weight in terms of the ratio (% by weight) of the conductive fine particles to the amount of the resin particles charged. When the ratio of the conductive fine particles is larger than this range, the obtained conductive resin material is inferior in mechanical strength, and when it is smaller than this range, the obtained conductive resin material is obtained. Has poor electrical conductivity, which is not preferable.

【0030】回転ケーシング1の回転速度v1 は、固定
型のもので1100〜3000r.p.m.程度が適当であ
る。また、共回転型では、回転ケーシング1とインナー
ピース3との速度差を、前記範囲と同じ1100〜30
00r.p.m.程度とするのが好ましい。固定型の場合の回
転ケーシング1の回転速度v1 または共回転型の場合の
速度差が前記範囲よりも大なるときは混合時の摩擦熱が
過剰となり、逆に前記範囲より小なるときは圧縮力およ
び剪断力が不足し、いずれも好ましくない。
The rotation speed v 1 of the rotary casing 1 is of a fixed type and is preferably about 1100 to 3000 rpm. In the co-rotating type, the speed difference between the rotating casing 1 and the inner piece 3 is 1100 to 30 which is the same as the above range.
It is preferably about 00 rpm. When the rotation speed v 1 of the rotary casing 1 in the case of the fixed type or the speed difference in the case of the co-rotation type is larger than the above range, the frictional heat during mixing becomes excessive, and conversely, when it is smaller than the above range, the friction heat is compressed. Both the force and the shearing force are insufficient, which is not preferable.

【0031】さらに、混合に際しては、混合時の摩擦に
よって温度が上がり過ぎないように注意する必要があ
る。混合時の摩擦により樹脂粒子の融点またはガラス転
位点以上に摩擦熱が発生すると、樹脂粒子が溶融して変
形するとともに、導電性微粒子が樹脂粒子内に埋めこま
れてしまうので、樹脂粒子の融点またはガラス転位点以
上に摩擦熱が発生しないように注意する必要がある。こ
のため、回転速度を調整するほか、混合装置に空冷や水
冷などの冷却装置(図示せず)を取付けて摩擦熱を下げ
ながら混合するようにすればよい。
Further, in mixing, it is necessary to take care so that the temperature does not rise excessively due to friction during mixing. When frictional heat is generated above the melting point of the resin particles or the glass transition point due to friction during mixing, the resin particles are melted and deformed, and the conductive fine particles are embedded in the resin particles. Also, care must be taken not to generate frictional heat above the glass transition point. Therefore, in addition to adjusting the rotation speed, a cooling device (not shown) such as air cooling or water cooling may be attached to the mixing device so as to reduce the frictional heat while mixing.

【0032】また、導電性微粒子として金属微粒子を用
いる場合には、過度に温度が上がり過ぎると、金属が酸
化されて抵抗値が上がり、導電性が低下するおそれもあ
る。金属の酸化を防止するためには、窒素雰囲気下ある
いは減圧下で混合しても良い。
When metal fine particles are used as the conductive fine particles, if the temperature is excessively increased, the metal may be oxidized and the resistance value may be increased to lower the conductivity. In order to prevent metal oxidation, they may be mixed under a nitrogen atmosphere or under reduced pressure.

【0033】[0033]

【実施例】以下、実施例をあげて本発明の導電性樹脂材
料を詳細に説明する。実施例1 ポリメチルメタクリレート製の球形樹脂粒子(平均粒径
50μm、ガラス転位温度130℃、積水化成品工業
(株)製の「MB−50」)100重量部と、導電性微
粒子としての、銅微粒子(不定形、平均粒径2.5μ
m)10重量部とを、予備混合することなく、ホソカワ
ミクロン(株)製の「オングミルAM−15F」に投入
した。この装置は図8に示すような混合装置であって、
固定型のものである。混合条件は、回転ケーシング1の
回転数を1500r.p.m.、回転ケーシング1の内壁面1
aとインナーピース3との間隙を3.4mmとし、室温で
混合処理を行った。
EXAMPLES The conductive resin material of the present invention will be described in detail below with reference to examples. Example 1 100 parts by weight of spherical resin particles made of polymethylmethacrylate (average particle diameter 50 μm, glass transition temperature 130 ° C., “MB-50” made by Sekisui Plastics Co., Ltd.), and copper as conductive fine particles. Fine particles (amorphous, average particle size 2.5μ
m) and 10 parts by weight were added to "Ongmill AM-15F" manufactured by Hosokawa Micron Co., Ltd. without premixing. This device is a mixing device as shown in FIG.
It is a fixed type. The mixing condition is that the rotation speed of the rotating casing 1 is 1500 rpm and the inner wall surface 1 of the rotating casing 1 is 1.
The gap between a and the inner piece 3 was set to 3.4 mm, and the mixing process was performed at room temperature.

【0034】そして、混合開始から900秒毎に、混合
途中の混合物を回転ケーシング1内から取り出して、前
記図1に示す測定装置を用いて、体積固有抵抗値ρ(Ω
m)および誘電正接 tanδを測定するとともに、走査型
電子顕微鏡(倍率:2000倍)にて、導電性被覆の被
覆状態を観察した。体積固有抵抗値ρ(Ωm)および誘
電正接 tanδの測定結果を表1に、走査型電子顕微鏡に
よる観察結果を図9〜図11に示す。
Then, every 900 seconds from the start of mixing, the mixture being mixed is taken out from the rotary casing 1, and the volume resistivity ρ (Ω is measured by using the measuring device shown in FIG.
m) and dielectric loss tangent tan δ were measured, and the coating state of the conductive coating was observed with a scanning electron microscope (magnification: 2000 times). The measurement results of the volume resistivity ρ (Ωm) and the dielectric loss tangent tan δ are shown in Table 1, and the observation results by the scanning electron microscope are shown in FIGS. 9 to 11.

【0035】また、体積固有抵抗値ρおよび誘電正接 t
anδと、混合時間との関係を図12に示す。なお、図1
2において、●─●は体積固有抵抗値ρを示し、○─○
は誘電正接 tanδを示している。
The volume resistivity ρ and the dielectric loss tangent t
FIG. 12 shows the relationship between an δ and the mixing time. Note that FIG.
In 2, the symbol ● ─ ● indicates the volume resistivity ρ, ○ ─ ○
Indicates the dielectric loss tangent tan δ.

【0036】[0036]

【表1】 [Table 1]

【0037】導電性被覆の被覆状態を観察した図9〜図
11の結果より、混合開始900秒後(図9)、270
0秒後(図10)、3600秒後(図11)の順に、樹
脂粒子表面の銅薄膜が成長していることが確認された。
この結果を、体積固有抵抗値ρおよび誘電正接 tanδの
変化と照らし合わせると、銅薄膜の成長に伴って、体積
固有抵抗値ρが低下し、誘電正接 tanδが上昇すること
が判った。
From the results of FIGS. 9 to 11 in which the coating state of the conductive coating was observed, 900 seconds after the start of mixing (FIG. 9), 270
It was confirmed that the copper thin film on the surface of the resin particles grew in the order of 0 second (FIG. 10) and 3600 seconds (FIG. 11).
By comparing this result with changes in the volume resistivity ρ and the dielectric loss tangent tanδ, it was found that the volume resistivity ρ decreases and the dielectric loss tangent tanδ increases as the copper thin film grows.

【0038】実施例2 ポリメチルメタクリレート製の球形樹脂粒子(平均粒径
50μm、ガラス転位温度130℃、積水化成品工業
(株)製の「MB−50」)と、ニッケル微粒子(球
形、平均粒径0.02μm)とを、予め、高剪断力かつ
高圧縮力で混合して得られた複合粒子100重量部と、
導電性微粒子としての、表面を銀でコートした二酸化チ
タン微粒子(不定形、平均粒径0.5μm)15重量部
とを、予備混合することなく、前記ホソカワミクロン
(株)製の「オングミルAM−15F」に投入して、回
転ケーシング1の回転数1200r.p.m.、回転ケーシン
グ1の内壁面1aとインナーピース3との間隙3.4mm
の条件で、室温で混合処理を行った。
Example 2 Spherical resin particles made of polymethylmethacrylate (average particle size 50 μm, glass transition temperature 130 ° C., “MB-50” manufactured by Sekisui Plastics Co., Ltd.) and nickel fine particles (spherical, average particles) Diameter 0.02 μm) and 100 parts by weight of composite particles obtained by previously mixing with high shearing force and high compressing force,
15 parts by weight of titanium dioxide fine particles whose surface is coated with silver (indeterminate shape, average particle size 0.5 μm) as conductive fine particles are pre-mixed and the product is manufactured by Hosokawa Micron Co., Ltd. “Angmill AM-15F”. , The rotational speed of the rotary casing 1 is 1200 rpm, and the gap between the inner wall surface 1a of the rotary casing 1 and the inner piece 3 is 3.4 mm.
The mixing treatment was performed at room temperature under the conditions of.

【0039】そして、混合開始から900秒毎に、混合
途中の混合物を回転ケーシング1内から取り出して、前
記図1に示す測定装置を用いて、体積固有抵抗値ρ(Ω
m)および誘電正接 tanδを測定した。結果を表2に示
す。
Then, every 900 seconds from the start of mixing, the mixture being mixed is taken out from the rotary casing 1, and the volume resistivity ρ (Ω is measured by using the measuring apparatus shown in FIG.
m) and dielectric loss tangent tan δ were measured. The results are shown in Table 2.

【0040】[0040]

【表2】 [Table 2]

【0041】上記表2の結果より、混合時間が長くなる
につれて、体積固有抵抗値ρが低下し、誘電正接 tanδ
が上昇することが判った。そして、混合開始3600秒
から後は、体積固有抵抗値ρ、誘電正接 tanδともに変
化しなくなった。そこで、混合開始900秒後および3
600秒後のサンプルについて、走査型電子顕微鏡(倍
率:2000倍)にて、導電性被覆の被覆状態を観察し
たところ、混合開始900秒後の段階では、図13に示
すように、複合粒子の表面に、二酸化チタン微粒子が部
分的に固着されていたが、混合開始3600秒後の段階
では、図14に示すように、複合粒子の表面全体に、二
酸化チタン微粒子が均一に固着されていることが確認さ
れた。
From the results in Table 2 above, the volume resistivity ρ decreases as the mixing time increases, and the dielectric loss tangent tanδ
Was found to rise. After 3600 seconds from the start of mixing, the volume resistivity ρ and the dielectric loss tangent tan δ did not change. Then, 900 seconds after the start of mixing and 3
When the coating state of the conductive coating was observed with a scanning electron microscope (magnification: 2000 times) for the sample after 600 seconds, at the stage 900 seconds after the start of mixing, as shown in FIG. The titanium dioxide fine particles were partially adhered to the surface, but at the stage 3600 seconds after the start of mixing, the titanium dioxide fine particles were uniformly adhered to the entire surface of the composite particles as shown in FIG. Was confirmed.

【0042】実施例3 ポリメチルメタクリレート製の球形樹脂粒子(平均粒径
50μm、ガラス転位温度130℃、積水化成品工業
(株)製の「MB−50」)と、銅微粒子(不定形、平
均粒径2.5μm)とを、予め、高剪断力かつ高圧縮力
で混合して得られた複合粒子100重量部と、導電性微
粒子としてのニッケル微粒子(球形、平均粒径0.02
μm)15重量部とを、予備混合することなく、前記ホ
ソカワミクロン(株)製の「オングミルAM−15F」
に投入して、回転ケーシング1の回転数750r.p.m.、
回転ケーシング1の内壁面1aとインナーピース3との
間隙3.4mmの条件で、室温で混合処理を行った。
Example 3 Spherical resin particles made of polymethylmethacrylate (average particle size 50 μm, glass transition temperature 130 ° C., “MB-50” manufactured by Sekisui Plastics Co., Ltd.) and copper fine particles (amorphous, average) 100 parts by weight of composite particles obtained by previously mixing with 100 μm of a particle size of 2.5 μm) with a high shearing force and a high compressing force, and nickel fine particles (spherical shape, average particle size 0.02) as conductive fine particles.
μm) 15 parts by weight without pre-mixing, “Ongmill AM-15F” manufactured by Hosokawa Micron Co., Ltd.
, The rotation speed of the rotating casing 1 is 750 rpm.
The mixing process was performed at room temperature under the condition that the gap between the inner wall surface 1a of the rotating casing 1 and the inner piece 3 was 3.4 mm.

【0043】そして、混合開始から900秒毎に、混合
途中の混合物を回転ケーシング1内から取り出して、前
記図1に示す測定装置を用いて、体積固有抵抗値ρ(Ω
m)および誘電正接 tanδを測定した。結果を表3に示
す。
Then, every 900 seconds from the start of mixing, the mixture being mixed is taken out from the rotary casing 1, and the volume resistivity ρ (Ω is measured by using the measuring apparatus shown in FIG.
m) and dielectric loss tangent tan δ were measured. The results are shown in Table 3.

【0044】[0044]

【表3】 [Table 3]

【0045】上記表3の結果より、混合時間が長くなる
につれて、体積固有抵抗値ρが低下し、誘電正接 tanδ
が上昇することが判った。そして、混合開始2700秒
から後は、体積固有抵抗値ρ、誘電正接 tanδともに変
化しなくなった。そこで、混合開始2700秒後のサン
プルについて、走査型電子顕微鏡(倍率:2000倍)
にて、導電性被覆の被覆状態を観察したところ、図15
に示すように、複合粒子の表面全体に、ニッケル薄膜が
均一に固着されていることが確認された。
From the results shown in Table 3 above, the volume resistivity ρ decreases as the mixing time increases, and the dielectric loss tangent tanδ
Was found to rise. After 2700 seconds from the start of mixing, neither the volume resistivity value ρ nor the dielectric loss tangent tan δ stopped changing. Therefore, the scanning electron microscope (magnification: 2000 times) was applied to the sample 2700 seconds after the start of mixing.
When the coating state of the conductive coating was observed at
As shown in, it was confirmed that the nickel thin film was uniformly adhered to the entire surface of the composite particle.

【0046】[0046]

【発明の効果】本発明の導電性被覆の被覆状態評価方法
によれば、表面に導電性被覆が被覆された多数の樹脂粒
子を圧縮して、圧縮体の体積固有抵抗値または誘電正接
を測定することにより、樹脂粒子表面における導電性被
覆の被覆状態を客観的かつ容易に評価することができ
る。
According to the method for evaluating the coating state of the conductive coating of the present invention, a large number of resin particles having the surface coated with the conductive coating are compressed to measure the volume resistivity or dielectric loss tangent of the compressed body. By doing so, the coating state of the conductive coating on the resin particle surface can be objectively and easily evaluated.

【0047】また、本発明の導電性樹脂材料の製造方法
によれば、上記評価方法を利用することにより、同品質
の導電性樹脂材料を安定して製造することができる。
Further, according to the method for producing a conductive resin material of the present invention, it is possible to stably produce a conductive resin material of the same quality by using the above evaluation method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の導電性被覆の被覆状態評価方法を実施
するための、測定装置の一例を示す概略図である。
FIG. 1 is a schematic view showing an example of a measuring device for carrying out the method for evaluating the coating state of a conductive coating of the present invention.

【図2】樹脂粒子の圧縮体における、個々の樹脂粒子の
表面抵抗、内部抵抗、接触抵抗の関係を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a relationship among surface resistance, internal resistance, and contact resistance of individual resin particles in a compressed body of resin particles.

【図3】樹脂粒子の圧縮体の抵抗値を、上記個々の樹脂
粒子の表面抵抗、内部抵抗、接触抵抗で等価的に表した
回路図である。
FIG. 3 is a circuit diagram equivalently representing the resistance value of a compressed body of resin particles by the surface resistance, the internal resistance, and the contact resistance of the individual resin particles.

【図4】樹脂粒子表面への導電性微粒子の接触状態と、
樹脂粒子の表面抵抗および導電性微粒子の全抵抗との関
係を示す説明図である。
FIG. 4 shows a contact state of conductive fine particles on the surface of resin particles,
It is explanatory drawing which shows the relationship between the surface resistance of resin particles, and the total resistance of electroconductive fine particles.

【図5】上記状態の導電性樹脂材料の表面抵抗を、樹脂
粒子の表面抵抗および導電性微粒子の全抵抗で等価的に
表した回路図である。
FIG. 5 is a circuit diagram in which the surface resistance of the conductive resin material in the above state is equivalently expressed by the surface resistance of the resin particles and the total resistance of the conductive fine particles.

【図6】樹脂粒子表面への導電性微粒子の接触状態と、
樹脂粒子の表面抵抗および導電性微粒子の全抵抗との関
係を示す説明図である。
FIG. 6 shows a contact state of conductive fine particles on the surface of resin particles,
It is explanatory drawing which shows the relationship between the surface resistance of resin particles, and the total resistance of electroconductive fine particles.

【図7】上記状態の導電性樹脂材料の表面抵抗を、樹脂
粒子の表面抵抗および導電性微粒子の全抵抗で等価的に
表した回路図である。
FIG. 7 is a circuit diagram in which the surface resistance of the conductive resin material in the above state is equivalently expressed by the surface resistance of the resin particles and the total resistance of the conductive fine particles.

【図8】導電性樹脂材料の製造に使用される混合装置の
一例を示す概略断面図である。
FIG. 8 is a schematic cross-sectional view showing an example of a mixing device used for manufacturing a conductive resin material.

【図9】実施例1において、混合開始900秒後の、導
電性樹脂材料の粒子構造を示す走査型電子顕微鏡写真で
ある。
9 is a scanning electron micrograph showing the particle structure of the conductive resin material 900 seconds after the start of mixing in Example 1. FIG.

【図10】実施例1において、混合開始2700秒後
の、導電性樹脂材料の粒子構造を示す走査型電子顕微鏡
写真である。
10 is a scanning electron micrograph showing a particle structure of a conductive resin material 2700 seconds after the start of mixing in Example 1. FIG.

【図11】実施例1において、混合開始3600秒後
の、導電性樹脂材料の粒子構造を示す走査型電子顕微鏡
写真である。
FIG. 11 is a scanning electron micrograph showing the particle structure of the conductive resin material in Example 1 3600 seconds after the start of mixing.

【図12】実施例1において、体積固有抵抗値ρおよび
誘電正接 tanδの測定値と、混合時間との関係を示すグ
ラフである。
12 is a graph showing the relationship between the mixing time and the measured values of volume resistivity ρ and dielectric loss tangent tan δ in Example 1. FIG.

【図13】実施例2において、混合開始900秒後の、
導電性樹脂材料の粒子構造を示す走査型電子顕微鏡写真
である。
FIG. 13 is a graph showing the result obtained in Example 2 900 seconds after the start of mixing
It is a scanning electron micrograph which shows the particle structure of electroconductive resin material.

【図14】実施例2において、混合開始3600秒後
の、導電性樹脂材料の粒子構造を示す走査型電子顕微鏡
写真である。
FIG. 14 is a scanning electron micrograph showing a particle structure of a conductive resin material 3600 seconds after the start of mixing in Example 2.

【図15】実施例3において、混合開始2700秒後
の、導電性樹脂材料の粒子構造を示す走査型電子顕微鏡
写真である。
FIG. 15 is a scanning electron micrograph showing a particle structure of a conductive resin material 2700 seconds after the start of mixing in Example 3.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表面に導電性被覆が被覆された多数の樹脂
粒子を圧縮し、圧縮体の体積固有抵抗値、および、誘電
正接のうちの少なくとも一方を測定して、樹脂粒子表面
における導電性被覆の被覆状態を評価する導電性被覆の
被覆状態評価方法。
1. A large number of resin particles coated with a conductive coating on the surface are compressed, and at least one of a volume resistivity value and a dielectric loss tangent of the compressed body is measured to obtain conductivity on the surface of the resin particles. A coating state evaluation method for a conductive coating for evaluating the coating state of a coating.
【請求項2】樹脂粒子と導電性微粒子とを高剪断力かつ
高圧縮力で混合して、樹脂粒子の表面に導電性被覆を被
覆する導電性樹脂材料の製造方法において、両成分の混
合中または混合後に混合物の一部を採取して圧縮し、圧
縮体の体積固有抵抗値、および、誘電正接のうちの少な
くとも一方を測定して、樹脂粒子表面における導電性被
覆の被覆状態を評価することを特徴とする導電性樹脂材
料の製造方法。
2. A method for producing a conductive resin material, wherein resin particles and conductive fine particles are mixed with a high shearing force and a high compressive force to coat the surface of the resin particles with a conductive coating. Or, after mixing, a part of the mixture is sampled and compressed, and at least one of the volume resistivity value of the compressed body and the dielectric loss tangent is measured to evaluate the coating state of the conductive coating on the resin particle surface. A method for producing a conductive resin material, comprising:
JP20397291A 1991-07-17 1991-07-17 Method for evaluating state of conductive coating layer and preparation of conductive resin material Pending JPH0525286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20397291A JPH0525286A (en) 1991-07-17 1991-07-17 Method for evaluating state of conductive coating layer and preparation of conductive resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20397291A JPH0525286A (en) 1991-07-17 1991-07-17 Method for evaluating state of conductive coating layer and preparation of conductive resin material

Publications (1)

Publication Number Publication Date
JPH0525286A true JPH0525286A (en) 1993-02-02

Family

ID=16482684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20397291A Pending JPH0525286A (en) 1991-07-17 1991-07-17 Method for evaluating state of conductive coating layer and preparation of conductive resin material

Country Status (1)

Country Link
JP (1) JPH0525286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034726A (en) * 2001-07-24 2003-02-07 Sumitomo Bakelite Co Ltd Production method for conductive resin particle
JP2003034727A (en) * 2001-07-24 2003-02-07 Sumitomo Bakelite Co Ltd Production method for conductive resin particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034726A (en) * 2001-07-24 2003-02-07 Sumitomo Bakelite Co Ltd Production method for conductive resin particle
JP2003034727A (en) * 2001-07-24 2003-02-07 Sumitomo Bakelite Co Ltd Production method for conductive resin particle

Similar Documents

Publication Publication Date Title
JP4921623B2 (en) Nonlinear resistance having varistor characteristics and method of manufacturing the resistance
KR102050124B1 (en) Ultrathin flake-type silver powder and manufacturing method therefor
Ponomarenko et al. Formation processes and properties of conducting polymer composites
JPH0832792B2 (en) Filled polytetrafluoroethylene film and method for producing the same
WO2007037440A1 (en) Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
Lei et al. Novel electrically conductive composite filaments based on Ag/saturated polyester/polyvinyl butyral for 3D-printing circuits
JP6911770B2 (en) Conductive composites produced from coating powder
EP4190841A1 (en) Ptfe powder, method for producing electrode, and electrode
EP0526556B1 (en) Electrical insulating material
JPH0525286A (en) Method for evaluating state of conductive coating layer and preparation of conductive resin material
JPS62100539A (en) Filler-containing silicone rubber molding material and production thereof
JPH0311602A (en) Resistance paste proper to manufacture of electric resistance layer and resistance layer manufactured from said resistance paste
CN108877990A (en) A kind of graphene nano conductive silver slurry and preparation method thereof
Narkis et al. Electrically conductive composites prepared from polymer particles coated with metals by electroless deposition
JPH0517582A (en) Electroconductive resin material and its production
JP4006227B2 (en) Conductive resin composition, electrode substrate using the same, and method for producing electrode substrate
JPH0517581A (en) Electroconductive resin material and its production
JPH0450236A (en) Evaluation of dispersion state of conductive powder and preparation of conductive resin material
US3617379A (en) Electrical insulation coating containing particles of inorganic substance of dielectric constant no less than 1500
JPS62259097A (en) Metallic fiber composite sheet
JPH0384038A (en) Production of electrically conductive resin material
JPH0753726A (en) Polymer composite powder and its preparation
GB2262101A (en) Insulating material
JP6360313B2 (en) Manufacturing method of polarizable electrode
WO2023176402A1 (en) Block-like silver powder and manufacturing method thereof, and electrically conductive paste