JPH0525260B2 - - Google Patents

Info

Publication number
JPH0525260B2
JPH0525260B2 JP61147283A JP14728386A JPH0525260B2 JP H0525260 B2 JPH0525260 B2 JP H0525260B2 JP 61147283 A JP61147283 A JP 61147283A JP 14728386 A JP14728386 A JP 14728386A JP H0525260 B2 JPH0525260 B2 JP H0525260B2
Authority
JP
Japan
Prior art keywords
polymerizing
graft
polybutylene terephthalate
acrylic
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61147283A
Other languages
Japanese (ja)
Other versions
JPS633055A (en
Inventor
Seiichiro Maruyama
Kazumasa Morita
Kazuo Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP14728386A priority Critical patent/JPS633055A/en
Publication of JPS633055A publication Critical patent/JPS633055A/en
Publication of JPH0525260B2 publication Critical patent/JPH0525260B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はインサート成形品に関するものであ
る。詳しくは高低温衝撃性が改良されたインサー
ト成形品に関するものである。 〔従来の技術〕 インサート成形法は樹脂の特性と金属又は無機
固体(以下金属等と略す)の素材の特性を生かし
て使用するため、金属等を樹脂に埋め込む成形法
であり、自動車部品や電気電子部品、OA機器部
品などの広い分野に応用され、今では一般的な成
形法の1つとなつている。 しかし乍ら樹脂と金属等では温度変化による膨
張や収縮率(いわゆる線膨張係数)が極端に異る
ことから成形品の樹脂部が肉薄であつたり、肉厚
変化の大きい部分があるもの及びゲート位置が適
切でなかつたりしたものは、成形直後に割れた
り、使用中の温度変化で割れたりするトラブルが
多い。このため用途や成形品の形状等かなり制限
されたものとなつているのが現状である。 最近自動車分野でもエンジン廻りの樹脂化が進
みインサート成形品も重要な部分となつてきてい
る。特にイグニツシヨンシステムやデイストリビ
ユーターの部品ではアルミや銅、鉄、しんちゆう
などの金属部品と共にポリブチレンテレフタレー
ト樹脂で包むインサート成形法が検討されている
が、このものはインサート部品の構造が複雑なこ
と、樹脂の肉厚変化部分が多いことの他に使用す
る場所がエンジン附近であるため高低温度変化が
大きい。従つてこれ等のことからも最近では長期
間の高低温変化に耐える樹脂、すなわち高低温衝
撃性の優れた樹脂が強く求められるようになつて
きた。 〔発明の目的〕 以上の事から本発明者等は高低温衝撃性に優れ
たポリブチレンテレフタレート樹脂組成物を得る
ことが出来ることを鋭意検討して本発明を完成し
た。 すなわち本発明は工業的に価値の大きい、イン
サート成形法に適したポリブチレンテレフタレー
ト樹脂組成物を提供することを目的としたもので
あり、その要旨とするところは、ポリブチレンテ
レフタレート樹脂99〜50重量部と、アクリル酸エ
ステルと少量の架橋性モノマーを重合させて得た
重合体にグラフト重合性モノマーをグラフト重合
させて得られるアクリル系ゴム1〜50重量部から
なる樹脂組成物と金属又は無機固体物とをインサ
ート成形してなる高低温衝撃性に優れたインサー
ト成形品を得るものである。 〔発明の構成〕 本発明で使用するポリブチレンテレフタレート
樹脂としては主としてブチレングリコールをグリ
コール成分としテレフタール酸をジカルボン酸と
するポリエステルを対象とするが、その成分の少
量を他の原料、例えばグリコール成分としてエチ
レングリコール、プロピレングリコール、ヘキサ
メチレングリコール、デカメチレングリコールの
ような脂肪酸ジオール、ビスフエノールAのアル
キレングリコール付加物又はそのハロゲン化物の
ような芳香族ジオール等で、又ジカルボン酸成分
として例えばフタル酸、イソフタル酸、ヘキサヒ
ドロフタル酸、ナフタレンジカルボン酸のような
芳香族カルボン酸、アジピン酸、セバシン酸、ア
ゼライン酸のような脂肪族カルボン酸等で置き換
えたものであつても良い。 本発明で用いるアクリル系ゴムは、アクリル酸
エステルの重合またはそれを主体とする共重合に
より得られるゴム状弾性体であり、代表的なもの
としては、ブチルアクリレートのようなアクリル
酸エステルと、少量のブチレンジアクリレートの
ような架橋性モノマーを重合させて得た重合体
に、メチルメタクリレートのようなグラフト重合
性モノマーをグラフト重合させて得たゴム状の重
合体があげられる。 上記アクリル酸エステルとしては、ブチルアク
リレートの他に、メチルアクリレート、エチルア
クリレート、プロピルアクリレート、ヘキシルア
クリレート、2−エチルヘキシルアクリレートな
どがあげられる。また、架橋性モノマーとして
は、ブチレンジアクリレートの他に、ブチレンジ
メタクリレート、トリメチロールプロパントリメ
タクリレートのようなポリオールとアクリル酸ま
たはメタクリル酸のエステル類、ジビニルベンゼ
ン、ビニルアクリレート、ビニルメタクリレート
のようなビニル化合物、アリルアクリレート、ア
リルメタクリレート、ジアリルマレート、ジアリ
ルフマレート、ジアリルイタコネート、モノアリ
ルマレート、モノアリルフマレート、トリアリル
シアヌレートのようなアリル化合物などがあげら
れる。 また、上記グラフト重合性モノマーとしては、
メチルメタクリレートの他に、エチルメタクリレ
ート、ブチルメタクリレート、ヘキシルメタクリ
レート、2−エチルヘキシルメタクリレート、ラ
ウリルメタクリレートのようなメタクリル酸エス
テル、スチレン、アクリロニトリルなどがあげら
れる。 このグラフト重合性モノマーは、その一部を上
記アクリル酸エステルと架橋性モノマーとを重合
させて重合体を製造する際に使用して共重合させ
ることもできる。 上記したようなアクリル系ゴムは、例えば、鐘
淵化学(株)製、カネエースFM、日立化成(株)製、バ
イタツクスV−6401、三菱レイヨン(株)製メタブレ
ンW−300、同W−530、ローム・アンド・ハース
社製、アクリロイドKM−323、同KM−330(こ
れらは、商標)などとしても市販されている。 ポリブチレンテレフタレートとアクリル系ゴム
の割合は99:1〜50:50重量部、好ましくは97:
3〜70:30、より好ましくは95:5〜80:20重量
部である。 アクリルゴムがあまりに少ないと高低温衝撃性
の優れた組成物が得られない。逆にあまりに多い
と樹脂の特性が失われて成形品そのものの機械的
特性が低下するので好ましくない。 本発明に於ては上記したアクリル系ゴムの他に
エポキシ化合物及びペンタエリスリトールエステ
ル、更にはエポキシ化合物、ペンタエリスリトー
ルエステルと共にカルボジイミド化合物を加える
とより優れた効果を得ることが出来る。 本発明で用いられるエポキシ化合物としては、
アリルグリシジルエーテル、エチレングリコール
のビスエポキシジシクロペンタジエニルエーテ
ル、エポキシ化大豆油、エポキシ化亜麻仁油、ブ
タジエンジエポキサイド、オクチルエポキシタレ
ート、エポキシ化ポリブタジエンのような脂肪族
エポキシ化合物、ビスフエノールAジグリシジル
エーテル、テトラフエニルエチレンエポキサイ
ド、フタル酸のジグリシジルエステルのような芳
香族エポキシ化合物、3,4−エポキシシクロヘ
キシルメチル−3,4−エポキシシクロヘキサン
カルボキシレート、3,4−エポキシ−6−メチ
ルシクロヘキシルメチル−3,4−エポキシ−6
−メチルシクロヘキサンカルボキシレート、2,
3−エポキシシクロヘキシルメチル−3,4−エ
ポキシシクロヘキサンカルボキシレート、4−
(3,4−エポキシ−5−メチルシクロヘキシル)
ブチル−3,4−エポキシシクロヘキサンカルボ
キシレート、3,4−エポキシシクロヘキシルエ
チレンオキサイド、シクロヘキシルメチル−3,
4−エポキシシクロヘキサンカルボキシレート、
3,4−エポキシ−6−メチルシクロヘキシルメ
チル−6−メチルシクロヘキサンカルボキシレー
ト、ビニルシクロヘキセンオキシド、ビス(3,
4−エポキシシクロヘキシルメチル)アジペー
ト、ビス(3,4−エポキシ−6−メチルシクロ
ヘキシルメチル)アジペート、2−(3,4−エ
ポキシシクロヘキシル−5,5−スピロ−3,4
−エポキシ)シクロヘキサン−メタジオキサンの
ような脂環式エポキシ化合物などがあげられる。 添加量についてはポリブチレンテレフタレート
樹脂とアクリル系ゴムの合計量に対して0.01〜5
重量%、好ましくは0.02〜2重量%である。あま
りに少ないと効果が期待出来なくなる。逆にあま
りに多いと着色等が起るようになる。 またペンタエリスリトールエステルとしては一
般式〔〕 〔RS(―CH2)―nCOOCH2oC(CH2OH)4-o ……〔〕 (式中、Rは炭素数5〜30のアルキル基、nは1
〜4の数、mは1〜3の数を示す。) で表わされ、Rで示されるアルキル基が、ペンチ
ル基、ヘキシル基、オクチル基、2−エチルヘキ
シル基、ノニル基、デシル基、ドデシル基、テト
ラデシル基、ヘキサデシル基、オクタデシル基、
エイコシル基等であるものを挙げることができ
る。このRで示されるアルキル基の炭素数があま
りに小さいと、ポリエステル樹脂組成物の成形時
に昇華しやすく、成形品および成形機を汚染する
不都合がある。逆にアルキル基の炭素数があまり
に大きいと熱による着色を防止する効果が小さく
なる。好ましいアルキル基は炭素数8〜20程度の
ものである。 nは1〜4の数であるが、熱による着色を防止
する効果から、3〜4のもの特に4のものが好ま
しい。またmは2のものが好ましい。 上記一般式〔〕で表わされるペンタエリスリ
トールのエステルの具体例としては、ペンタエリ
スリトールテトラキス(ドデシルチオプロピオネ
ート)、ペンタエリスリトールテトラキス(ドデ
シルチオアセテート)、ペンタエリスリトールテ
トラキス(ドデシルチオブチレート)、ペンタエ
リスリトールテトラキス(オクタデシルチオプロ
ピオネート)、ペンタエリスリトールテトラキス
(2−エチルヘキシルチオプロピオネート)、ペン
タエリスリトールトリス(ドデシルチオプロピオ
ネート)、ペンタエリスリトールビス(ドデシル
チオプロピオネート)などがあげられる。これら
の中ペンタエリスリトールテトラキス(ドデシル
チオプロピオネート)は、三菱油化(株)から商標、
セノツクス412Sとしても市販されており、好適
なものの一つである。 添加量についてはポリブチレンテレフタレート
とアクリル系ゴムの合計量に対して0.01〜5重量
%、好ましくは0.02〜2重量%である。あまりに
少ないと効果が小さい。又、逆にあまりに多いと
機械的性質に悪影響を及ぼすようになる。 カルボジイミド化合物としては、例えばイソシ
アネート化合物から加熱脱炭酸することによつて
製造されるものであり、具体例としては、ジフエ
ニルカルボジイミド、ジトリルカルボジイミド、
ジ(プロピルフエニル)カルボジイミド、ジ(ブ
チルフエニル)カルボジイミド、ジナフチルカル
ボジイミド、ビス(ジプロピルフエニル)カルボ
ジイミド、ポリフエニレンカルボジイミド、ポリ
トリレンカルボジイミド、ポリ(プロピルフエニ
レン)カルボジイミド、ポリ(ジプロピルフエニ
レン)カルボジイミド、ポリ(ジフエニルメタ
ン)カルボジイミド、ポリナフチレンカルボジイ
ミドなどがあげられる。 量についてはポリブチレンテレフタレート樹脂
とアクリル系ゴムの合計量に対して0.01〜5重量
パーセント、好ましくは0.02〜2重量%である。
あまりに少ないと効果が小さい。逆にあまりに多
いと機械的性質に悪影響を及ぼすようになるので
好ましくない。 配合方法としては公知の方法にて任意の順序で
混合すればよく、押出機などを用いて混合押出し
する方法等が挙げられる。 更にガラス繊維、炭素繊維、金属ウイスカーな
どの繊維状補強材及び樹脂との接着性を良くする
ためにエポキシ系、エポキシシラン系、アミノシ
ラン系で表面処理した繊維状補強剤を併用すると
より好ましく、配合量としては組成物の5〜50重
量%、好ましくは7.5〜30重量%である。また、
アスベストのような燃焼垂れ落ち防止剤、シリ
カ、アルミナ、シリカアルミナ、シリカマグネシ
ア、チタニア、炭酸カルシウム、タルク、石こ
う、及びガラスフレーク、ガラスビーズなどの充
填剤、染願料及びパラフイン類、脂肪酸エステ
ル、脂肪酸金属塩、ビスアミド類のような滑剤、
又難燃化のためのBr化合物難燃剤やアンチモン
化合物などの難燃助剤を併用しても差しつかえな
い。 インサート成形品は成形用金型に金属等をあら
かじめ装着し、その外側に上記の配合樹脂組成物
を充填して複合成形品としたものである。樹脂を
金型に充填するための成形法としては射出、押出
圧縮成形法などがあるが、射出成形法が一般的で
ある。 又樹脂にインサートする素材はその特性を生か
し且つ樹脂の欠点を補う目的で使用されるため成
形時に樹脂と接触した時、形が変化したり溶融し
ないものが使用される。このため主としてアルミ
ニウム、マグネシウム、鋼、鉄、しんちゆう及び
それ等の合金などの金属類やガラス、セラミツク
スのような無機固体類であらかじめ棒、ピン、ネ
ジ等に成形されているものが使用される。 〔実施例〕 以下実施例によつて本発明を具体的に説明する
が本発明はその要旨をこえない限り以下の実施例
に限定されるものではない。 実施例1、比較例1 極限粘度1.10のポリブチレンテレフタレートと
ブチルアクリレート69.3部、ブチレンジアクリレ
ート0.35部およびジアリルマレート0.35部を重合
させて得た共重合体に、メチルメタクリレート30
部をグラフト重合させて得たアクリル系ゴム、及
びガラス繊維(旭フアイバーガラス(株)製
CS03MA486)を表−1の割合で混合した混合物
を調製し、40mmφ押出機を用いて260℃で溶融混
練して押し出しペレツト化した。 このペレツトを3.9オンス射出成形機(日本製
鋼所(株)製、N−100B型)と試験片成形用金
型(縦18mm、横16mm、高さ50mmの箱形の内部に縦
10mm、横12mm、高さ50mmの鉄芯をインサートする
金形)を用いて樹脂温度270℃、金型温度80℃、
射出時間15秒、冷却時間20秒で射出成形を行つ
た。 得られた成形品を、冷熱衝撃試験機(タバイエ
スペツク(株)TSC−203型)を用いて高低温衝撃試
験(−40℃×2時間冷却後5分以内に130℃に昇
温して2時間加熱後更に−40℃に冷却する行程を
1サイクルとした)を行つて樹脂にクラツクが発
生するサイクル回数を測定した。 結果は下記第1表に示す通りであつた。 尚比較のためアクリルゴムを配合しなかつた場
合の結果を併記する。
[Industrial Field of Application] The present invention relates to insert molded products. Specifically, it relates to an insert molded product with improved high and low temperature impact properties. [Prior art] Insert molding is a molding method in which metals, etc. are embedded in resin, taking advantage of the characteristics of resin and the characteristics of metals or inorganic solid materials (hereinafter referred to as metals, etc.). It has been applied to a wide range of fields such as electronic parts and OA equipment parts, and is now one of the most common molding methods. However, resins and metals have extremely different expansion and contraction rates (so-called linear expansion coefficients) due to temperature changes, so molded products with thin resin parts or parts with large thickness changes, and gates If the position is not appropriate and the product sag, there are many problems such as cracking immediately after molding or cracking due to temperature changes during use. For this reason, the current situation is that the applications and shapes of molded products are quite limited. Recently, in the automobile field, the use of resin for engine parts has progressed, and insert molded products are also becoming important parts. Particularly for parts of ignition systems and distributors, an insert molding method is being considered in which metal parts such as aluminum, copper, iron, and steel are wrapped in polybutylene terephthalate resin. In addition to the complicated structure and the fact that there are many parts where the resin wall thickness changes, the location where it is used is near the engine causes large temperature changes. Therefore, for these reasons, there has recently been a strong demand for resins that can withstand long-term changes in high and low temperatures, that is, resins that have excellent high and low temperature impact resistance. [Object of the Invention] Based on the above, the present inventors have completed the present invention by intensively studying the possibility of obtaining a polybutylene terephthalate resin composition having excellent high and low temperature impact properties. That is, the purpose of the present invention is to provide a polybutylene terephthalate resin composition that is industrially valuable and suitable for insert molding. 1 to 50 parts by weight of an acrylic rubber obtained by graft polymerizing a graft polymerizable monomer to a polymer obtained by polymerizing an acrylic acid ester and a small amount of a crosslinking monomer, and a metal or inorganic solid. An insert molded product having excellent high and low temperature impact resistance is obtained by insert molding a product. [Structure of the Invention] The polybutylene terephthalate resin used in the present invention is mainly a polyester containing butylene glycol as a glycol component and terephthalic acid as a dicarboxylic acid, but a small amount of this component can be used as other raw materials, such as a glycol component. Fatty acid diols such as ethylene glycol, propylene glycol, hexamethylene glycol, and decamethylene glycol, aromatic diols such as alkylene glycol adducts of bisphenol A or their halides, and dicarboxylic acid components such as phthalic acid and isophthalic acid. Acid, aromatic carboxylic acid such as hexahydrophthalic acid and naphthalene dicarboxylic acid, aliphatic carboxylic acid such as adipic acid, sebacic acid and azelaic acid, etc. may be substituted. The acrylic rubber used in the present invention is a rubber-like elastic material obtained by polymerization of acrylic ester or copolymerization mainly composed of acrylic ester, and typically contains an acrylic ester such as butyl acrylate and a small amount of acrylic ester. Examples include rubber-like polymers obtained by graft polymerizing a graft polymerizable monomer such as methyl methacrylate to a polymer obtained by polymerizing a crosslinkable monomer such as butylene diacrylate. Examples of the acrylic esters include butyl acrylate, methyl acrylate, ethyl acrylate, propyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, and the like. In addition to butylene diacrylate, examples of crosslinking monomers include butylene dimethacrylate, polyols such as trimethylolpropane trimethacrylate, and esters of acrylic acid or methacrylic acid, divinylbenzene, vinyl acrylate, vinyl methacrylate, etc. The compounds include allyl compounds such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate, monoallyl maleate, monoallyl fumarate, and triallyl cyanurate. In addition, as the above graft polymerizable monomer,
In addition to methyl methacrylate, examples include methacrylic acid esters such as ethyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, styrene, acrylonitrile, and the like. A part of this graft polymerizable monomer can also be copolymerized by using it when producing a polymer by polymerizing the above-mentioned acrylic ester and a crosslinking monomer. The above-mentioned acrylic rubbers include, for example, Kane Ace FM manufactured by Kanebuchi Chemical Co., Ltd., Vitax V-6401 manufactured by Hitachi Chemical Co., Ltd., Metablane W-300 and Mitsubishi Rayon Co., Ltd. W-530, It is also commercially available as Acryloid KM-323, Acryloid KM-330 (trademarks), etc. manufactured by Rohm and Haas. The ratio of polybutylene terephthalate to acrylic rubber is 99:1 to 50:50 parts by weight, preferably 97:
3 to 70:30, more preferably 95:5 to 80:20 parts by weight. If the amount of acrylic rubber is too small, a composition with excellent high and low temperature impact properties cannot be obtained. On the other hand, if the amount is too large, the properties of the resin will be lost and the mechanical properties of the molded product itself will be deteriorated, which is not preferable. In the present invention, more excellent effects can be obtained by adding an epoxy compound and a pentaerythritol ester, and further a carbodiimide compound together with the epoxy compound and pentaerythritol ester, in addition to the above-mentioned acrylic rubber. The epoxy compounds used in the present invention include:
Aliphatic epoxy compounds such as allyl glycidyl ether, bisepoxy dicyclopentadienyl ether of ethylene glycol, epoxidized soybean oil, epoxidized linseed oil, butadiene diepoxide, octyl epoxytalate, epoxidized polybutadiene, bisphenol A di Aromatic epoxy compounds such as glycidyl ether, tetraphenyl ethylene epoxide, diglycidyl ester of phthalic acid, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexyl Methyl-3,4-epoxy-6
-methylcyclohexanecarboxylate, 2,
3-Epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 4-
(3,4-epoxy-5-methylcyclohexyl)
Butyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexylethylene oxide, cyclohexylmethyl-3,
4-epoxycyclohexane carboxylate,
3,4-epoxy-6-methylcyclohexylmethyl-6-methylcyclohexanecarboxylate, vinylcyclohexene oxide, bis(3,
4-Epoxycyclohexylmethyl)adipate, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4
-epoxy) cyclohexane-metadioxane and other alicyclic epoxy compounds. The amount added is 0.01 to 5% based on the total amount of polybutylene terephthalate resin and acrylic rubber.
% by weight, preferably 0.02-2% by weight. If it is too small, the expected effect will not be achieved. On the other hand, if there is too much, coloring etc. will occur. In addition, the pentaerythritol ester has the general formula [] [RS(-CH 2 )- n COOCH 2 ] o C(CH 2 OH) 4-o ...[] (wherein, R is an alkyl group having 5 to 30 carbon atoms. , n is 1
The number ˜4, m indicates the number 1-3. ), and the alkyl group represented by R is a pentyl group, hexyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group,
Examples include eicosyl groups and the like. If the number of carbon atoms in the alkyl group represented by R is too small, it will easily sublime during molding of the polyester resin composition, resulting in the inconvenience of contaminating the molded product and molding machine. Conversely, if the number of carbon atoms in the alkyl group is too large, the effect of preventing coloring due to heat will be reduced. Preferred alkyl groups have about 8 to 20 carbon atoms. Although n is a number from 1 to 4, a number from 3 to 4 is preferred, particularly a number from 4 because of the effect of preventing coloring due to heat. Moreover, m is preferably 2. Specific examples of pentaerythritol esters represented by the above general formula [] include pentaerythritol tetrakis (dodecylthiopropionate), pentaerythritol tetrakis (dodecylthioacetate), pentaerythritol tetrakis (dodecylthiobutyrate), and pentaerythritol tetrakis (dodecylthiobutyrate). Examples include tetrakis (octadecylthiopropionate), pentaerythritol tetrakis (2-ethylhexylthiopropionate), pentaerythritol tris (dodecylthiopropionate), pentaerythritol bis(dodecylthiopropionate), and the like. Among these pentaerythritol tetrakis (dodecylthiopropionate) is a trademark from Mitsubishi Yuka Co., Ltd.
It is also commercially available as Senox 412S, and is one of the preferred products. The amount added is 0.01 to 5% by weight, preferably 0.02 to 2% by weight, based on the total amount of polybutylene terephthalate and acrylic rubber. If it is too small, the effect will be small. On the other hand, if the amount is too large, mechanical properties will be adversely affected. Carbodiimide compounds are produced, for example, by heating decarboxylation from isocyanate compounds, and specific examples include diphenylcarbodiimide, ditolylcarbodiimide,
Di(propylphenyl)carbodiimide, di(butylphenyl)carbodiimide, dinaphthylcarbodiimide, bis(dipropylphenyl)carbodiimide, polyphenylenecarbodiimide, polytolylenecarbodiimide, poly(propylphenylene)carbodiimide, poly(dipropylphenyl)carbodiimide Examples include poly(diphenylmethane)carbodiimide, poly(diphenylmethane)carbodiimide, and polynaphthylenecarbodiimide. The amount is 0.01 to 5% by weight, preferably 0.02 to 2% by weight, based on the total amount of polybutylene terephthalate resin and acrylic rubber.
If it is too small, the effect will be small. On the other hand, if the amount is too large, it will adversely affect mechanical properties, which is undesirable. As for the blending method, the components may be mixed in any order by a known method, such as a method of mixing and extruding using an extruder or the like. Furthermore, in order to improve adhesion with fibrous reinforcing materials such as glass fibers, carbon fibers, and metal whiskers, and resins, it is more preferable to use a fibrous reinforcing agent whose surface has been treated with epoxy, epoxysilane, or aminosilane. The amount ranges from 5 to 50%, preferably from 7.5 to 30% by weight of the composition. Also,
Combustion dripping prevention agents such as asbestos, silica, alumina, silica alumina, silica magnesia, titania, calcium carbonate, talc, gypsum, and fillers such as glass flakes and glass beads, dyes and paraffins, fatty acid esters, lubricants such as fatty acid metal salts and bisamides;
Further, flame retardant aids such as Br compound flame retardants and antimony compounds may be used in combination for flame retardancy. An insert molded product is a composite molded product in which a metal or the like is attached in advance to a molding die, and the outside of the mold is filled with the above-mentioned blended resin composition. Molding methods for filling a mold with resin include injection, extrusion and compression molding, and injection molding is common. Furthermore, since the material to be inserted into the resin is used to take advantage of its properties and compensate for the defects of the resin, it must be one that does not change shape or melt when it comes into contact with the resin during molding. For this reason, metals such as aluminum, magnesium, steel, iron, steel, and their alloys, and inorganic solids such as glass and ceramics, which are preformed into rods, pins, screws, etc., are mainly used. Ru. [Examples] The present invention will be specifically explained below using Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Example 1, Comparative Example 1 A copolymer obtained by polymerizing polybutylene terephthalate with an intrinsic viscosity of 1.10, 69.3 parts of butyl acrylate, 0.35 parts of butylene diacrylate, and 0.35 parts of diallyl maleate was added with 30 parts of methyl methacrylate.
and glass fiber (manufactured by Asahi Fiberglass Co., Ltd.).
CS03MA486) was mixed in the proportions shown in Table 1 to prepare a mixture, which was then melt-kneaded at 260°C using a 40 mmφ extruder and extruded into pellets. The pellets were placed vertically in a 3.9-ounce injection molding machine (manufactured by Japan Steel Works, Model N-100B) and a test piece mold (18 mm long, 16 mm wide, and 50 mm high) inside a box-shaped box.
The resin temperature is 270℃, the mold temperature is 80℃,
Injection molding was performed with an injection time of 15 seconds and a cooling time of 20 seconds. The obtained molded product was subjected to a high and low temperature impact test (-40℃ x 2 hours after cooling, the temperature was raised to 130℃ within 5 minutes for 2 hours using a thermal shock tester (Tabai Spec Co., Ltd. TSC-203 model). After heating, the process of further cooling to -40°C was defined as one cycle), and the number of cycles at which cracks occurred in the resin was measured. The results were as shown in Table 1 below. For comparison, the results obtained when no acrylic rubber was blended are also shown.

【表】 実施例2、3、比較例2、3 実施例1の組成物(ポリブチレンテレフタレー
ト樹脂にアクリルゴム、ガラス繊維を配合したも
の)にエポキシ化合物(ビスフエノールA−ジグ
リシジルエーテル、アデカアーガス化学製商標マ
ークEp−17)とペンタエリスリトールのエステ
ル〔ペンタエリスリトールテトラキス(ドデシル
チオプロピオネート)、三菱油化製商標セノツク
ス412S〕を混合した配合物(実施例2)及び、
更にそれ等の混合物にビス(ジイソプロピルフエ
ニル)カルボジイミドを添加した配合物(実施例
3)を表−2の割合で混合し、実施例1と同様の
方法でペレツト化し成形、高低温衝撃テストを行
つた結果を表−2に示す。なお比較のためアクリ
ルゴムを配合しなかつた場合の結果を併記する。
[Table] Examples 2, 3, Comparative Examples 2, 3 The composition of Example 1 (polybutylene terephthalate resin mixed with acrylic rubber and glass fiber) was added with an epoxy compound (bisphenol A-diglycidyl ether, Adeka Argus). A mixture (Example 2) of a chemical product trademark mark Ep-17) and an ester of pentaerythritol [pentaerythritol tetrakis (dodecylthiopropionate), Mitsubishi Yuka Co., Ltd. trademark Senox 412S];
Furthermore, a mixture (Example 3) in which bis(diisopropylphenyl)carbodiimide was added to these mixtures was mixed in the proportions shown in Table 2, pelletized and molded in the same manner as in Example 1, and subjected to a high-temperature impact test. The results are shown in Table 2. For comparison, the results when no acrylic rubber was blended are also shown.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によるインサート成形品は
ヒートサイクルにしてポリブチレンテレフタレー
トの約10倍もの高低温衝撃性に優れ、特に自動車
分野に有用である。
As described above, the insert molded product according to the present invention has excellent high and low temperature impact resistance, which is about 10 times that of polybutylene terephthalate when subjected to heat cycles, and is particularly useful in the automobile field.

Claims (1)

【特許請求の範囲】 1 ポリブチレンテレフタレート99〜50重量部
と、アクリル酸エステルと少量の架橋性モノマー
を重合させて得た重合体にグラフト重合体モノマ
ーをグラフト重合させて得られるアクリル系ゴム
1〜50重量部からなる樹脂組成物と、金属又は無
機固体とをインサート成形してなるインサート成
形品。 2 ポリブチレンテレフタレート、アクリル酸エ
ステルと少量の架橋性モノマーを重合させて得た
重合体にグラフト重合性モノマーをグラフト重合
させて得られるアクリル系ゴムとさらに繊維状補
強剤及び/またはエポキシ化合物から成る樹脂組
成物を使用することを特徴とする特許請求の範囲
第1項記載のインサート成形品。 3 ポリブチレンテレフタレート、アクリル酸エ
ステルと少量の架橋性モノマーを重合させて得た
重合体にグラフト重合性モノマーをグラフト重合
させて得られるアクリル系ゴム、エポキシ化合
物、ペンタエリスリトールエステルとさらに、繊
維状補強剤及び/またはカルボジイミド化合物か
らなる樹脂組成物を使用することを特徴とする、
特許請求の範囲第1項記載のインサート成形品。
[Claims] 1. Acrylic rubber 1 obtained by graft polymerizing a graft polymer monomer to a polymer obtained by polymerizing 99 to 50 parts by weight of polybutylene terephthalate, an acrylic ester, and a small amount of a crosslinking monomer. An insert-molded product formed by insert-molding a resin composition comprising ~50 parts by weight and a metal or inorganic solid. 2 Consists of an acrylic rubber obtained by graft polymerizing a graft polymerizable monomer to a polymer obtained by polymerizing polybutylene terephthalate, an acrylic acid ester, and a small amount of a crosslinking monomer, and a fibrous reinforcing agent and/or an epoxy compound. The insert molded article according to claim 1, characterized in that a resin composition is used. 3 Acrylic rubber obtained by graft polymerizing a graft polymerizable monomer to a polymer obtained by polymerizing polybutylene terephthalate, an acrylic acid ester, and a small amount of a crosslinking monomer, an epoxy compound, a pentaerythritol ester, and further fibrous reinforcement. characterized by using a resin composition consisting of an agent and/or a carbodiimide compound,
An insert molded product according to claim 1.
JP14728386A 1986-06-24 1986-06-24 Insert molded article Granted JPS633055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14728386A JPS633055A (en) 1986-06-24 1986-06-24 Insert molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14728386A JPS633055A (en) 1986-06-24 1986-06-24 Insert molded article

Publications (2)

Publication Number Publication Date
JPS633055A JPS633055A (en) 1988-01-08
JPH0525260B2 true JPH0525260B2 (en) 1993-04-12

Family

ID=15426701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14728386A Granted JPS633055A (en) 1986-06-24 1986-06-24 Insert molded article

Country Status (1)

Country Link
JP (1) JPS633055A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051489A1 (en) * 1997-05-09 1998-11-19 Teijin Limited Composite polyester resin moldings

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922730B1 (en) * 1997-12-10 2003-05-28 Advanced Elastomer Systems, L.P. Thermoplastic vulcanizates made from condensation polymer and crosslinked elastomer
JP2005240003A (en) * 2004-01-27 2005-09-08 Mitsubishi Engineering Plastics Corp Thermoplastic polyester resin composition and insert-molded article
JP2006104363A (en) * 2004-10-07 2006-04-20 Wintech Polymer Ltd Polybutylene terephthalate resin composition
US8142900B2 (en) 2006-09-13 2012-03-27 Wintech Polymer Ltd. Laser-weldable resin composition and molded product
JP5312783B2 (en) * 2007-12-26 2013-10-09 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition
JP6038429B2 (en) * 2008-06-11 2016-12-07 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition and molded article
CN102056987A (en) 2008-06-11 2011-05-11 胜技高分子株式会社 Polybutylene terephthalate resin composition and molding
US8445570B2 (en) * 2008-06-11 2013-05-21 Wintech Polymer Ltd. Method for forming an insert injection-molded article exhibiting improved resistance to heat shock utilizing a specifically defined polybutylene terephthalate composition
TWI549985B (en) 2009-11-10 2016-09-21 Wintech Polymer Ltd Polybutylene terephthalate resin composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156856A (en) * 1974-09-18 1976-05-18 Basf Ag Netsukasoseino horiesuteruseikeizairyo
JPS52150466A (en) * 1976-06-09 1977-12-14 Rohm & Haas Polyalkylene terephthalate compound having revised shock resistance
JPS57182349A (en) * 1981-04-29 1982-11-10 Bayer Ag Mixture based on thermoplastic polyester
JPS6036558A (en) * 1983-07-06 1985-02-25 バイエル・アクチエンゲゼルシヤフト High impact strength thermoplastic polyester molding compositions
JPS60219256A (en) * 1984-04-16 1985-11-01 Mitsubishi Chem Ind Ltd Polyester resin composition
JPS61126166A (en) * 1984-11-22 1986-06-13 Mitsubishi Gas Chem Co Inc Thermoplastic resin composition
JPS61235455A (en) * 1985-04-10 1986-10-20 Polyplastics Co Thermoplastic polyester composition
JPH0372666A (en) * 1989-08-11 1991-03-27 Toshiba Corp Semiconductor integrated circuit device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156856A (en) * 1974-09-18 1976-05-18 Basf Ag Netsukasoseino horiesuteruseikeizairyo
JPS52150466A (en) * 1976-06-09 1977-12-14 Rohm & Haas Polyalkylene terephthalate compound having revised shock resistance
JPS57182349A (en) * 1981-04-29 1982-11-10 Bayer Ag Mixture based on thermoplastic polyester
JPS6036558A (en) * 1983-07-06 1985-02-25 バイエル・アクチエンゲゼルシヤフト High impact strength thermoplastic polyester molding compositions
JPS60219256A (en) * 1984-04-16 1985-11-01 Mitsubishi Chem Ind Ltd Polyester resin composition
JPS61126166A (en) * 1984-11-22 1986-06-13 Mitsubishi Gas Chem Co Inc Thermoplastic resin composition
JPS61235455A (en) * 1985-04-10 1986-10-20 Polyplastics Co Thermoplastic polyester composition
JPH0372666A (en) * 1989-08-11 1991-03-27 Toshiba Corp Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051489A1 (en) * 1997-05-09 1998-11-19 Teijin Limited Composite polyester resin moldings
CN1128713C (en) * 1997-05-09 2003-11-26 帝人株式会社 Composite polyester resin moldings

Also Published As

Publication number Publication date
JPS633055A (en) 1988-01-08

Similar Documents

Publication Publication Date Title
EP0057415B1 (en) Polyester resin composition
US4344874A (en) Polyethylene terephthalate resin compositions
JPH0525260B2 (en)
EP0197789B1 (en) Polyester composition
EP0122601B1 (en) Polycarbonate resin composition
EP0331456A2 (en) Flame-retardant polybutylene terephthalate resin composition and molded article for electrical component
KR930008741B1 (en) Polyester resin composition
JPH04120162A (en) Polyester resin composition
JPH11140287A (en) Flame-retardant polyester resin composition and molded product
JPH0473461B2 (en)
JPH036257A (en) Flame-retardant polyester resin composition
KR101257997B1 (en) Thermoplastic resin composition
JP2843171B2 (en) Flame retardant polyester resin composition
JP2005240003A (en) Thermoplastic polyester resin composition and insert-molded article
JP3761598B2 (en) Polybutylene terephthalate resin molded product
JPH0625517A (en) Polyester resin composition
JPH11279386A (en) Flame retardant polyester resin composition
JPS637214B2 (en)
JPH06145485A (en) Flame-retardant polyester resin composition
JP3131949B2 (en) Polyester resin composition
JP3226052B2 (en) Polyester resin composition
KR890004010B1 (en) Reinforced polyester resin composition
KR930001994B1 (en) Thermoplastic resin composition
JPH0641406A (en) Flame-retardant polyester resin composition
JPS596248A (en) Polyester resin composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term