JPH05251798A - Device and method for generating scattered beam of charged-particle beam excited-gas laser beam - Google Patents

Device and method for generating scattered beam of charged-particle beam excited-gas laser beam

Info

Publication number
JPH05251798A
JPH05251798A JP4645492A JP4645492A JPH05251798A JP H05251798 A JPH05251798 A JP H05251798A JP 4645492 A JP4645492 A JP 4645492A JP 4645492 A JP4645492 A JP 4645492A JP H05251798 A JPH05251798 A JP H05251798A
Authority
JP
Japan
Prior art keywords
laser
charged particles
magnetic field
charged particle
gas laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4645492A
Other languages
Japanese (ja)
Other versions
JP2882165B2 (en
Inventor
Hitoshi Sekida
仁志 関田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4645492A priority Critical patent/JP2882165B2/en
Publication of JPH05251798A publication Critical patent/JPH05251798A/en
Application granted granted Critical
Publication of JP2882165B2 publication Critical patent/JP2882165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide a small-sized scattered beam generator, which has simple structure and high safety to a malfunction, construction cost of which is reduced and which has high efficiency. CONSTITUTION:Accelerated charged particles are guided by the magnetic field of a coil for generating a guide magnetic field, propagated in an interaction tube 18 under a vacuum, and projected into a laser tube 17 by the magnetic field of a coil 6 for generating a pending magnetic field. Charged particles excite a laser gas medium by a collision, and oscillate a laser. Laser beams are transmitted in an output mirror 13, turned back by a reflecting mirror 14, projected onto the orbit of particle beams in the interaction tube 18, and scattered by succeeding charged particles, and scattered beams 16 having a wavelength shorter than laser beams are emitted to the rear. Scattered beams 16 are passed through the reflecting mirror 14 and an output mirror 21, and extracted to the outside. Charged particles used for scattering are reutilized for exciting the gas laser, thus facilitating miniaturization and improvement in efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスレーザー光散乱用
の荷電粒子をガスレーザ励起用に再利用する、レーザー
散乱光発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser scattered light generator for reusing charged particles for gas laser light scattering for gas laser excitation.

【0002】[0002]

【従来の技術】レーザー光を荷電粒子で散乱しレーザー
光よりも短い波長の光を得ようとする場合、従来はレー
ザー光発生用の励起電源と散乱用電子ビーム発生・加速
用の電源はそれぞれ独立している。
2. Description of the Related Art When a laser beam is scattered by charged particles to obtain light having a shorter wavelength than the laser beam, conventionally, an excitation power source for generating a laser beam and a power source for generating and accelerating an electron beam for scattering are respectively provided. being independent.

【0003】荷電粒子発生装置で発生する荷電粒子は加
速器で加速され、一方で同期をとってレーザーを発振さ
せる。このレーザーは固体レーザーでも、気体レーザー
でも、半導体レーザーでもよく、また励起方法も様々で
ある。一般的には、大出力が可能な炭酸ガスレーザーや
YAGレーザーが使用される。レーザー出力鏡から出射
するレーザー光に、ガイド磁界により案内される荷電粒
子ビームが入射されると、それらの相互作用によって波
長の短い散乱光が得られる。この散乱現象自体はコンプ
トン散乱、トムソン散乱として知られている。
The charged particles generated by the charged particle generator are accelerated by an accelerator, while the laser is oscillated synchronously. This laser may be a solid-state laser, a gas laser, or a semiconductor laser, and there are various excitation methods. Generally, a carbon dioxide gas laser or a YAG laser capable of high output is used. When the charged particle beam guided by the guide magnetic field is incident on the laser light emitted from the laser output mirror, scattered light having a short wavelength is obtained by their interaction. This scattering phenomenon itself is known as Compton scattering and Thomson scattering.

【0004】例えば、波長9.6μmのCO2 レーザー
を700kVで加速された電子で散乱すると、500n
mの散乱光を得ている。その例がフィジカル レビュウ
レター52巻 425頁(1984年)(Physi
cal Review Letters,Vol.5
2,p425(1984))に記載されている。
For example, when a CO 2 laser with a wavelength of 9.6 μm is scattered by electrons accelerated at 700 kV,
m scattered light is obtained. An example is Physical Review Letter Vol. 52, p. 425 (1984) (Physi).
cal Review Letters, Vol. 5
2, p425 (1984)).

【0005】また、紫外域で発振するエキシマレーザー
を使用すれば、真空紫外域からの軟X線にいたる、短波
長の散乱光を得る事ができる。
If an excimer laser that oscillates in the ultraviolet region is used, it is possible to obtain scattered light of a short wavelength, which is a soft X-ray from the vacuum ultraviolet region.

【0006】レーザー光がコヒーレントかつパワー密度
がしきい値よりも大きく、また電子のエネルギー分散が
小さくかつ発散角が小さい場合、荷電粒子がレーザー光
と散乱光の波数の和で表される波数で密度変調され、散
乱光と一定の位相関係でレーザー光を散乱するため(誘
導コンプトン散乱)、コヒーレントな散乱光を発生す
る。この散乱光は指数関数的に増幅される。
When the laser light is coherent, the power density is larger than the threshold value, the electron energy dispersion is small, and the divergence angle is small, the charged particle has a wave number represented by the sum of the wave numbers of the laser light and the scattered light. Since the laser light is density-modulated and scatters the laser light in a fixed phase relationship with the scattered light (stimulated Compton scattering), coherent scattered light is generated. This scattered light is exponentially amplified.

【0007】この現象は、レーザー光の電磁界をウィグ
ラー磁界とする自由電子レーザーの発振としても説明で
きる。
This phenomenon can also be explained as oscillation of a free electron laser in which the electromagnetic field of laser light is used as a wiggler magnetic field.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来は
レーザー光発生用の高圧電源と荷電粒子ビーム加速用の
高圧電源が独立しているため装置全体が大型となり、建
設コストも高くなる。また、荷電粒子はそのエネルギー
をほとんど損失しないことから、システム全体の動作効
率は低くなる。
However, conventionally, since the high voltage power source for generating the laser beam and the high voltage power source for accelerating the charged particle beam are independent, the entire apparatus becomes large and the construction cost becomes high. In addition, since the charged particles hardly lose their energy, the operating efficiency of the entire system becomes low.

【0009】レーザー発振と荷電粒子ビーム発生の同期
は外部トリガーによって行われるが、ノイズの多い環境
化では技術的に困難で、誤動作しやすい。
The synchronization between the laser oscillation and the generation of the charged particle beam is performed by an external trigger, but it is technically difficult in a noisy environment, and malfunctions are likely to occur.

【0010】本発明の目的はこの様な従来の問題点を改
善し、同期のための信号系が不必要で構造が単純で、動
作効率がよく、小型で建設コストの低いレーザー散乱光
発生装置を提供することである。
An object of the present invention is to solve the above problems of the prior art, to eliminate the need for a signal system for synchronization, to have a simple structure, to have a high operation efficiency, to be small in size, and to reduce the construction cost. Is to provide.

【0011】[0011]

【課題を解決するための手段】本発明の散乱光発生装置
は、荷電粒子発生装置と前記荷電粒子加速装置と、それ
らに対向配置されレーザー光を発生させるガスレーザー
管と、前記荷電粒子のガイド磁界発生装置から構成され
る。また本発明の方法は前記荷電粒子加速装置により加
速した荷電粒子を前記レーザー光と衝突させ前記レーザ
ー光を散乱させると同時に、前記衝突後の荷電粒子を前
記ガスレーザ菅に導入し、ガスレーザの励起に再利用す
ることを特徴としている。
SUMMARY OF THE INVENTION A scattered light generator according to the present invention comprises a charged particle generator, the charged particle accelerator, a gas laser tube facing the charged particle generator for generating a laser beam, and a guide for the charged particle. It is composed of a magnetic field generator. In the method of the present invention, charged particles accelerated by the charged particle accelerator are collided with the laser light to scatter the laser light, and at the same time, the charged particles after the collision are introduced into the gas laser tube to excite the gas laser. It is characterized by reuse.

【0012】集光レンズやおつ面反射鏡などの適当な光
学系によりレーザー光を集光し、レーザー光のビームウ
エスト付近で荷電粒子と衝突させると、前記レーザー光
と前記荷電粒子は強く相互作用し、散乱光が効率よく発
生する。
When the laser light is condensed by an appropriate optical system such as a condenser lens or an external reflecting mirror and collides with the charged particles near the beam waist of the laser light, the laser light and the charged particles strongly interact with each other. It works, and scattered light is generated efficiently.

【0013】また、荷電粒子としてエネルギー分散の小
さい電子を使用すると、質量が小さいためレーザー光と
の相互作用により容易に密度変調され、コヒーレントな
散乱光を発生する。
When an electron having a small energy dispersion is used as the charged particle, the mass is small, so that the density is easily modulated by the interaction with the laser light, and coherent scattered light is generated.

【0014】[0014]

【作用】本発明におていは、レーザー光との相互作用に
よる散乱光発生に使用された荷電粒子を、レーザー励起
用に再利用する。
In the present invention, the charged particles used for generating scattered light by the interaction with the laser light are reused for laser excitation.

【0015】散乱光発生後の荷電粒子はそのエネルギー
をほとんど失っていない。また、相互作用に使用する荷
電粒子は質量であることが必要であるのに対し、レーザ
ーガス励起用の電子ビームは質の制限が低いことから、
散乱光発生に使用された荷電粒子の再利用は充分可能で
ある。
The charged particles have hardly lost their energy after the generation of scattered light. Also, the charged particles used for interaction must be mass, whereas the electron beam for laser gas excitation has a low quality limit,
Recycling of the charged particles used to generate scattered light is quite possible.

【0016】本発明においては、荷電粒子のエネルギー
の使用効率を改善し、またレーザー励起用の高圧電源を
必要としないので、システム全体の動作効率が高く、装
置の構造が単純で小型化が可能である。また単一電源に
よる動作のため、従来方式の様な同期信号系が必要で、
誤動作に対する安全性も向上する。
In the present invention, the efficiency of use of the energy of charged particles is improved, and since a high voltage power source for laser excitation is not required, the operation efficiency of the entire system is high, the structure of the device is simple, and downsizing is possible. Is. Also, because it operates from a single power supply, a sync signal system like the conventional method is required.
The safety against malfunction also improves.

【0017】[0017]

【実施例】以下、図面により本発明を詳細に説明する。The present invention will be described in detail below with reference to the drawings.

【0018】図1は、本発明の荷電粒子ビーム励起ガス
レーザー光の散乱による光発生装置の一実施例を示す模
式的な図である。ここでは、荷電粒子ビームの中から電
子ビームを1例として説明する。
FIG. 1 is a schematic view showing an embodiment of a light generator for scattering charged gas laser gas excited by a charged particle beam according to the present invention. Here, an electron beam will be described as an example among the charged particle beams.

【0019】荷電粒子の発生及び加速装置は、電子銃と
高圧電源1と高圧電送系2から構成される。カソード3
とアノード4から構成される電子銃に、高圧電源1で発
生された高電圧を高圧電送系2を介して印加すると、カ
ソード3/アノード4間で、電子が発生・加速される。
電子はガイド磁界発生用コイル6で発生される磁界によ
り案内され、真空の相互作用管18中を伝搬した後、ベ
ンディング磁界発生用コイル6で発生される磁界により
軌道を曲げられ、フォイル11を通過してレーザー管1
7の中に入射される。電子銃を構成するカソード3とし
ては、例えば電界放出型カソード、プラズマカソード、
熱電子放出型カソード、光電子放出型カソードなどが使
用される。
The charged particle generating and accelerating device is composed of an electron gun, a high voltage power source 1 and a high piezoelectric transmission system 2. Cathode 3
When a high voltage generated by the high-voltage power supply 1 is applied to the electron gun composed of the anode 4 and the high-voltage power transmission system 2, electrons are generated and accelerated between the cathode 3 and the anode 4.
The electrons are guided by the magnetic field generated by the guide magnetic field generating coil 6, propagated in the vacuum interaction tube 18, and then traversed by the magnetic field generated by the bending magnetic field generating coil 6 and pass through the foil 11. Then laser tube 1
It is injected into 7. Examples of the cathode 3 that constitutes the electron gun include a field emission cathode, a plasma cathode,
A thermionic emission type cathode, a photoelectron emission type cathode or the like is used.

【0020】また加速手段としては、静電加速器、イン
ダクションライナック、RFライナックが、動作電圧の
点から適当である。図1は静電加速器を示すものである
が、これらの他にもマイクロトロンなどのより大型の加
速器の使用も可能である。荷電粒子の最適なエネルギー
は、荷電粒子の質量、ガスレーザー媒質の種類と圧力、
レーザー管への荷電粒子の打込み方向、ガスレーザー管
の大きさなどによって決定されるが、数十kVから数M
V程度である。また電流はカソードの種類、加速器の種
類等により制限される。パルスパワー技術を例にすれ
ば、ピーク電圧は数MVまで、ピーク電流は数kAまで
の範囲で変化させることができる。
As the accelerating means, an electrostatic accelerator, an induction linac and an RF linac are suitable in terms of operating voltage. Although FIG. 1 shows an electrostatic accelerator, a larger accelerator such as a microtron can be used in addition to these. The optimum energy of charged particles is the mass of charged particles, the type and pressure of gas laser medium,
It depends on the direction in which charged particles are injected into the laser tube and the size of the gas laser tube.
It is about V. The current is limited by the type of cathode, the type of accelerator, etc. Taking the pulse power technique as an example, the peak voltage can be changed up to several MV and the peak current can be changed up to several kA.

【0021】フォイル11は、レーザーガス媒質が充填
されているレーザー管17と真空の相互作用管18を仕
切ることを目的としている。またフォイル11は電子を
通過させるために、金属膜等で構成される。
The foil 11 is intended to partition a laser tube 17 filled with a laser gas medium and a vacuum interaction tube 18. The foil 11 is made of a metal film or the like so as to allow electrons to pass therethrough.

【0022】レーザー管17中で電子は、レーザーガス
媒質と連続的に衝突を繰り返し、レーザーガス媒質を励
起する(電子ビーム励起)。ガイド磁界発生用コイル8
による磁界により、衝突による電子の散乱は抑制され、
案内される。電子の反射鏡12への衝突を避けるために
は、ベンディング磁界発生用コイル9などにより電子の
軌道を曲げる方法がある。
In the laser tube 17, the electrons continuously collide with the laser gas medium to excite the laser gas medium (electron beam excitation). Guide magnetic field generating coil 8
The magnetic field due to suppresses the scattering of electrons due to collision,
Be guided. In order to avoid the collision of the electrons with the reflecting mirror 12, there is a method of bending the orbits of the electrons with a bending magnetic field generating coil 9 or the like.

【0023】一方、電子衝突により励起されたレーザー
ガス媒質からはレーザー光が放出され、その光は反射鏡
12と出力鏡13から構成される共振器間で折り返され
ながら、増幅される。レーザー光の一部は出力鏡13を
透過し、反射鏡14で折り返され、相互作用管18中の
電子ビームの軌道上を電子銃に向かって入射される。こ
の際、後続の電子によりレーザー光は散乱され、レーザ
ー光よりも波長の短い散乱光16が後方に放射される。
反射鏡14にはレーザー光に対しては反射率が高く、そ
れよりも短波長の散乱光に対しては反射率の低い、波長
依存性のあるものを選択する。散乱光のほとんどは反射
鏡14と出力鏡21を通過して、外部に取りだされる。
On the other hand, laser light is emitted from the laser gas medium excited by electron collision, and the light is amplified while being folded back between the resonators composed of the reflecting mirror 12 and the output mirror 13. Part of the laser light passes through the output mirror 13, is reflected by the reflecting mirror 14, and is incident on the orbit of the electron beam in the interaction tube 18 toward the electron gun. At this time, the laser light is scattered by the subsequent electrons, and scattered light 16 having a shorter wavelength than the laser light is emitted backward.
The reflecting mirror 14 is selected to have a wavelength dependency that has a high reflectance for laser light and a low reflectance for scattered light of a shorter wavelength than that. Most of the scattered light passes through the reflecting mirror 14 and the output mirror 21, and is taken out to the outside.

【0024】例えば、ピーク電圧500kV、ピーク電
流1kAの電子ビームとそれにより発振する波長248
nmのKrFエキシマレーザー衝突により発生する誘導
散乱光について説明する。誘導散乱の場合、散乱光の波
長λS は次式で近似できる。
For example, an electron beam having a peak voltage of 500 kV and a peak current of 1 kA and a wavelength 248 oscillated by the electron beam
The stimulated scattered light generated by the collision of the KrF excimer laser of nm will be described. In the case of stimulated scattering, the wavelength λ S of scattered light can be approximated by the following equation.

【0025】λS =λ/(2γ2 ) ここで、λはKrFエキシマレーザーの波長で248n
mであり、γは電子のエネルギーV(kV)を電子の静
止エネルギーで規格化したもので、次式で表される。
Λ S = λ / (2γ 2 ), where λ is the wavelength of the KrF excimer laser, 248n
m is the m, and γ is the energy V (kV) of the electron normalized by the static energy of the electron, and is represented by the following equation.

【0026】γ=V/511+1 加速電圧が500kVの場合、γは約2となり、散乱光
の波長λS は30nm程度となる。また加速器の電圧を
変化させれば散乱光の波長も変化する。電子の運動エネ
ルギーから散乱光へのエネルギー変換効率を0.1%と
すれば、散乱光のピーク出力は500kW程度となる。
反射鏡14は誘電体多層膜をコーティングしたもので、
波長248nm付近の光に対してだけ90%程度の反射
率をもつため、散乱光16は反射鏡14を通過して、外
部に取りだされる。
Γ = V / 511 + 1 When the acceleration voltage is 500 kV, γ becomes about 2, and the wavelength λ S of scattered light becomes about 30 nm. Further, if the voltage of the accelerator is changed, the wavelength of scattered light also changes. If the energy conversion efficiency from electron kinetic energy to scattered light is 0.1%, the peak output of scattered light will be about 500 kW.
The reflecting mirror 14 is a dielectric multilayer film coated,
Since the scattered light 16 has a reflectance of about 90% only for the light near the wavelength of 248 nm, the scattered light 16 passes through the reflecting mirror 14 and is taken out to the outside.

【0027】前記のエネルギーをほとんど損失していな
い電子ビームをレーザー光の励起に再利用することでシ
ステム全体の効率は向上する。
The efficiency of the entire system is improved by reusing the electron beam that hardly loses the energy for exciting the laser beam.

【0028】第2の実施例として、図2のように反射鏡
14の前後の位置に集光レンズ19を設置して、出力鏡
13からのレーザー光を相互作用管18の中で集光し、
電子ビームと衝突する位置でのレーザーパワー密度を大
きくするもので、荷電粒子とレーザー光の間の相互作用
は強くなり、誘導散乱が実現しやすくなる。集光するた
めの光学系としては前記の集光レンズ19の他にも、図
3に示すおつ面反射鏡20のような反射型の光学系でも
よい。
As a second embodiment, as shown in FIG. 2, a condenser lens 19 is installed in front of and behind the reflecting mirror 14 so that the laser light from the output mirror 13 is condensed in the interaction tube 18. ,
By increasing the laser power density at the position where it collides with the electron beam, the interaction between the charged particles and the laser beam becomes strong, and stimulated scattering is easily realized. As an optical system for condensing light, a reflection type optical system such as the facet reflecting mirror 20 shown in FIG. 3 may be used in addition to the condensing lens 19 described above.

【0029】荷電粒子の中で電子ビームを使用した場
合、ガイド磁界発生用コイルやベンディング磁界発生用
コイルによる荷電粒子の案内が容易になる。つまり電子
は質量が小さいので、案内するための磁界が小さくてす
む。また電子は質量が小さいので、密度変調が容易に生
じるため、誘導散乱が実現しやすいという利点がある。
When the electron beam is used in the charged particles, it becomes easy to guide the charged particles by the guide magnetic field generating coil and the bending magnetic field generating coil. In other words, since the electron has a small mass, the magnetic field for guiding can be small. Further, since the electron has a small mass, density modulation easily occurs, so that there is an advantage that stimulated scattering is easily realized.

【0030】[0030]

【発明の効果】以上述べたように、本発明によれば、同
期のための信号系が不必要で、構造が単純で動作効率が
よく、小型で建設コストの低いレーザー散乱光発生装置
の提供が可能となる。
As described above, according to the present invention, there is provided a laser scattered light generator which does not require a signal system for synchronization, has a simple structure, has high operation efficiency, is small in size, and has a low construction cost. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の別の実施例を示す図である。FIG. 2 is a diagram showing another embodiment of the present invention.

【図3】反射鏡の別の実施例を示す拡大図である。FIG. 3 is an enlarged view showing another embodiment of the reflecting mirror.

【符号の説明】[Explanation of symbols]

1 高圧電源 2 高電圧電送系 3 カソード 4 アノード 5 荷電粒子ビーム 6 ガイド磁界発生用コイル 7 ベンディング磁界発生用コイル 8 ガイド磁界発生用コイル 9 ベンディング磁界発生用コイル 10 レーザー光 11 フォイル 12 反射鏡 13 出力鏡 14 反射鏡 15 反射レーザー光 16 散乱光 17 レーザー管 18 相互作用管 19 集光レンズ 20 おつ面反射鏡 21 出力鏡 1 High-voltage power supply 2 High-voltage transmission system 3 Cathode 4 Anode 5 Charged particle beam 6 Guide magnetic field generating coil 7 Bending magnetic field generating coil 8 Guide magnetic field generating coil 9 Bending magnetic field generating coil 10 Laser light 11 Foil 12 Reflector 13 Output Mirror 14 Reflecting mirror 15 Reflected laser light 16 Scattered light 17 Laser tube 18 Interaction tube 19 Condensing lens 20 One-sided reflecting mirror 21 Output mirror

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子発生装置と荷電粒子加速装置
と、それらに対向配置され、レーザー光を発生させるガ
スレーザ管と、前記荷電粒子のガイド磁界発生装置と、
前記荷電粒子加速装置により加速した荷電粒子を前記レ
ーザー光と衝突させ前記レーザー光を散乱させ散乱光を
発生させる相互作用菅と、衝突後の前記荷電粒子を前記
ガスレーザー菅に導入する装置を有することを特徴とす
る荷電粒子ビーム励起ガスレーザー光の散乱光発生装
置。
1. A charged particle generating device, a charged particle accelerating device, a gas laser tube which is arranged to face the charged particle generating device and generates a laser beam, and a guide magnetic field generating device for the charged particles.
It has an interaction tube for colliding charged particles accelerated by the charged particle accelerator with the laser light to scatter the laser light to generate scattered light, and a device for introducing the charged particles after collision into the gas laser tube. An apparatus for generating scattered light of a gas laser beam excited by a charged particle beam, which is characterized in that:
【請求項2】 加速された荷電粒子を磁界発生手段によ
る磁界でガイドし、ガスレーザー管中に導入し、レーザ
ーを発振させる工程と、前記レーザー光と後続の加速荷
電粒子を衝突させ、レーザー光よりも短波長の散乱光を
発生させる工程と、加速荷電粒子をガスレーザー光と衝
突させ散乱光を発生させた後に、前記荷電粒子と同様に
磁界発生手段によりガイドし、ガスレーザーの励起に再
利用する工程とを備えることを特徴とする荷電粒子ビー
ム励起ガスレーザー光の散乱光発生方法。
2. A step of guiding accelerated charged particles by a magnetic field generated by a magnetic field generating means and introducing them into a gas laser tube to oscillate a laser, and causing the laser beam to collide with the following accelerated charged particles to produce a laser beam. A step of generating scattered light having a shorter wavelength, and after generating accelerated scattered particles by colliding the accelerated charged particles with the gas laser light, they are guided by the magnetic field generating means in the same manner as the charged particles and re-excited to excite the gas laser. A method for generating scattered light of a charged particle beam excited gas laser light, comprising the step of utilizing.
【請求項3】 荷電粒子とレーザー光が衝突する相互作
用管内でレーザー光を集光するために、集光レンズまた
はおつ面反射鏡を取り付けたことを特徴とする請求項1
記載の荷電粒子ビーム励起ガスレーザー光の散乱光発生
装置。
3. A condensing lens or a conical reflecting mirror is attached to condense the laser light in the interaction tube where charged particles collide with the laser light.
An apparatus for generating scattered light of a charged particle beam excited gas laser light as described in the above.
【請求項4】 荷電粒子発生装置として電子銃を用いる
ことを特徴とする請求項1記載の荷電粒子ビーム励起ガ
スレーザー光の散乱光発生装置。
4. A scattered light generator for a charged particle beam excited gas laser light according to claim 1, wherein an electron gun is used as the charged particle generator.
JP4645492A 1992-03-04 1992-03-04 Apparatus and method for generating scattered light of charged particle beam excited gas laser light Expired - Fee Related JP2882165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4645492A JP2882165B2 (en) 1992-03-04 1992-03-04 Apparatus and method for generating scattered light of charged particle beam excited gas laser light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4645492A JP2882165B2 (en) 1992-03-04 1992-03-04 Apparatus and method for generating scattered light of charged particle beam excited gas laser light

Publications (2)

Publication Number Publication Date
JPH05251798A true JPH05251798A (en) 1993-09-28
JP2882165B2 JP2882165B2 (en) 1999-04-12

Family

ID=12747613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4645492A Expired - Fee Related JP2882165B2 (en) 1992-03-04 1992-03-04 Apparatus and method for generating scattered light of charged particle beam excited gas laser light

Country Status (1)

Country Link
JP (1) JP2882165B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028631A1 (en) * 1998-11-10 2000-05-18 Tokyo Denshi Kabushiki Kaisha Apparatus for photoreaction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028631A1 (en) * 1998-11-10 2000-05-18 Tokyo Denshi Kabushiki Kaisha Apparatus for photoreaction
US6487003B1 (en) 1998-11-10 2002-11-26 Tokyo Denshi Kabushiki Kaisha Optical interaction device

Also Published As

Publication number Publication date
JP2882165B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
JP4937643B2 (en) Extreme ultraviolet light source device
JP5448775B2 (en) Extreme ultraviolet light source device
US5495515A (en) Method and apparatus for producing high-intensity X-rays or γ-rays
US9053833B2 (en) DC high-voltage super-radiant free-electron based EUV source
US11831122B2 (en) Free electron laser orbital debris removal system
US6459766B1 (en) Photon generator
US5048045A (en) Automatic preionization pulse laser
US5805620A (en) Beam conditioner for free electron lasers and synchrotrons
US5541944A (en) Apparatus and method for compensating for electron beam emittance in synchronizing light sources
US20040195951A1 (en) Method and apparatus for trapping and accelerating electrons in plasma
JPH09223850A (en) Method and apparatus for producing superhard laser
JP2882165B2 (en) Apparatus and method for generating scattered light of charged particle beam excited gas laser light
JP2005228489A (en) Method of utilizing orbital radiation light of large strength narrow band simultaneously with a plurality of beam lines
JP2002280200A (en) Device and method for generating x-ray
JP2003151800A (en) Ultra-high luminance radiation light generation method and device
US4939740A (en) Cyclotron autoresonance maser with helical electron guiding center
JP2702541B2 (en) Free electron laser device
JP2625061B2 (en) Free electron laser generation method
JP3095284B2 (en) Light emitting device
JPH0963797A (en) Method and device for generating light emission
JPH0621546A (en) Pumping method of alkali halide ion excimer laser
JP2002333500A (en) Generator and method for generating short-pulse x-ray
JP2000243598A (en) Neutral atom beam photo-ionization device
WO2017071878A1 (en) Electron source, with photocathode illuminated off-axis
JPH09307196A (en) Free electron laser device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090205

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees