JPH05251595A - Variable heat resistance device - Google Patents

Variable heat resistance device

Info

Publication number
JPH05251595A
JPH05251595A JP4652792A JP4652792A JPH05251595A JP H05251595 A JPH05251595 A JP H05251595A JP 4652792 A JP4652792 A JP 4652792A JP 4652792 A JP4652792 A JP 4652792A JP H05251595 A JPH05251595 A JP H05251595A
Authority
JP
Japan
Prior art keywords
conductor
heat
good
piezoelectric element
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4652792A
Other languages
Japanese (ja)
Inventor
Isao Arakawa
勲 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4652792A priority Critical patent/JPH05251595A/en
Publication of JPH05251595A publication Critical patent/JPH05251595A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To provide mechanical strength as a structure material and to enable electrical control of thermal conductivity from an outside. CONSTITUTION:A thermal bad conductor 4 having mechanical strength as a structure material is interposed between first and second thermal good conductors 2, 3 having mechanical strength as a structure material. They are combined each other and a third thermal good conductor 5 is thermally combined to the first thermal good conductor 2 to bring third and fourth thermal good conductors 5, 6 into contact with each other. A piezoelectric element 8 is interposed between a contact part 7 and a fixing holding member in a direction to pressurize the contact part 7. An application voltage control means 9 which controls a voltage to be applied to the piezoelectric element 8 is connected to the piezoelectric element 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子装置、機械装置等の
温度制御を行うために使用可能な可変熱抵抗装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable thermal resistance device that can be used to control the temperature of electronic devices, mechanical devices and the like.

【0002】電子装置等を正常に動作させるためには、
ある一定の範囲内に温度を維持する必要があり、このた
め電子部品の発熱を効率的に放熱するために放熱フィ
ン、ヒートパイプ等の種々の放熱手段を使用し、電子装
置を適切な温度範囲内に制御するようにしている。
In order to operate an electronic device or the like normally,
It is necessary to maintain the temperature within a certain range, so in order to efficiently dissipate the heat generated by electronic components, various heat dissipating means such as heat dissipating fins and heat pipes should be used to keep the electronic device in an appropriate temperature range. I'm trying to control within.

【0003】[0003]

【従来の技術】特に、人工衛星に搭載される電子機器又
は放射計等の各種センサは、これらを正常に動作させる
ために適切な温度範囲内に熱的に制御する必要がある。
このため、一般に放射冷却、サーマルルーバ、ヒートパ
イプ、多層断熱材等を組み合わせて、人工衛星に搭載さ
れる電子装置等の温度制御を行っている。
2. Description of the Related Art In particular, various sensors such as an electronic device mounted on an artificial satellite or a radiometer must be thermally controlled within an appropriate temperature range in order to operate them normally.
Therefore, generally, radiation cooling, a thermal louver, a heat pipe, a multi-layer heat insulating material and the like are combined to control the temperature of an electronic device mounted on an artificial satellite.

【0004】[0004]

【発明が解決しようとする課題】上述した冷却手段のう
ち放射冷却は、宇宙空間へエネルギーを放射することに
より冷却するものであり、人工衛星において多用されて
いるがその冷却能力は固定である。サーマルルーバは、
ブレード角度を変えることにより冷却能力を可変にでき
るが、構造的に複雑であり高価であるという問題があ
る。
Among the above-mentioned cooling means, the radiative cooling is for cooling by radiating energy to outer space, which is widely used in artificial satellites, but its cooling capacity is fixed. Thermal louvers
The cooling capacity can be changed by changing the blade angle, but there is a problem that it is structurally complicated and expensive.

【0005】また、ヒートパイプは熱伝導率が著しく高
いため利用されるが、熱伝導率を電気的に制御すること
は困難である。多層断熱材は輻射エネルギーを遮断する
ことが目的であり、その種類や層数、施行方法により輻
射エネルギーを制御できるが、外部手段により熱抵抗を
可変することはできない。
Further, the heat pipe is used because of its extremely high thermal conductivity, but it is difficult to electrically control the thermal conductivity. The purpose of the multilayer heat insulating material is to block radiant energy, and the radiant energy can be controlled by the type, the number of layers, and the method of implementation, but the thermal resistance cannot be varied by external means.

【0006】本発明はこのような点に鑑みてなされたも
のであり、その目的とするところは、構造材としての機
械的強度を有するとともに熱伝導率を外部から電気的に
制御可能な可変熱抵抗装置を提供することである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a variable heat generator which has mechanical strength as a structural material and whose heat conductivity can be electrically controlled from the outside. It is to provide a resistance device.

【0007】[0007]

【課題を解決するための手段】図1に本発明の原理図を
示す。構造材としての機械的強度を有する第1及び第2
の熱良導体2,3の間に同じく構造材としての機械的強
度を有する断熱材又は熱の不良導体4を介装して、これ
らを互いに機械的に結合する。
FIG. 1 shows the principle of the present invention. First and second having mechanical strength as a structural material
A heat insulating material having a mechanical strength as a structural material or a poor heat conductor 4 is also interposed between the good thermal conductors 2 and 3 to mechanically couple them.

【0008】第1熱良導体2に第3熱良導体5を結合す
るとともに、第2熱良導体3に第4熱良導体6を結合し
て、第3及び第4熱良導体5,6を互いに接触させる。
そして、前記接触部7と固定保持部材との間に該接触部
7を加圧する方向に圧電素子8を介装し、圧電素子8に
印加する電圧を制御する印加電圧制御手段9を該圧電素
子8に接続して設ける。
The third good thermal conductor 5 is connected to the first good thermal conductor 2, the fourth good thermal conductor 6 is connected to the second good thermal conductor 3, and the third and fourth good thermal conductors 5, 6 are brought into contact with each other.
The piezoelectric element 8 is interposed between the contact portion 7 and the fixed holding member in a direction of pressing the contact portion 7, and the applied voltage control means 9 for controlling the voltage applied to the piezoelectric element 8 is provided in the piezoelectric element. It is provided by connecting to 8.

【0009】[0009]

【作用】第1熱良導体2と第2熱良導体3との間に熱の
不良導体4が介装されているため、第1熱良導体2から
熱の不良導体4を介しての第2熱良導体3への熱の流れ
は殆ど生じない。
Since the poor heat conductor 4 is interposed between the first good heat conductor 2 and the second good heat conductor 3, the second good heat conductor 2 passes from the first good heat conductor 2 through the poor heat conductor 4. Little heat flow to 3.

【0010】熱流は、高温側に配置された第1熱良導体
2から、矢印Aに示すように第3熱良導体5、接触熱抵
抗7、第4熱良導体6の経路を通って低温側に配置され
た第2熱良導体3に流れる。熱流の途中にある接触熱抵
抗7の値は、印加電圧制御手段9により圧電素子8に印
加する電圧を制御することにより第3及び第4熱良導体
5,6の接触圧力を制御して調整可能である。
The heat flow is arranged on the low temperature side from the first good thermal conductor 2 arranged on the high temperature side through the route of the third good thermal conductor 5, the contact thermal resistance 7 and the fourth good thermal conductor 6 as shown by an arrow A. Flow into the separated second good thermal conductor 3. The value of the contact thermal resistance 7 in the middle of the heat flow can be adjusted by controlling the contact pressure between the third and fourth good thermal conductors 5 and 6 by controlling the voltage applied to the piezoelectric element 8 by the applied voltage control means 9. Is.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。図2は本発明実施例断面図を示している。
アルミニウム、ステンレス鋼、銅等の金属から形成され
た第1円筒12と、例えばCFRPから形成された断熱
円筒16とが、環状フランジ12a,16aを当接させ
てネジ18により互いに固定されている。断熱円筒16
はさらに、第1円筒12と同様な金属材料から形成され
た第2円筒14に、環状フランジ16b,14aを当接
させて、ネジ20により固定されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 2 shows a sectional view of the embodiment of the present invention.
A first cylinder 12 formed of a metal such as aluminum, stainless steel, or copper and a heat insulating cylinder 16 formed of, for example, CFRP are fixed to each other by screws 18 with abutting annular flanges 12a and 16a. Insulation cylinder 16
Further, the annular flanges 16b and 14a are brought into contact with the second cylinder 14 formed of the same metal material as that of the first cylinder 12 and fixed by the screw 20.

【0012】一方向強化棒の高強度CFRPの熱伝導率
は繊維方向により異なるが、平行方向では10(W/m
℃)であり、アルミニウムの約1/20である。そのた
め、高温側に配置された第1円筒12から断熱円筒16
を介しての第2円筒14への熱の流れは殆ど発生しな
い。
The thermal conductivity of the high-strength CFRP of the unidirectional reinforcing rod differs depending on the fiber direction, but it is 10 (W / m
C) and about 1/20 of aluminum. Therefore, from the first cylinder 12 arranged on the high temperature side to the heat insulating cylinder 16
Almost no heat flow to the second cylinder 14 via the.

【0013】第1円筒12は、例えば電子装置の発熱側
に接続され、第2円筒14は放射冷却等の放熱側に接続
されている。第1円筒12及び第2円筒14とも金属か
ら形成されているため、構造材としての機械的強度及び
剛性を有している。また、断熱円筒16もCFRPから
形成されているため、構造材としての機械的強度及び剛
性を有している。
The first cylinder 12 is connected to the heat generating side of the electronic device, for example, and the second cylinder 14 is connected to the heat radiating side such as radiative cooling. Since both the first cylinder 12 and the second cylinder 14 are made of metal, they have mechanical strength and rigidity as a structural material. Further, since the heat insulating cylinder 16 is also made of CFRP, it has mechanical strength and rigidity as a structural material.

【0014】第1円筒12にはアルミニウム、銅等の金
属から形成された第1バイパス部材22がネジ24によ
り固定されており、第1バイパス部材22にはアルミニ
ウム等の金属から形成された可撓性第2バイパス部材2
6がネジ28により固定されている。
A first bypass member 22 made of a metal such as aluminum or copper is fixed to the first cylinder 12 by a screw 24, and the first bypass member 22 is made of a flexible metal such as aluminum. Second bypass member 2
6 is fixed by a screw 28.

【0015】一方、第2円筒14にはアルミニウム等の
金属から形成された可撓性第4バイパス部材30がネジ
32により固定されており、可撓性第4バイパス部材3
0にはアルミニウム、銅等の金属から形成された第3バ
イパス部材34がネジ36により固定され、第3バイパ
ス部材34の自由端は可撓性第2バイパス部材26に接
触している。
On the other hand, a flexible fourth bypass member 30 made of a metal such as aluminum is fixed to the second cylinder 14 with a screw 32, and the flexible fourth bypass member 3 is provided.
A third bypass member 34 formed of a metal such as aluminum or copper is fixed to 0 by a screw 36, and a free end of the third bypass member 34 is in contact with the flexible second bypass member 26.

【0016】断熱円筒16から内側に突出したフランジ
38には円筒状フレーム40,42がネジ44により固
定されており、円筒状フレーム40と42はネジ44,
46により互いに結合されている。
Cylindrical frames 40 and 42 are fixed to the flange 38 protruding inward from the heat insulating cylinder 16 with screws 44, and the cylindrical frames 40 and 42 are fixed to the screws 44 and 42.
They are connected to each other by 46.

【0017】第3バイパス部材34は円筒状フレーム4
2の一端部42aに形成された穴43を介して円筒状フ
レーム42内に挿入され、第3バイパス部材34の環状
突起34aと円筒状フレーム42の一端部42aとの間
に断熱材48が介装されている。
The third bypass member 34 is a cylindrical frame 4
2 is inserted into the cylindrical frame 42 through the hole 43 formed in the one end 42a, and the heat insulating material 48 is interposed between the annular protrusion 34a of the third bypass member 34 and the one end 42a of the cylindrical frame 42. It is equipped.

【0018】可撓性第2バイパス部材26は円筒状フレ
ーム42の穴45を介して円筒状フレーム42内にその
自由端が挿入され、円筒状フレーム40の一端部40a
と可撓性第2バイパス部材26との間に圧電素子50及
び断熱材52が介装されている。
The free second end of the flexible second bypass member 26 is inserted into the cylindrical frame 42 through the hole 45 of the cylindrical frame 42, and one end 40a of the cylindrical frame 40 is formed.
The piezoelectric element 50 and the heat insulating material 52 are interposed between the flexible second bypass member 26 and the flexible second bypass member 26.

【0019】圧電素子50としては、Pb(Zr,T
i)O3 (PZT),PbTiO3 (PT)等の積層型
圧電セラミックが採用可能である。圧電素子50の一端
には上述した断熱材52が接着され、熱が圧電素子50
に流入することを防止している。
As the piezoelectric element 50, Pb (Zr, T
i) A laminated piezoelectric ceramic such as O 3 (PZT) or PbTiO 3 (PT) can be used. The above-mentioned heat insulating material 52 is adhered to one end of the piezoelectric element 50, and heat is applied to the piezoelectric element 50.
To prevent it from flowing into.

【0020】圧電素子50は直流電圧電源54に接続さ
れており、直流電圧電源54は0〜150Vの範囲内で
印加電圧を任意に調整可能である。圧電素子50に電圧
を印加すると矢印Bの方向に歪みが生じるが、円筒状フ
レーム40,42により変位が生じないよう固定してあ
るため、可撓性第2バイパス部材26と第3バイパス部
材34の接触面に電圧にほぼ比例した圧力が発生する
(図3参照)。
The piezoelectric element 50 is connected to a DC voltage power supply 54, and the DC voltage power supply 54 can arbitrarily adjust the applied voltage within the range of 0 to 150V. When a voltage is applied to the piezoelectric element 50, distortion occurs in the direction of arrow B, but since the cylindrical frames 40 and 42 are fixed so as not to cause displacement, the flexible second bypass member 26 and the third bypass member 34 are fixed. A pressure that is almost proportional to the voltage is generated on the contact surface (see FIG. 3).

【0021】接触圧力と接触熱抵抗の間には、材料、表
面粗さを指定すれば一定の関係があるため、圧電素子5
0で接触圧力を制御することにより、可撓性第2バイパ
ス部材26と第3バイパス部材34との間の熱抵抗を制
御可能である。
Since there is a fixed relationship between the contact pressure and the contact thermal resistance if the material and surface roughness are specified, the piezoelectric element 5
By controlling the contact pressure at 0, the thermal resistance between the flexible second bypass member 26 and the third bypass member 34 can be controlled.

【0022】高温側に配置された第1円筒12からの熱
は、第1バイパス部材22、可撓性第2バイパス部材2
6、第3バイパス部材34、可撓性第4バイパス部材3
0の経路を通って第2円筒14に伝達される。
The heat from the first cylinder 12 arranged on the high temperature side is applied to the first bypass member 22 and the flexible second bypass member 2.
6, third bypass member 34, flexible fourth bypass member 3
It is transmitted to the second cylinder 14 through the path of 0.

【0023】上述したように、圧電素子50に印加する
電圧を制御することにより、可撓性第2バイパス部材2
6と第3バイパス部材34との間の接触圧力を制御可能
であるため、接触熱抵抗を制御可能である。これによ
り、バイパス経路を通しての熱の流れをリモートコント
ロール等により外部から電気的に制御することが可能と
なる。
As described above, by controlling the voltage applied to the piezoelectric element 50, the flexible second bypass member 2 is controlled.
Since the contact pressure between 6 and the third bypass member 34 can be controlled, the contact thermal resistance can be controlled. This makes it possible to electrically control the heat flow through the bypass path from the outside by remote control or the like.

【0024】[0024]

【発明の効果】本発明の可変熱抵抗装置は以上詳述した
ように構成したので、以下の効果を奏する。
Since the variable thermal resistance device of the present invention is configured as described above in detail, it has the following effects.

【0025】(a)熱制御系において、熱伝導路の熱抵
抗を可変にすることができる。 (b)通常行われているヒータ制御に比較して、消費電
力が極めて少なくて済む。
(A) In the heat control system, the heat resistance of the heat conduction path can be made variable. (B) Power consumption is extremely low compared with the heater control that is normally performed.

【0026】(c)熱抵抗をリモートコントロールによ
り制御可能である。 (d)構造材としても使用可能な可変熱抵抗装置を提供
できる。
(C) The thermal resistance can be controlled by remote control. (D) A variable thermal resistance device that can be used as a structural material can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明の実施例断面図である。FIG. 2 is a sectional view of an embodiment of the present invention.

【図3】変位が生じないように固定した場合の印加電圧
と発生する力との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the applied voltage and the generated force when the device is fixed so that displacement does not occur.

【符号の説明】[Explanation of symbols]

2 第1熱良導体 3 第2熱良導体 4 熱の不良導体 5 第3熱良導体 6 第4熱良導体 7 接触熱抵抗 8 圧電素子 9 印加電圧制御手段 12 第1円筒 14 第2円筒 16 断熱円筒 22 第1バイパス部材 26 可撓性第2バイパス部材 30 可撓性第4バイパス部材 34 第3バイパス部材 50 圧電素子 54 直流電源 2 1st thermal good conductor 3 2nd thermal good conductor 4 Heat bad conductor 5 3rd thermal good conductor 6 4th thermal good conductor 7 Contact thermal resistance 8 Piezoelectric element 9 Applied voltage control means 12 1st cylinder 14 2nd cylinder 16 Adiabatic cylinder 22 2nd 1 Bypass member 26 Flexible 2nd bypass member 30 Flexible 4th bypass member 34 3rd bypass member 50 Piezoelectric element 54 DC power supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 構造材としての機械的強度を有する第1
及び第2の熱良導体(2,3) の間に同じく構造材としての
機械的強度を有する熱の不良導体(4) を介装してこれら
を互いに結合し、 該第1熱良導体(2) に第3熱良導体(5) を熱的に結合す
るとともに、該第2熱良導体(3) に第4熱良導体(6) を
熱的に結合して該第3及び第4熱良導体(5,6)を互いに
接触させ、 前記接触部(7) と固定保持部材との間に該接触部(7) を
加圧する方向に圧電素子(8) を介装し、 該圧電素子(8) に印加する電圧を制御する印加電圧制御
手段(9) を該圧電素子(8) に接続して設けたことを特徴
とする可変熱抵抗装置。
1. A first material having mechanical strength as a structural material.
And a heat-defective conductor (4) having mechanical strength as a structural material, which is also interposed between the second heat-good conductors (2, 3), and these are coupled to each other, and the first heat-good conductor (2) Is thermally coupled to the third good thermal conductor (5), and the second good thermal conductor (3) is thermally coupled to the fourth good thermal conductor (6) to provide the third and fourth good thermal conductors (5, 5). 6) are brought into contact with each other, and a piezoelectric element (8) is interposed between the contact portion (7) and the fixed holding member in a direction of pressurizing the contact portion (7), and applied to the piezoelectric element (8). A variable thermal resistance device, characterized in that an applied voltage control means (9) for controlling the applied voltage is connected to the piezoelectric element (8).
【請求項2】 前記第3熱良導体(5) は可撓性熱良導体
(26)を介して前記第4熱良導体(6) に接触しており、該
可撓性熱良導体(26)と前記圧電素子(8,50)との間に断熱
材(52)が介装されていることを特徴とする請求項1記載
の可変熱抵抗装置。
2. The third good heat conductor (5) is a flexible good heat conductor.
Is in contact with the fourth good thermal conductor (6) via (26), and a heat insulating material (52) is interposed between the flexible good thermal conductor (26) and the piezoelectric element (8, 50). The variable thermal resistance device according to claim 1, wherein the variable thermal resistance device is provided.
JP4652792A 1992-03-04 1992-03-04 Variable heat resistance device Withdrawn JPH05251595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4652792A JPH05251595A (en) 1992-03-04 1992-03-04 Variable heat resistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4652792A JPH05251595A (en) 1992-03-04 1992-03-04 Variable heat resistance device

Publications (1)

Publication Number Publication Date
JPH05251595A true JPH05251595A (en) 1993-09-28

Family

ID=12749758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4652792A Withdrawn JPH05251595A (en) 1992-03-04 1992-03-04 Variable heat resistance device

Country Status (1)

Country Link
JP (1) JPH05251595A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116462A1 (en) * 2009-03-30 2010-10-14 富士通オプティカルコンポーネンツ株式会社 Communication module
JP2016109551A (en) * 2014-12-05 2016-06-20 新日本空調株式会社 Flow rate measurement method
JP2016135126A (en) * 2011-10-10 2016-07-28 ダスギプ・インフォメーション・アンド・プロセス・テクノロジー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングDasgip Information And Process Technology Gmbh Method for controlled operation of biotechnological apparatus and bioreactor system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116462A1 (en) * 2009-03-30 2010-10-14 富士通オプティカルコンポーネンツ株式会社 Communication module
JP5083459B2 (en) * 2009-03-30 2012-11-28 富士通オプティカルコンポーネンツ株式会社 Communication module
US8427842B2 (en) 2009-03-30 2013-04-23 Fujitsu Optical Components Limited Communication module
JP2016135126A (en) * 2011-10-10 2016-07-28 ダスギプ・インフォメーション・アンド・プロセス・テクノロジー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングDasgip Information And Process Technology Gmbh Method for controlled operation of biotechnological apparatus and bioreactor system
US9745547B2 (en) 2011-10-10 2017-08-29 Dasgip Information And Technology Gmbh Method for controlled operation of a biotechnological apparatus and bioreactor system
US10934516B2 (en) 2011-10-10 2021-03-02 Dasgip Information And Technology Gmbh Method for controlled operation of a biotechnological apparatus and bioreactor system
JP2016109551A (en) * 2014-12-05 2016-06-20 新日本空調株式会社 Flow rate measurement method

Similar Documents

Publication Publication Date Title
US5644184A (en) Piezo-pyroelectric energy converter and method
US5367890A (en) Integrated thermoelectric system with full/half wave rectifier control
US7770402B2 (en) Thermally efficient CCD camera housing
US4287720A (en) Cryogenic liquid container
JPH07109171A (en) Graphite thermal conductor and cold plate using the same
JPH10126081A (en) Heat insulating device
US6350969B1 (en) Self-regulating heater
JPH05251595A (en) Variable heat resistance device
US3833163A (en) Ultrasonic apparatus
US6418277B1 (en) Immersible PTC heating device
US5148860A (en) Thermal control apparatus for satellites and other spacecraft
JP4132112B2 (en) Laminated composite material with actuator function and its use
JP4528576B2 (en) Heat flow control system
JP2001349636A (en) Temperature adjuster
JP3400114B2 (en) Cooling system
JP3726743B2 (en) Thermal resistance control device
US20060225870A1 (en) Cooling apparatus, system, and associated method
JPH07237599A (en) Shape memory alloy actuator for space equipment
JPH0992890A (en) Thermoelectric converter
JP2000022366A (en) Heat conduction member and cooling structure using the same
JP3175039B2 (en) Thermoelectric conversion module, laminated thermoelectric conversion device, thermoelectric power generation subunit, and power generation system
JPH02117044A (en) Thermal switch
JPH10143082A (en) Flat plate display panel cooling device
US11946460B1 (en) Thermal-mechanical linear actuator
JP2000514749A (en) Apparatus and method for operating a heat pipe / panel assembly

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518