JPH05251415A - Method and apparatus for surface treatment - Google Patents

Method and apparatus for surface treatment

Info

Publication number
JPH05251415A
JPH05251415A JP5063392A JP5063392A JPH05251415A JP H05251415 A JPH05251415 A JP H05251415A JP 5063392 A JP5063392 A JP 5063392A JP 5063392 A JP5063392 A JP 5063392A JP H05251415 A JPH05251415 A JP H05251415A
Authority
JP
Japan
Prior art keywords
ultraviolet light
hydrogen
light source
chamber
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5063392A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mizushima
宜彦 水島
Hideji Takaoka
秀嗣 高岡
Satoshi Inazaki
聡 稲崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP5063392A priority Critical patent/JPH05251415A/en
Publication of JPH05251415A publication Critical patent/JPH05251415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To realize excellent cleaning and the like by placing an object to be treated in hydrogen atmosphere and irradiating the object with ultraviolet ray for dissociating hydrogen molecule thereby performing dry treatment causing no damage on the object or the surface thereof. CONSTITUTION:An object 110 to be treated is placed in hydrogen atmosphere and irradiated with ultraviolet ray for dissociating hydrogen atom. The surface treatment apparatus further comprises a chamber 130 of hydrogen atmosphere in which the object 110 is placed and a light source 120 emitting ultraviolet ray for dissociating hydrogen molecule and irradiating the object 110 with the ultraviolet ray. For example, the ultraviolet light source 120 is an excimer laser having wavelength of 270nm or below. The chamber 130 has a uv transmittable window 13a made of synthetic quarty or MgF2 crystal, and the light from the light source 120 passes through the window 130a and impinges on the surface of a sample piece 110. Atmospheric gas, i.e., H2 gas, is introduced into the chamber 130 and the gas previously filled in the chamber 130 is discharged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体などの材料表面
の超清浄化を行うための表面処理方法及びその装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method and an apparatus for super-cleaning the surface of a material such as a semiconductor.

【0002】[0002]

【従来の技術】近年、半導体産業を初めとした先端分野
ではサブミクロン単位まで微細化が進み、それに伴なう
微細加工では、デバイスにダメージを与えることなく高
精細な加工が可能な、洗浄、デポンジション、エッチン
グなど各種表面処理技術が必要となっている。例えば、
洗浄技術においては、加工寸法の10分の1程度の異物
の混入も許されないため、それにともなって超精密な洗
浄技術が不可欠となっている。これらの超精密な洗浄で
は、従来の溶剤や超音波洗浄だけでは不十分で、近年、
酸素と紫外光を用いた光洗浄技術は、分子レベルまでの
有機膜の除去が可能な為注目され実用化され始めてい
る。
2. Description of the Related Art In recent years, in the advanced fields such as the semiconductor industry, miniaturization has progressed to the sub-micron unit. With the accompanying microfabrication, it is possible to perform high-definition machining without damaging the device. Various surface treatment techniques such as deponsion and etching are required. For example,
With respect to the cleaning technology, it is not allowed to mix in foreign matters of about 1/10 of the processing size, and accordingly, ultra-precision cleaning technology is indispensable. With these ultra-precision cleaning, conventional solvents and ultrasonic cleaning are not enough.
The photocleaning technology using oxygen and ultraviolet light is drawing attention and is being put into practical use because it can remove organic films down to the molecular level.

【0003】酸素(O2 )−紫外光を利用した光洗浄で
は、低圧水銀ランプの185nm,254nmの紫外光
が利用され、反応メカニズムとしては以下のようにな
る。
In light cleaning using oxygen (O 2 ) -ultraviolet light, ultraviolet light of 185 nm and 254 nm of a low pressure mercury lamp is used, and the reaction mechanism is as follows.

【0004】 ランプによる紫外光の発生(波長 1
85nm,254nm) 紫外光によるオゾン,活性酸素の発生 03 :オゾ
ン,0* :活性酸素 O2 +hν(185nm)→O+O←→O+O2 →O3 3 +hν(254nm)→O* +O2 ←→O+O2 →O3 紫外光による化合物の結合切断、活性酸素との反応
による揮発生分子の生成、分解気化成分の除去 hν+O* +Cn m x →C02 ↑+H2 O↑+O2 ↑ (ここで、hνは波長185nm〜254nmの光)こ
の方法は無溶媒、非接触で洗浄できるので、不純物汚染
が少ないなどの利点を有するほか、反応メカニズムから
除去物を気化して除去する為、パーティクル(異物)の
発生が少ないなどの長所がある。
Generation of ultraviolet light by a lamp (wavelength 1
85 nm, 254 nm) Generation of ozone and active oxygen by ultraviolet light 0 3 : Ozone, 0 * : Active oxygen O 2 + hν (185 nm) → O + O ← → O + O 2 → O 3 O 3 + hν (254 nm) → O * + O 2 ← → O + O 2 → O 3 Bond breakage of compounds by ultraviolet light, formation of volatile molecules by reaction with active oxygen, removal of decomposed vaporized components hν + O * + C n H m O x → C0 2 ↑ + H 2 O ↑ + O 2 ↑ (Here, hν is light with a wavelength of 185 nm to 254 nm) This method has advantages such as less contamination of impurities because it can be washed without solvent and without contact, and in addition, the removed substance is vaporized and removed from the reaction mechanism. It has advantages such as less generation of particles (foreign matter).

【0005】[0005]

【発明が解決しようとする課題】しかし、上述の光洗浄
では、有機物など分解気化する成分の除去に限られ、金
属,無機物等気化しにくいものは除去できない。また、
有機物の除去についても、一般に除去速度が遅く、サブ
ミクロンオーダー以下の薄膜除去に用途が限られる。特
に、酸素と紫外光を利用した表面処理法は、基本的には
酸素原子の酸化作用を利用した処理法であるので、金属
表面の処理に用いた場合、有機物の除去とともに金属表
面を酸化して酸化膜が形成される結果絶縁性などの問題
が生じてしまうという欠点を有する。
However, the above-mentioned optical cleaning is limited to the removal of components such as organic substances that decompose and vaporize, and cannot remove metals and inorganic substances that are difficult to vaporize. Also,
Also with respect to the removal of organic substances, the removal rate is generally slow, and the application is limited to the removal of thin films of submicron order or less. In particular, since the surface treatment method using oxygen and ultraviolet light is basically a treatment method utilizing the oxidizing action of oxygen atoms, when used for treating the metal surface, it removes organic substances and oxidizes the metal surface. As a result of the formation of an oxide film as a result, there is a drawback that problems such as insulation occur.

【0006】これらの欠点を改善する方法として酸素の
かわりに水素を用いた水素(H2 )−紫外光を利用した
光洗浄技術が考えられている。この水素−紫外光を用い
た光洗浄技術の例として特開昭61−87338に記載
されている。この特開昭61−87338記載の方法
は、加熱と紫外光でSi水素化物を離脱させる方法であ
る。即ち、加熱して昇温しSi原子を熱振動させ、ま
た、Si表面の吸着によって生じたSi水素化物とSi
原子との原子間結合を紫外光で切断することでSi水素
化物を解離させて洗浄するものである。この方法は、加
熱による熱的なダメージを与える可能性がある。そのた
め、この方法を用い得る範囲は限定されたものになる。
As a method for improving these drawbacks, a photocleaning technique using hydrogen (H 2 ) -ultraviolet light in which hydrogen is used instead of oxygen is considered. An example of the photocleaning technique using this hydrogen-ultraviolet light is described in JP-A-61-87338. The method described in JP-A-61-87338 is a method of releasing Si hydride by heating and ultraviolet light. That is, the temperature is raised by heating to thermally oscillate Si atoms, and Si hydride and Si generated by adsorption on the Si surface
By breaking the interatomic bonds with the atoms with ultraviolet light, the Si hydride is dissociated and washed. This method may cause thermal damage due to heating. Therefore, the range in which this method can be used is limited.

【0007】このように、水素(H2 )−紫外光を利用
した光処理技術は現在研究開発途上であり、より良好な
方法が求められている。
As described above, the photoprocessing technology utilizing hydrogen (H 2 ) -ultraviolet light is currently under research and development, and a better method is required.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の表面処理方法は、処理対象(シリコン基
板,ガラス,金属など)を水素雰囲気中に置き、水素分
子を解離させる紫外光を処理対象に照射することを特徴
とする。
In order to solve the above problems, the surface treatment method of the present invention uses an ultraviolet light which dissociates hydrogen molecules by placing a treatment target (silicon substrate, glass, metal, etc.) in a hydrogen atmosphere. Is irradiated to the processing target.

【0009】また、本発明の表面処理装置は、処理対象
が置かれた水素雰囲気のチャンバーと、水素分子を解離
させる紫外光を発生するとともに処理対象に照射する光
源とを備えることを特徴とする。
The surface treatment apparatus of the present invention is characterized by comprising a hydrogen atmosphere chamber in which the object to be treated is placed, and a light source which generates ultraviolet light for dissociating hydrogen molecules and irradiates the object to be treated. .

【0010】本発明の表面処理方法及び装置の紫外光の
光源については、波長270nm以下のエキシマレーザ
(KrF(248nm),ArF(193nm),F2
(157nm)のエキシマレーザなど)であることを特
徴としても良い。
Regarding the ultraviolet light source of the surface treatment method and apparatus of the present invention, excimer lasers (KrF (248 nm), ArF (193 nm), F 2 having a wavelength of 270 nm or less are used.
(157 nm) excimer laser or the like).

【0011】[0011]

【作用】本発明の表面処理方法及び装置では、水素中で
紫外光を照射することによって原子状の水素(H* )が
発生し、この活性な原子状の水素が反応種として処理対
象の表面処理に用いられる。即ち、活性な原子状の水素
と、処理対象の表面に付着した有機物などが反応し、ま
た、紫外光によって反応が促進される。これによって処
理対象の表面付着物が分解気化し除去される。
In the surface treatment method and apparatus of the present invention, atomic hydrogen (H * ) is generated by irradiation with ultraviolet light in hydrogen, and this active atomic hydrogen is used as a reactive species on the surface of the object to be treated. Used for processing. That is, active atomic hydrogen reacts with an organic substance or the like attached to the surface to be treated, and the reaction is accelerated by ultraviolet light. As a result, the surface deposits to be treated are decomposed and vaporized and removed.

【0012】波長270nm以下のエキシマレーザを用
いる場合、原子状の水素の発生とともに光子エネルギー
の大きい紫外光の照射によって、より反応が活発になっ
て併用効果が伴う。
In the case of using an excimer laser having a wavelength of 270 nm or less, the reaction becomes more active due to the generation of atomic hydrogen and the irradiation of ultraviolet light having a large photon energy, which brings about a combined effect.

【0013】[0013]

【実施例】本発明の実施例を図面を参照して説明する。
図1には、本発明の表面処理方法を用いた装置の一実施
例が示されている。この装置は、エキシマレーザの光源
120と、試料片110が置かれたチャンバー130と
を有する。光源120には、活性な原子状の水素を発生
させる為に必要な光子エネルギーを有する波長270n
m以下のエキシマレーザ即ちKrF(248nm),A
rF(193nm),F2 (157nm)などのエキシ
マレーザが用いられている。チャンバー130は、合成
石英またはMgF2 結晶でできたUV透過窓130aか
ら光源120の光を入射し、試料片110の表面に照射
されるようになっている。また、チャンバー130に
は、雰囲気ガスである水素H2 を導入するとともに内部
に溜ったガスを排気するようになっている。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of an apparatus using the surface treatment method of the present invention. This apparatus has a light source 120 of an excimer laser and a chamber 130 in which a sample piece 110 is placed. The light source 120 has a wavelength of 270n having a photon energy necessary for generating active atomic hydrogen.
Excimer laser of m or less, that is, KrF (248 nm), A
Excimer lasers such as rF (193 nm) and F 2 (157 nm) are used. The chamber 130 is configured such that the light of the light source 120 is incident from the UV transmission window 130a made of synthetic quartz or MgF 2 crystal and is irradiated on the surface of the sample piece 110. Further, hydrogen H 2 as an atmospheric gas is introduced into the chamber 130, and the gas accumulated inside is exhausted.

【0014】試料片110の表面における反応メカニズ
ムはつぎの反応式に示される。
The reaction mechanism on the surface of the sample piece 110 is represented by the following reaction formula.

【0015】 H2 +hν(270nm以下の紫外光)→H* (H* :原子状の水素) H* +Cn m x →Ca b +H2 O↑+CO2 ↑ 水素中で紫外光を照射することにより、上記のような原
子状の水素H* が発生し、これが活性である為に、表面
反応をし、また、紫外光によって表面反応が促進する。
H 2 + hν (ultraviolet light of 270 nm or less) → H * (H * : atomic hydrogen) H * + C n H m O x → C a H b + H 2 O ↑ + CO 2 ↑ Ultraviolet light in hydrogen The above-mentioned atomic hydrogen H * is generated by irradiating with, and since it is active, it causes a surface reaction, and ultraviolet light accelerates the surface reaction.

【0016】図1に示すような装置にて、試料片110
としてガラス片、金属片を用いて表面処理効果を調べ
た。表面の洗浄処理効果は、紫外線照射前、及び照射後
の純水との接触角θを比較する事により行なった。また
金属片についてはオージェ分析により表面の酸化状態も
あわせて測定した。このとき、KrF,ArFなどのエ
キシマレーザ(ピークパワー5MW/cm2 )の試料片
110でのエネルギー照射密度75mJ/cm2 で行っ
た。
A sample piece 110 is prepared by using an apparatus as shown in FIG.
The surface treatment effect was investigated using glass pieces and metal pieces. The effect of surface cleaning treatment was performed by comparing the contact angles θ with pure water before and after irradiation with ultraviolet rays. For the metal pieces, the oxidation state of the surface was also measured by Auger analysis. At this time, the irradiation was performed with an energy irradiation density of 75 mJ / cm 2 on the sample piece 110 of an excimer laser such as KrF or ArF (peak power 5 MW / cm 2 ).

【0017】図2,3はその結果を雰囲気ガスを比較し
て示したもので、図2は試料片110にガラス板を、図
3は金属板を用いたものである。これらの図からわかる
ようにガラス板、金属板とも紫外光照射時間の経過とと
もに、光洗浄効果による接触角の低下が見られる。ま
た、雰囲気ガスでは空気、純酸素に比べてH2 を使用し
た方がより著しい洗浄効果がみられた。また、アルミニ
ウム金属板を用いた光洗浄では、O2 −紫外光洗浄では
60秒照射後では1000A°の酸化膜被膜の形成が見
られたが、H2 −紫外光洗浄ではほとんど酸化膜の形成
は見られず、紫外光照射前の表面状態を維持していた。
このように、良好な表面処理が行われている。
FIGS. 2 and 3 show the results in comparison with the atmospheric gas. FIG. 2 shows the sample piece 110 using a glass plate and FIG. 3 using a metal plate. As can be seen from these figures, both the glass plate and the metal plate show a decrease in the contact angle due to the photocleaning effect with the passage of the ultraviolet light irradiation time. Further, in the atmosphere gas, more remarkable cleaning effect was observed when H 2 was used as compared with air and pure oxygen. Further, in the light cleaning using an aluminum metal plate, an oxide film coating of 1000 A ° was observed after irradiation for 60 seconds in the O 2 -ultraviolet light cleaning, but almost an oxide film was formed in the H 2 -ultraviolet light cleaning. Was not seen, and the surface condition before irradiation with ultraviolet light was maintained.
In this way, good surface treatment is performed.

【0018】この方法は、還元性を有するH2 を利用し
た処理方法であるので、金属表面を酸化することが無
く、広く有機膜の除去に利用し得る。また、有機膜の除
去速度は酸素O2 よりも速く、また、酸素O2 の場合よ
りも解離エネルギーが高い為、酸素O2 ではエネルギー
的にできない分子結合の解離もできる為応用範囲が広い
ものになっている。
Since this method is a processing method using H 2 having a reducing property, it can be widely used for removing the organic film without oxidizing the metal surface. Furthermore, the removal rate of the organic film is higher than that of oxygen O 2, In addition, since higher dissociation energy than the oxygen O 2, as the application range for dissociation may molecules can not be oxygen O 2 in the energetically coupled wide It has become.

【0019】半導体工業においては、特にハロゲン化シ
リコンなどによるエピタキシャル技術が知られており、
またシラン系ガスの光分解プロセスも多く研究された例
がある。これらにおいて、光照射の果す役割は、ハロゲ
ンによる表面反応の補助的なものとなっている。即ち、
表面温度上昇効果やハロゲン化水素の分解を加速するこ
とによるもので、本発明のように、水素原子自体の結合
活性を直接利用してはいない。本発明では、水素が直接
紫外光によって分解され、活性水素原子として表面酸化
物の還元を行なっており、これが有効に作用しているの
である。
In the semiconductor industry, in particular, an epitaxial technique using a silicon halide is known,
In addition, there are many examples in which the photolysis process of silane-based gas has been studied. In these, the role of light irradiation is an auxiliary to the surface reaction by halogen. That is,
This is due to the effect of increasing the surface temperature and accelerating the decomposition of hydrogen halide, and does not directly utilize the binding activity of the hydrogen atom itself as in the present invention. In the present invention, hydrogen is directly decomposed by ultraviolet light to reduce surface oxides as active hydrogen atoms, which effectively acts.

【0020】水素分子を分解する際、プラズマグロー効
果を行うのはイオンも発生して表面ダメージないし荷電
も起すので好ましくない。本発明では、270nm以下
の波長のエキシマレーザー光により発生せしめた水素原
子源が充分強力な表面反応作用がなされることに立脚し
ており、半導体表面装置に極めて有効である。
When decomposing hydrogen molecules, it is not preferable to perform the plasma glow effect because ions are also generated and surface damage or charge is caused. The present invention is based on the fact that the hydrogen atom source generated by the excimer laser light having a wavelength of 270 nm or less exerts a sufficiently strong surface reaction action, and is extremely effective for a semiconductor surface device.

【0021】このように、本発明では、H2 は還元性を
有するために酸化などの問題を生じることが無いこと、
また原子状の水素(H* )の場合、とり出しうるエネル
ギーは436KJ/mo1,これに対してO* の場合は
139KJ/mo1なのでH* の方がずっと活性であ
り、反応範囲が広いとともに反応速度も早く、洗浄効果
は大きいことが予想される。
As described above, in the present invention, since H 2 has a reducing property, it does not cause a problem such as oxidation.
Also, in the case of atomic hydrogen (H * ), the energy that can be extracted is 436 KJ / mo1, whereas in the case of O * , it is 139 KJ / mo1, so H * is much more active, and the reaction range is wider and It is expected that the speed will be fast and the cleaning effect will be great.

【0022】また、前述の従来技術の例では、使用する
紫外光が水素分子のH−H結合エネルギーを解離し、原
子状水素(H* )を生成するに必要なエネルギー436
kj/mo1に対応する光子エネルギーを有する270
nm以下の波長の紫外光を利用しておらず十分な効果は
期待できない。Hg−Xeランプなどの200〜420
nmの紫外光を利用した応用例が記述されているが、こ
れらのインコヒーレント光源では、レンズ等で集光した
としても照射面強度はmW/cm2 〜W/cm2 レベル
で光洗浄光源としては不十分である。これに対し、本発
明では、エキシマレーザではKrF(248nm),A
rF(193nm),F2 (157nm)と原子状水素
の生成に必要な光子エネルギを上回っており(270n
m以下の短波長の高エネルギーが必要)、また、照射面
強度もコヒーレント光源であるためにレンズ等で集光す
ることによってkW/cm2 〜MW/cm2 が容易に得
られるため(インコヒーレント光源の105 〜108
ーダーの高密度照射が可能)非常に有効である。
Further, in the above-mentioned prior art example, the ultraviolet light used dissociates the H—H bond energy of the hydrogen molecule to generate the atomic hydrogen (H * ) energy 436.
270 with photon energy corresponding to kj / mo1
Since no ultraviolet light having a wavelength of nm or less is used, a sufficient effect cannot be expected. 200-420 such as Hg-Xe lamp
Although an application example using ultraviolet light of nm has been described, these incoherent light sources have an irradiation surface intensity of mW / cm 2 to W / cm 2 as a light cleaning light source even when condensed by a lens or the like. Is insufficient. On the other hand, in the present invention, the excimer laser uses KrF (248 nm), A
rF (193 nm), F 2 (157 nm) and the photon energy required for the production of atomic hydrogen are exceeded (270 n
m require less high-energy short wavelength), also because kW / cm 2 ~MW / cm 2 can be easily obtained by condensing by a lens or the like for the irradiation surface intensity coherent light source (incoherent (High-density irradiation of 10 5 to 10 8 orders of light source is possible) Very effective.

【0023】本発明は前述の実施例に限らず様々な変形
が可能である。
The present invention is not limited to the above-described embodiment, but various modifications can be made.

【0024】例えば、H2 雰囲気ガスとしては、H2
2 (25%−75%)希釈ガスでもよいが特にN2
効果は無く、H2 単独の効果とみなせる。またH2 混合
ガスではH2 濃度が高いほど効果的となる為、純水素ガ
スが好ましい。また希釈ガスとしては不活性ガスとして
知られているAr,Neなどの希ガスも使用できる。
For example, as the H 2 atmosphere gas, H 2
N 2 (25% -75%) diluted gas may be used, but there is no particular effect of N 2 and it can be regarded as an effect of H 2 alone. Further, in the H 2 mixed gas, the higher the H 2 concentration is, the more effective it is. Further, a rare gas such as Ar or Ne, which is known as an inert gas, can be used as the diluent gas.

【0025】[0025]

【発明の効果】以上の通り本発明の表面処理方法及び装
置によれば、活性な原子状の水素と紫外光によって処理
対象の表面付着物が分解気化し除去される。そのため、
処理対象やその表面にダメージを与えることなく乾式で
処理をすることができ、より良好な洗浄などを行うこと
ができる。
As described above, according to the surface treatment method and apparatus of the present invention, the surface deposits to be treated are decomposed and vaporized and removed by active atomic hydrogen and ultraviolet light. for that reason,
It is possible to perform the dry treatment without damaging the treatment target or the surface thereof, and it is possible to perform better cleaning.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の構成図。FIG. 1 is a configuration diagram of an embodiment.

【図2】実施例の効果の比較のグラフ。FIG. 2 is a graph comparing the effects of the examples.

【図3】実施例の効果の比較のグラフ。FIG. 3 is a graph showing a comparison of the effects of the examples.

【符号の説明】[Explanation of symbols]

110…試料片,120…光源,130…チャンバー。 110 ... sample piece, 120 ... light source, 130 ... chamber.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 処理対象を水素雰囲気中に置き、水素分
子を解離させる紫外光を前記処理対象に照射することを
特徴とする表面処理方法。
1. A surface treatment method, wherein a treatment target is placed in a hydrogen atmosphere, and the treatment target is irradiated with ultraviolet light for dissociating hydrogen molecules.
【請求項2】 前記紫外光の光源は、波長270nm以
下のエキシマレーザであることを特徴とする請求項1記
載の表面処理方法。
2. The surface treatment method according to claim 1, wherein the ultraviolet light source is an excimer laser having a wavelength of 270 nm or less.
【請求項3】 処理対象が置かれた水素雰囲気のチャン
バーと、 水素分子を解離させる紫外光を発生するとともに前記処
理対象に照射する光源とを備えることを特徴とする表面
処理装置。
3. A surface treatment apparatus comprising: a chamber in a hydrogen atmosphere in which an object to be treated is placed; and a light source which generates ultraviolet light for dissociating hydrogen molecules and irradiates the object to be treated.
【請求項4】 前記紫外光の光源は、波長270nm以
下のエキシマレーザであることを特徴とする請求項3記
載の表面処理装置。
4. The surface treatment apparatus according to claim 3, wherein the ultraviolet light source is an excimer laser having a wavelength of 270 nm or less.
JP5063392A 1992-03-09 1992-03-09 Method and apparatus for surface treatment Pending JPH05251415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5063392A JPH05251415A (en) 1992-03-09 1992-03-09 Method and apparatus for surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5063392A JPH05251415A (en) 1992-03-09 1992-03-09 Method and apparatus for surface treatment

Publications (1)

Publication Number Publication Date
JPH05251415A true JPH05251415A (en) 1993-09-28

Family

ID=12864374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5063392A Pending JPH05251415A (en) 1992-03-09 1992-03-09 Method and apparatus for surface treatment

Country Status (1)

Country Link
JP (1) JPH05251415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003055820A1 (en) * 2001-12-27 2003-07-10 Hideo Onuki Method for adhering transparent articles and quartz glass plate prepared through adhesion and device using the same
WO2021241020A1 (en) * 2020-05-29 2021-12-02 ウシオ電機株式会社 Reduction treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003055820A1 (en) * 2001-12-27 2003-07-10 Hideo Onuki Method for adhering transparent articles and quartz glass plate prepared through adhesion and device using the same
CN100341811C (en) * 2001-12-27 2007-10-10 小贯英雄 Method for adhering transparent articles and quartz glass plate prepared through adhesion and device using the same
WO2021241020A1 (en) * 2020-05-29 2021-12-02 ウシオ電機株式会社 Reduction treatment method
CN115427609A (en) * 2020-05-29 2022-12-02 优志旺电机株式会社 Reduction treatment method
US20230211385A1 (en) * 2020-05-29 2023-07-06 Ushio Denki Kabushiki Kaisha Reduction treatment method

Similar Documents

Publication Publication Date Title
US5709754A (en) Method and apparatus for removing photoresist using UV and ozone/oxygen mixture
US4608117A (en) Maskless growth of patterned films
US4615904A (en) Maskless growth of patterned films
EP0456479B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
Hanabusa Photoinduced deposition of thin films
JPH0622212B2 (en) Dry etching method
US6627846B1 (en) Laser-driven cleaning using reactive gases
JPH04302145A (en) Cleaning method
JPH0496226A (en) Manufacture of semiconductor device
Steinfeld Reactions of photogenerated free radicals at surfaces of electronic materials
JP3150509B2 (en) Organic matter removal method and apparatus for using the method
JP2001507515A (en) Laser removal of foreign matter from the surface
JPH05251415A (en) Method and apparatus for surface treatment
Falkenstein Surface cleaning mechanisms utilizing VUV radiation in oxygen-containing gaseous environments
JPS6187338A (en) Method of dry cleaning silicon surface irradiated with multiple beams
JP2003142469A (en) Method and apparatus for radical oxidation of silicon
JPS62183512A (en) Laser-induced thin film deposition apparatus
Fominski et al. Photochemical removal of organic contaminants from silicon surface at room temperature
JPH0429220B2 (en)
JP3255998B2 (en) Surface treatment method and surface treatment device
JPH0677197A (en) Surface treatment method of semiconductor
JPH0388328A (en) Resist ashing method
JPS6236668A (en) Ashing method
JPH04307734A (en) Ashing apparatus
JPH0426116A (en) Etching method for oxide of substrate and cleaning method for substrate