JPH05251105A - Solar electric power system - Google Patents

Solar electric power system

Info

Publication number
JPH05251105A
JPH05251105A JP4044994A JP4499492A JPH05251105A JP H05251105 A JPH05251105 A JP H05251105A JP 4044994 A JP4044994 A JP 4044994A JP 4499492 A JP4499492 A JP 4499492A JP H05251105 A JPH05251105 A JP H05251105A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
electric power
hydrogen storage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4044994A
Other languages
Japanese (ja)
Inventor
Kenji Endo
研二 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4044994A priority Critical patent/JPH05251105A/en
Publication of JPH05251105A publication Critical patent/JPH05251105A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To provide a solar electric power system wherein hydrogen can be stored easily and safely and electricity consumption for the storage is a little and hydrogen is reconverted into electric power efficiently corresponding to the electric power demand. CONSTITUTION:In a solar electric power system wherein generated electric power PS of a solar battery 1 is supplied to a water electrolyzing apparatus 2 to produce hydrogen and store the hydrogen and based on the necessity, the stored hydrogen is supplied to a fuel cell 5 to reconvert into electric power PF and the obtained electric power is supplied to a load, it is provided with a hydrogen storage apparatus 13 which absorbes and stores the hydrogen produced by the water electrolyzing apparatus 2 in a hydrogen abosorbing alloy 14. A heat medium circulating system 6 by which the hydrogen storage apparatus 13 heats the hydrogen abosorbing alloy by waste heat of the fuel cell 5 to release hydrogen as a fuel gas is also provided between the fuel cell 5 and the hydrogen storage apparatus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、太陽光電池により発
生した電力を水素に変換して一時貯蔵し、貯蔵した水素
を電力需要に応じて燃料電池に供給し、再変換した電力
を負荷に供給する家庭用電力供給設備としての太陽光電
源システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention converts electric power generated by a photovoltaic cell into hydrogen for temporary storage, supplies the stored hydrogen to a fuel cell according to electric power demand, and supplies reconverted electric power to a load. The present invention relates to a solar power supply system as a household power supply facility.

【0002】[0002]

【従来の技術】エネルギ−危機に対処するとともに、ク
リ−ンで無公害な新エネルギ−電源設備として太陽電池
発電装置および燃料電池発電装置が注目されている。太
陽電池は太陽光を直接電力に変換して利用できる利便性
がある反面、利用できる太陽光エネルギ−は日変化が大
きく,ことに夜間は全く利用価値が無いという欠点があ
る。そこでこの欠点をカバ−して電力需要に応じて何時
でも負荷に電力を供給できる太陽電池発電装置として、
太陽電池の発電電力を2次蓄電池(鉛蓄電池,ニッケル
カドミウム電池等)の充電電力に利用し、2次蓄電池の
放電電力を負荷に供給するよう構成したものが知られて
いる。また、2次蓄電池の代わりに燃料電池発電装置を
太陽電池と組み合わせた太陽光電源システムも知られて
いる。
2. Description of the Related Art Solar cell power generators and fuel cell power generators are attracting attention as new clean and non-polluting new energy power supply equipments for dealing with energy crisis. The solar cell has the convenience of being able to directly convert sunlight into electric power and uses it, but the available solar energy has the disadvantage that it has a large diurnal change and, in particular, has no utility value at night. Therefore, as a solar cell power generator that can cover this drawback and supply power to the load at any time according to the power demand,
It is known that power generated by a solar battery is used as charging power for a secondary storage battery (lead storage battery, nickel cadmium battery, etc.) and discharge power of the secondary storage battery is supplied to a load. A solar power supply system in which a fuel cell power generator is combined with a solar cell instead of the secondary storage battery is also known.

【0003】図3は従来の太陽光電源システムの構成を
簡略化して示すシステムフロ−図であり、太陽光電池1
の発電電力PS を水電解装置2に供給して水素ガスH2
を生成し、生成した水素をコンプレッサ4で加圧して水
素貯蔵タンク3に貯蔵し、電力需要に応じて貯蔵した水
素を燃料電池5の燃料電極に供給するとともに、空気電
極に酸化剤としての反応空気を供給して電気化学反応に
基づく発電を行い、得られた発電電力PF を図示しない
インバ−タ等の電力変換器により交流電力に変換して外
部負荷10に供給するよう構成される。このように構成
された従来の太陽光電源システムにおいては、水電解装
置2が水酸化ナトリウムなどを電解質として含む水を太
陽光電池1の発電電力を利用して電気分解することによ
り陽極に酸素を,陰極に水素を発生するクリ−ンな装置
であり、また燃料電池5が電解質層を挟持する一対の電
極に燃料ガスとしての水素および酸化剤としての空気を
供給することにより、一対の電極間で水素1分子と酸素
1/2分子が反応して水を生成する電気化学反応に基づ
いて発電を行うクリ−ンな装置であるため、クリ−ンで
無公害な電源システムが得られるとともに、太陽光エネ
ルギ−,言い換えれば太陽光電池の発電電力を水素に形
を変えて一時貯蔵するので、電力需要に応じて貯蔵した
水素を燃料電池5に供給することにより電力に再変換し
て負荷に供給することができる。
FIG. 3 is a system flow diagram showing a simplified structure of a conventional solar power supply system.
Generated electric power P S of the hydrogen gas H 2 is supplied to the water electrolysis device 2.
Is generated, and the generated hydrogen is pressurized by the compressor 4 and stored in the hydrogen storage tank 3, and the stored hydrogen is supplied to the fuel electrode of the fuel cell 5 according to the power demand, and the air electrode reacts as an oxidant. Air is supplied to generate electric power based on an electrochemical reaction, and the generated electric power P F obtained is converted into AC electric power by a power converter such as an inverter (not shown) and supplied to the external load 10. In the conventional solar power supply system configured as described above, the water electrolysis device 2 electrolyzes water containing sodium hydroxide or the like as an electrolyte by using the electric power generated by the solar cell 1 to generate oxygen in the anode, It is a clean device that generates hydrogen at the cathode, and the fuel cell 5 supplies hydrogen as a fuel gas and air as an oxidant to the pair of electrodes sandwiching the electrolyte layer, so that the pair of electrodes can be connected between the pair of electrodes. Since it is a clean device that generates electricity based on an electrochemical reaction in which one molecule of hydrogen reacts with one-half molecule of oxygen to produce water, a clean and pollution-free power supply system can be obtained and the solar system Light energy, in other words, the generated power of the solar cell is converted into hydrogen and temporarily stored, so that the stored hydrogen is supplied to the fuel cell 5 to be converted back into electric power according to the demand for electric power. It can be supplied to the load.

【0004】[0004]

【発明が解決しようとする課題】太陽光電池と2次蓄電
池を組み合わせた従来の太陽光電池発電装置では、発電
容量に対する2次蓄電池の重量が過大で、かつ大きな設
置スペ−スを必要とするため、家庭用電源設備としての
実用性に問題があった。また、太陽光電池と燃料電池を
組み合わせた従来の太陽光電源システムでは、水電解装
置2で生成した水素をコンプレッサ4で加圧して貯蔵タ
ンク3に貯蔵するため、発電電力のかなりの部分をコン
プレッサの駆動電力として消費してしまい、このためシ
ステム効率が低下するという問題がある。さらに、空気
との混触による爆発の危険性が高い水素を加圧する工程
および高圧の水素を貯蔵する工程を含むため、ガス漏れ
の危険性が高く、家庭用電源装置として使用する場合、
安全性の保持に専門知識が必要になるという問題があ
る。
In the conventional photovoltaic cell power generation device in which the photovoltaic cell and the secondary storage battery are combined, the weight of the secondary storage battery with respect to the power generation capacity is excessive and a large installation space is required. There was a problem in practicality as a household power supply facility. Further, in the conventional solar power supply system in which a solar cell and a fuel cell are combined, the hydrogen generated in the water electrolyzer 2 is pressurized by the compressor 4 and stored in the storage tank 3, so that a considerable part of the generated power is stored in the compressor. There is a problem in that the power is consumed as drive power, which reduces system efficiency. Furthermore, since it includes a step of pressurizing hydrogen and a step of storing high-pressure hydrogen, which has a high risk of explosion due to contact with air, there is a high risk of gas leakage, and when used as a household power supply device,
There is a problem that expertise is required to maintain safety.

【0005】この発明の目的は、水素の貯蔵が簡単かつ
安全で、貯蔵のための電力消費が少なく、電力需要に応
じて効率よく電力に再変換できる太陽光電源システムを
得ることにある。
An object of the present invention is to obtain a solar power supply system which can store hydrogen easily and safely, consumes less electric power for storage, and can efficiently reconvert it into electric power according to the electric power demand.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、太陽光電池の発電電力を水電解
装置に供給して水素を生成して貯蔵し、貯蔵した水素を
必要に応じて燃料電池に供給して電力に変換し、得られ
た電力を負荷に供給するものにおいて、前記水素電解装
置で生成した水素を水素吸蔵合金に吸収して貯蔵する水
素貯蔵装置を備えてなるものとする。
In order to solve the above problems, according to the present invention, the generated power of a solar cell is supplied to a water electrolysis device to generate and store hydrogen, and the stored hydrogen is required. According to the present invention, a fuel storage device is provided with a hydrogen storage device for converting hydrogen into electric power, supplying the obtained electric power to a load, and absorbing and storing hydrogen generated by the hydrogen electrolysis device in a hydrogen storage alloy. I shall.

【0007】また、水素貯蔵装置が、水素吸蔵合金を燃
料電池の排熱により加熱して燃料ガスとしての水素を放
出する熱媒体循環系を前記燃料電池との間に備えてなる
ものとする。さらに、熱媒体循環系が、燃料電池の排熱
を一時貯蔵する蓄熱槽を備えてなるものとする。
Further, the hydrogen storage device is provided with a heat medium circulation system for heating the hydrogen storage alloy by exhaust heat of the fuel cell to release hydrogen as a fuel gas, between the heat storage circuit and the fuel cell. Furthermore, the heat medium circulation system is provided with a heat storage tank for temporarily storing the exhaust heat of the fuel cell.

【0008】[0008]

【作用】この発明の構成において、水素電解装置で生成
した水素を一時的に貯蔵する水素貯蔵装置として水素吸
蔵合金槽を用いたことにより、例えばランタン(La
−ニッケル(Ni )合金,チタン(Ti )−鉄(Fe
合金,マグネシウム(M g )−ニッケル(Ni )合金,
e0.9−Ni0.1−Ti 合金等の粉体または粒体からなる
水素吸蔵合金が、水電解装置で生成した水素を常温で活
性化した原子状として金属格子の隙間に捕らえて侵入型
金属水素化物となり、またこの金属水素化物を外部から
加熱することにより金属水素化物が捕らえた水素を放出
するよう機能する。すなわち、水素吸蔵合金が、[水素
吸蔵合金+H2 →金属水素化物+ΔH(発熱)]で表さ
れる水素吸蔵反応と、[金属水素化物−ΔH(吸熱)→
水素吸蔵合金+H2 ]で表される水素放出反応とを行う
ことにより、水電解装置で生成した水素を常温で貯蔵
し、所定温度に加熱することにより放出して燃料電池に
供給する機能が得られる。さらに、金属水素化物となっ
た水素吸蔵合金は一定の温度,圧力を加えないと捕らえ
た水素を放出しないので、最も安全性の高い水素貯蔵装
置であり、家庭用電源装置に安心して使用できる機能が
得られる。
In the structure of the present invention, the hydrogen electrolysis device produces
Hydrogen storage device that temporarily stores the stored hydrogen.
By using the Kura alloy tank, for example, lantern (La)
-Nickel (Ni) Alloy, titanium (Ti) -Iron (Fe)
Alloy, Magnesium (M g) -Nickel (Ni)alloy,
Fe0.9-Ni0.1-TiConsist of powder or granules such as alloy
The hydrogen storage alloy activates the hydrogen generated in the water electrolyzer at room temperature.
Trapped in the interstices of the metal lattice as atomized atomic forms
It becomes a metal hydride, and this metal hydride from the outside
Releases hydrogen captured by metal hydride by heating
To function. That is, the hydrogen storage alloy is
Storage alloy + H2→ Metal hydride + ΔH (heat generation)]
Hydrogen storage reaction and [metal hydride-ΔH (endotherm) →
Hydrogen storage alloy + H2] The hydrogen release reaction represented by
By doing so, hydrogen generated by the water electrolysis device is stored at room temperature.
And release it to the fuel cell by heating it to a specified temperature.
The function of supplying is obtained. Furthermore, it becomes a metal hydride
The hydrogen storage alloy is caught unless a certain temperature and pressure are applied.
Since it does not release hydrogen, it is the safest hydrogen storage device.
It has a function that can be used with confidence in a household power supply.
can get.

【0009】また、水素貯蔵装置が、水素吸蔵合金を燃
料電池の排熱により加熱して燃料ガスとしての水素を放
出する熱媒体循環系を燃料電池との間に備えるよう構成
すれば、水素放出温度が燃料電池の冷却水温度に近い水
素吸蔵合金を用いることにより、燃料電池の排熱を利用
して水素を放出させることが可能となり、水素の貯蔵,
放出のために太陽光電池の発電電力を消費することがな
く、これによるシステム効率の低下を防止する機能が得
られる。
Further, if the hydrogen storage device is provided with a heat medium circulation system for heating the hydrogen storage alloy by the exhaust heat of the fuel cell to release hydrogen as the fuel gas, it is provided with the fuel cell. By using a hydrogen storage alloy whose temperature is close to the cooling water temperature of the fuel cell, it becomes possible to release hydrogen by utilizing the exhaust heat of the fuel cell.
The generated electric power of the solar cell is not consumed for the emission, and the function of preventing the reduction of the system efficiency due to this is obtained.

【0010】さらに、熱媒体循環系が、燃料電池の排熱
を一時貯蔵する蓄熱槽を備えるよう構成すれば、蓄熱槽
に蓄えた燃料電池の排熱を利用して水素吸蔵合金を加熱
し、燃料電池を起動することが可能となり、従って駆動
電力を外部から供給することなく装置を始動および運転
する機能が得られる。
Further, if the heat medium circulation system is provided with a heat storage tank for temporarily storing the exhaust heat of the fuel cell, the hydrogen storage alloy is heated by utilizing the exhaust heat of the fuel cell stored in the heat storage tank, It is possible to start up the fuel cell, thus providing the ability to start and operate the device without externally supplying drive power.

【0011】[0011]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる太陽光電源システム
の構成を簡略化して示すシステムフロ−図であり、従来
技術と同じ構成部分には同一参照符号を付すことによ
り、重複した説明を省略する。図において、水素貯蔵装
置13は、その内部に粉状または粒状の水素吸蔵合金1
4と、水素吸蔵合金14を加熱,冷却する熱交換器15
とを備え、太陽光電池1が太陽光を受けて発電した電力
S を、水電解装置2が一対の電極間に受けて電気分解
により水素H2 を生成し、この水素を水素貯蔵装置13
の水素吸蔵合金14がその金属格子の隙間に捕捉して金
属水素化物に変化することにより、生成した水素を安定
して貯蔵することができる。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a system flow chart showing a simplified configuration of a solar power supply system according to an embodiment of the present invention. The same components as those of the conventional technique are designated by the same reference numerals, and a duplicate description will be omitted. .. In the figure, a hydrogen storage device 13 has a powder or granular hydrogen storage alloy 1 inside.
4 and a heat exchanger 15 for heating and cooling the hydrogen storage alloy 14
The water electrolysis device 2 receives between the pair of electrodes the electric power P S generated by the solar cell 1 by receiving sunlight, and hydrogen H 2 is generated by electrolysis, and this hydrogen is stored in the hydrogen storage device 13
The hydrogen storage alloy 14 of (1) is captured in the gaps of the metal lattice and is converted into a metal hydride, whereby the generated hydrogen can be stably stored.

【0012】一方、燃料電池5は固体高分子電解質型燃
料電池,りん酸形燃料電池等の低温動作形燃料電池であ
り、単位セルの積層体からなる燃料電池積層体の温度を
それぞれの運転温度(固体高分子電解質型燃料電池で約
80°c,りん酸形燃料電池で約190°c)に保持す
るために、複数単位セル毎に冷却板6Aが積層され、循
環ポンプ6Bおよび熱回収用熱交換器6Cを含む冷却水
循環系6が冷却板6Aの冷却パイプに連結され、燃料電
池の運転温度より10〜20°c程度低い温度の冷却水
6Wを冷却パイプに循環して燃料電池をそれぞれの運転
温度に保持するよう構成される。
On the other hand, the fuel cell 5 is a low-temperature operating fuel cell such as a solid polymer electrolyte fuel cell and a phosphoric acid fuel cell, and the temperature of the fuel cell stack consisting of a stack of unit cells is set to the respective operating temperature. In order to maintain the temperature at about 80 ° c for the solid polymer electrolyte fuel cell and about 190 ° c for the phosphoric acid fuel cell, a cooling plate 6A is laminated for each unit cell, and a circulation pump 6B and a heat recovery unit are provided. The cooling water circulation system 6 including the heat exchanger 6C is connected to the cooling pipe of the cooling plate 6A, and the cooling water 6W having a temperature about 10 to 20 ° C lower than the operating temperature of the fuel cell is circulated through the cooling pipe to make each fuel cell. Is configured to be maintained at the operating temperature of.

【0013】この実施例になる太陽光電源システムの場
合、水素貯蔵装置13の熱交換器15が弁8A,8Bを
介して冷却水循環系6に連結され、上記温度の温水また
は熱水状態の冷却水6Wの一部を熱交換器15に循環ま
たは熱交換器15を介して放出するよう構成される。ま
た、水素吸蔵合金14には水素放出反応を起こす温度が
冷却水6Wの温度に近い水素吸蔵合金材が選択して使用
される。したがって、電力需要に応じて冷却水6Wを熱
交換器15に供給し、金属水素化物となった水素吸蔵合
金14をその水素放出反応温度に加熱することにより、
吸蔵水素を放出して燃料電池5の燃料電極に供給するこ
とができるので、これと同時に燃料電池の空気電極に反
応空気を供給することにより燃料電池5が発電運転さ
れ、その発電電力PF を直接負荷10に供給するか、あ
るいはインバ−タ等の電力変換器9により交流電力に変
換して負荷10に供給することができる。
In the case of the solar power supply system according to this embodiment, the heat exchanger 15 of the hydrogen storage device 13 is connected to the cooling water circulation system 6 via the valves 8A and 8B to cool the hot water at the above temperature or the hot water state. It is configured to circulate or discharge a part of the water 6W to the heat exchanger 15 through the heat exchanger 15. Further, as the hydrogen storage alloy 14, a hydrogen storage alloy material whose temperature at which the hydrogen desorption reaction occurs is close to the temperature of the cooling water 6W is selected and used. Therefore, by supplying cooling water 6W to the heat exchanger 15 according to the power demand and heating the hydrogen storage alloy 14 that has become a metal hydride to its hydrogen desorption reaction temperature,
Since the stored hydrogen can be released and supplied to the fuel electrode of the fuel cell 5, at the same time, by supplying the reaction air to the air electrode of the fuel cell, the fuel cell 5 is operated for power generation, and its generated power P F is generated. It can be directly supplied to the load 10 or converted into AC power by the power converter 9 such as an inverter and supplied to the load 10.

【0014】なお、水素吸蔵合金14はその水素吸蔵反
応に際して少ないながら発熱するので、弁8A,8Bに
三方切換弁を用い、水素吸蔵反応に際して熱交換器15
に常温の冷却水15Wを供給するよう構成すれば、水素
吸蔵合金14の温度上昇を防止して予期しない水素の放
出を防ぐことができる。また、水素吸蔵合金が放出する
水素の圧力は数気圧以下であり、かつ水素放出反応温度
に加熱しない限り水素を放出することがないので、安全
性の高い水素貯蔵装置13を得ることができ、家庭用電
源システムに特別の専門知識を必要とすることなく適用
できる利点が得られる。
Since the hydrogen storage alloy 14 generates a small amount of heat during the hydrogen storage reaction, three-way switching valves are used for the valves 8A and 8B, and the heat exchanger 15 is used during the hydrogen storage reaction.
If the cooling water of 15 W at room temperature is supplied, the temperature rise of the hydrogen storage alloy 14 can be prevented and unexpected release of hydrogen can be prevented. Further, the pressure of hydrogen released by the hydrogen storage alloy is several atmospheres or less, and hydrogen is not released unless it is heated to the hydrogen release reaction temperature, so that a highly safe hydrogen storage device 13 can be obtained. The advantage is that it can be applied to home power systems without requiring special expertise.

【0015】図2はこの発明の異なる実施例の要部を示
すシステムフロ−図であり、冷却水循環系16が排熱回
収用熱交換器6Cに弁を介して並列に連結された蓄熱槽
16Dを備え、燃料電池5の運転中、その排熱により加
熱された冷却水6Wを蓄熱槽16Dに循環して蓄熱槽に
充填された蓄熱材を加熱しておき、燃料電池5の始動時
には蓄熱槽で加熱された冷却水16Wを水素貯蔵装置1
3の熱交換器15に供給して水素吸蔵合金14をその水
素放出反応温度に加熱するよう構成される。その結果、
水素貯蔵装置13は蓄熱槽16Dにあらかじめ蓄積され
た燃料電池の排熱によって水素を放出して燃料電池5を
起動できるとともに、蓄熱槽16Dが燃料電池をその運
転温度に予熱するための熱源を兼ねるので、燃料電池の
起動時,運転時を通じて燃料電池の排熱を熱源に利用で
きることになり、太陽光電池1の発電電力を水素貯蔵装
置13や燃料電池5の始動または水素放出用の熱源とし
て消費することをほぼ完全に回避し、システム効率の低
下を防止できる利点が得られる。
FIG. 2 is a system flow chart showing the main part of a different embodiment of the present invention. A heat storage tank 16D in which a cooling water circulation system 16 is connected in parallel to a heat exchanger 6C for recovering exhaust heat via a valve. When the fuel cell 5 is in operation, the cooling water 6W heated by the exhaust heat of the fuel cell 5 is circulated to the heat storage tank 16D to heat the heat storage material filled in the heat storage tank, and the heat storage tank is started when the fuel cell 5 is started. 16 W of cooling water heated by the hydrogen storage device 1
3 to heat exchanger 15 to heat hydrogen storage alloy 14 to its hydrogen desorption reaction temperature. as a result,
The hydrogen storage device 13 can release hydrogen by the exhaust heat of the fuel cell previously stored in the heat storage tank 16D to start the fuel cell 5, and the heat storage tank 16D also serves as a heat source for preheating the fuel cell to its operating temperature. Therefore, exhaust heat of the fuel cell can be used as a heat source during startup and operation of the fuel cell, and the generated power of the solar cell 1 is consumed as a heat source for starting the hydrogen storage device 13 or the fuel cell 5 or releasing hydrogen. This is almost completely avoided, and there is an advantage that system efficiency can be prevented from being degraded.

【0016】なお、冷却水6Wの代わりに燃料電池5の
空気極から排出される高温の空気オフガスを熱源に利用
するよう構成されてよい。
The high-temperature air off-gas discharged from the air electrode of the fuel cell 5 may be used as a heat source instead of the cooling water 6W.

【0017】[0017]

【発明の効果】この発明は前述のにうに、太陽光電池の
発電電力を利用して水素電解装置で生成した水素を一時
的に貯蔵する水素貯蔵装置として水素吸蔵合金槽を用い
るよう構成した。その結果、水素吸蔵合金が、水電解装
置で生成した水素を常温で活性化した原子状として金属
格子の隙間に捕らえて侵入型金属水素化物となり、金属
水素化物となった水素吸蔵合金はその水素放出温度に加
熱しないと捕らえた水素を放出しないので、最も安全性
の高い水素貯蔵装置を備えた家庭用電源装置を提供でき
るとともに、水素貯蔵タンクを用いた従来の水素貯蔵装
置で水素を加圧するために必要とした駆動電力が不要に
なるので、安全性およびシステム効率の高い水素貯蔵装
置を備えた太陽光電源システムを提供することができ
る。
As described above, according to the present invention, the hydrogen storage alloy tank is used as the hydrogen storage device for temporarily storing the hydrogen generated in the hydrogen electrolysis device by utilizing the electric power generated by the solar cell. As a result, the hydrogen storage alloy becomes an interstitial metal hydride by trapping hydrogen generated in the water electrolyzer in the gaps of the metal lattice as atomic states activated at room temperature, and becomes a metal hydride. Since the captured hydrogen is not released unless it is heated to the release temperature, it is possible to provide a household power supply device equipped with the safest hydrogen storage device and pressurize hydrogen with a conventional hydrogen storage device using a hydrogen storage tank. Since the drive power required for that is unnecessary, it is possible to provide a solar power supply system including a hydrogen storage device with high safety and system efficiency.

【0018】また、水素貯蔵装置が、水素吸蔵合金を燃
料電池の排熱により加熱して燃料ガスとしての水素を放
出する熱媒体循環系を燃料電池との間に備えるか、さら
には熱媒体循環系が、燃料電池の排熱を一時貯蔵する蓄
熱槽を備えるよう構成すれば、水素放出反応温度が燃料
電池の冷却水温度に近い水素吸蔵合金を用いることによ
り、燃料電池の排熱を利用して水素を放出させることが
可能となり、水素の貯蔵,放出のために太陽光電池の発
電電力を消費することがなく、これによるシステム効率
の低下を防止できるとともに、蓄熱槽に蓄えた燃料電池
の排熱を利用して水素吸蔵合金を加熱し、燃料電池を起
動することが可能となり、したがってシステム効率が一
層高い太陽光電源システムを経済的にも有利に提供する
ことができる。
Further, the hydrogen storage device may be provided with a heat medium circulation system for heating the hydrogen storage alloy by the exhaust heat of the fuel cell to release hydrogen as a fuel gas, or may further comprise a heat medium circulation system. If the system is configured to include a heat storage tank that temporarily stores the exhaust heat of the fuel cell, the exhaust heat of the fuel cell can be utilized by using a hydrogen storage alloy whose hydrogen release reaction temperature is close to the cooling water temperature of the fuel cell. It is possible to release hydrogen, so that the generated power of the solar cell is not consumed for storing and releasing hydrogen, and it is possible to prevent the decrease in system efficiency due to this and to eliminate the fuel cell stored in the heat storage tank. The heat can be used to heat the hydrogen storage alloy to start the fuel cell, and therefore, a solar power supply system having higher system efficiency can be economically advantageously provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例になる太陽光電源システムの
構成を簡略化して示すシステムフロ−図
FIG. 1 is a system flow diagram showing a simplified configuration of a solar power supply system according to an embodiment of the present invention.

【図2】この発明の異なる実施例の要部を示すシステム
フロ−図
FIG. 2 is a system flow chart showing a main part of a different embodiment of the present invention.

【図3】従来の太陽光電源システムの構成を簡略化して
示すシステムフロ−図
FIG. 3 is a system flow diagram showing a simplified configuration of a conventional solar power supply system.

【符号の説明】[Explanation of symbols]

1 太陽光電池 2 水電解装置 3 水素貯蔵タンク 4 コンプレッサ 5 燃料電池 6 冷却水循環系 6A 冷却板 6B 循環ポンプ 6C 発熱回収用熱交換器 6W 高温の冷却水 9 電力変換器 10 外部負荷 13 水素貯蔵装置 14 水素吸蔵合金 15 熱交換器 15W 常温の冷却水 16 冷却水循環系 16D 蓄熱槽 16W 高温の冷却水 PS 太陽光電池の発電電力 PF 燃料電池の発電電力1 Solar Battery 2 Water Electrolyzer 3 Hydrogen Storage Tank 4 Compressor 5 Fuel Cell 6 Cooling Water Circulation System 6A Cooling Plate 6B Circulation Pump 6C Heat Recovery Heat Exchanger 6W High Temperature Cooling Water 9 Power Converter 10 External Load 13 Hydrogen Storage Device 14 Hydrogen storage alloy 15 Heat exchanger 15W Cooling water at room temperature 16 Cooling water circulation system 16D Heat storage tank 16W High temperature cooling water P S Solar power generation power P F Fuel cell power generation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】太陽光電池の発電電力を水電解装置に供給
して水素を生成して貯蔵し、貯蔵した水素を必要に応じ
て燃料電池に供給して電力に変換し、得られた電力を負
荷に供給するものにおいて、前記水素電解装置で生成し
た水素を水素吸蔵合金に吸収して貯蔵する水素貯蔵装置
を備えてなることを特徴とする太陽光電源システム。
1. A solar cell is supplied with power generated by a solar cell to generate and store hydrogen, and the stored hydrogen is supplied to a fuel cell as necessary to be converted into electric power. What is supplied to a load is a solar power supply system, comprising a hydrogen storage device that absorbs and stores hydrogen generated by the hydrogen electrolysis device in a hydrogen storage alloy.
【請求項2】水素貯蔵装置が、水素吸蔵合金を燃料電池
の排熱により加熱して燃料ガスとしての水素を放出する
熱媒体循環系を前記燃料電池との間に備えてなることを
特徴とする請求項1記載の太陽光電源システム。
2. A hydrogen storage device is provided with a heat medium circulation system for heating a hydrogen storage alloy by exhaust heat of a fuel cell to release hydrogen as a fuel gas, between the fuel cell and the fuel cell. The solar power supply system according to claim 1.
【請求項3】熱媒体循環系が、燃料電池の排熱を一時貯
蔵する蓄熱槽を備えてなることを特徴とする請求項2記
載の太陽光電源システム。
3. The solar power supply system according to claim 2, wherein the heat medium circulation system comprises a heat storage tank for temporarily storing exhaust heat of the fuel cell.
JP4044994A 1992-03-03 1992-03-03 Solar electric power system Pending JPH05251105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4044994A JPH05251105A (en) 1992-03-03 1992-03-03 Solar electric power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4044994A JPH05251105A (en) 1992-03-03 1992-03-03 Solar electric power system

Publications (1)

Publication Number Publication Date
JPH05251105A true JPH05251105A (en) 1993-09-28

Family

ID=12706990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4044994A Pending JPH05251105A (en) 1992-03-03 1992-03-03 Solar electric power system

Country Status (1)

Country Link
JP (1) JPH05251105A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153476A (en) * 1993-11-30 1995-06-16 Mitsubishi Heavy Ind Ltd Portable fuel cell power system
JP2001338672A (en) * 2000-05-26 2001-12-07 Shinko Pantec Co Ltd Home-use electric power supply system
JP2003282122A (en) * 2002-02-19 2003-10-03 Proton Energy Systems Inc Energy storage and recovery system and its use method
JP2004281243A (en) * 2003-03-17 2004-10-07 Toyota Motor Corp Fuel cell system and hydrogen storage method
JP2005032611A (en) * 2003-07-07 2005-02-03 Sony Corp Fuel cell system
JP2006526882A (en) * 2003-06-05 2006-11-24 ソーラー リアクター テクノロジーズ,インコーポレイテッド Methods for treating flue gas emissions
DE112005002944B4 (en) * 2004-12-24 2010-01-07 Kabushiki Kaisha Toyota Jidoshokki, Kariya The fuel cell system
CN103185196A (en) * 2011-12-31 2013-07-03 北京有色金属研究总院 Metal hydride hydrogen storage system and manufacture method thereof
JPWO2017013751A1 (en) * 2015-07-21 2017-07-27 株式会社東芝 Power supply system, control device, and power supply method
JP2021023028A (en) * 2019-07-26 2021-02-18 清水建設株式会社 Power supply system and hydrogen utilization system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153476A (en) * 1993-11-30 1995-06-16 Mitsubishi Heavy Ind Ltd Portable fuel cell power system
JP2001338672A (en) * 2000-05-26 2001-12-07 Shinko Pantec Co Ltd Home-use electric power supply system
JP2003282122A (en) * 2002-02-19 2003-10-03 Proton Energy Systems Inc Energy storage and recovery system and its use method
JP2004281243A (en) * 2003-03-17 2004-10-07 Toyota Motor Corp Fuel cell system and hydrogen storage method
JP4675029B2 (en) * 2003-03-17 2011-04-20 トヨタ自動車株式会社 Fuel cell system and hydrogen storage method
JP2006526882A (en) * 2003-06-05 2006-11-24 ソーラー リアクター テクノロジーズ,インコーポレイテッド Methods for treating flue gas emissions
JP2005032611A (en) * 2003-07-07 2005-02-03 Sony Corp Fuel cell system
DE112005002944B4 (en) * 2004-12-24 2010-01-07 Kabushiki Kaisha Toyota Jidoshokki, Kariya The fuel cell system
CN103185196A (en) * 2011-12-31 2013-07-03 北京有色金属研究总院 Metal hydride hydrogen storage system and manufacture method thereof
JPWO2017013751A1 (en) * 2015-07-21 2017-07-27 株式会社東芝 Power supply system, control device, and power supply method
JP2021023028A (en) * 2019-07-26 2021-02-18 清水建設株式会社 Power supply system and hydrogen utilization system

Similar Documents

Publication Publication Date Title
US8721868B2 (en) Integrated solar-powered high-pressure hydrogen production and battery charging system
US20080138675A1 (en) Hydrogen generation and storage method for personal transportation applications
US20080135403A1 (en) Home hydrogen fueling station
JP2014509771A (en) Hydrogen release in electrochemical generators including hydrogen fuel cells
US20240183042A1 (en) Lunar base energy supply and application system based on photocatalytic water splitting hydrogen production technology
Agbossou et al. Electrolytic hydrogen based renewable energy system with oxygen recovery and re-utilization
CN115074751B (en) High-temperature electrolytic hydrogen production system and method capable of continuously and stably operating and application thereof
JP2001126742A (en) Fuel cell electric power generating apparatus
CN112271752A (en) Distributed energy system
JP2013199675A (en) Electrochemical device and power storage system
Sapru et al. Development of a small scale hydrogen production-storage system of hydrogen applications
JP2004120903A (en) Power supply unit
JP2000054174A (en) Water electrolyzing device and water electrolysis storage battery
JPH05251105A (en) Solar electric power system
Abdin et al. A review of renewable hydrogen hybrid energy systems towards a sustainable energy value chain
CN210297269U (en) Wind, light and proton exchange membrane fuel cell multi-energy complementary hybrid power generation system
Vanhanen et al. Electrolyser-metal hydride-fuel cell system for seasonal energy storage
Kordesch The Advancement of Fuel Cell Systems and Spin‐off Battery Technology
JP2004171973A (en) Fuel cell power generation system
KR20190066857A (en) Apparatus for generating photovoltaic-hydrogen based small power and method for generating thereof
CN217922341U (en) Container type integrated electricity-hydrogen co-production device with heat management
JP2002056880A (en) Water electrolysis device and solid polymer type fuel cell generating system
JPH0950820A (en) Fuel cell system, fuel cell, and hydrogen storage system
JPH0541236A (en) Electric power storage
KR102387117B1 (en) Electric power generating system using heat and new recycled energy

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040203

Free format text: JAPANESE INTERMEDIATE CODE: A02