JPH052503B2 - - Google Patents

Info

Publication number
JPH052503B2
JPH052503B2 JP17721687A JP17721687A JPH052503B2 JP H052503 B2 JPH052503 B2 JP H052503B2 JP 17721687 A JP17721687 A JP 17721687A JP 17721687 A JP17721687 A JP 17721687A JP H052503 B2 JPH052503 B2 JP H052503B2
Authority
JP
Japan
Prior art keywords
monomer
resin
polymer
fluorine
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17721687A
Other languages
Japanese (ja)
Other versions
JPS6422547A (en
Inventor
Seiichi Katsuragawa
Chikafumi Kawashima
Yasuhiro Shiga
Toshihide Shiotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP17721687A priority Critical patent/JPS6422547A/en
Publication of JPS6422547A publication Critical patent/JPS6422547A/en
Publication of JPH052503B2 publication Critical patent/JPH052503B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は䌞瞮性機胜をも぀た柔軟性、耐薬品
性、耐汚染性、耐光、耐䟯性および䞍粘着性を具
備させた新芏なフツ玠暹脂からなる基材ぞの被芆
材に関する。 埓来技術 埓来、よく知られおいる䞀般のポリりレタン系
合成皮革は、その颚合、倖芳が倩然皮革に酷䌌し
おいるため、䞻ずしお鞄、袋物、履物、衣料等の
比范的流行サむクルの短いフアツシペン性玠材ず
しお倚甚されおいるが、耐甚期間の長い、家具、
宀内装材ずしおは、数幎で脆化する宿呜的な加氎
分解性のため衚面の粘着性、曎には耐薬品性、耐
汚染性、耐䟯性の改善等に぀いお皮々の提案がな
されおおり、以䞋のフツ玠暹脂被芆も提案されお
いる。 すなわち、フツ玠暹脂フむルム被芆積局䜓ずし
おは、ポリフツ化ビニルフむルムをポリりレタン
局を介しお高匷床織物ず耇合させる方法特開昭
56−162647、ポリフツ化ビニリデンの加熱融着
特開昭52−69989あるいは各皮ブツ玠暹脂フむ
ルムを溶融枩床以䞊に加熱し、ガラス基材に溶融
貌着させたシヌト特開昭61−61849、さらには
PVDF、PTFE、PFAなどずの積局が提案されお
いる。 発明が解決しようずする問題点 しかしながら、これらフツ玠暹脂は、耐薬品
性、耐䟯性および耐汚染性には優れおいるが、ポ
リりレタン暹脂等にくらべお柔軟性に劣り、たた
有機溶媒ぞの可溶性が悪いため䟋えば合成皮革補
造工皋でキダステむングフむルムを成圢するため
の暹脂溶解液を補造するこずが困難である。 問題点を解決するための手段 本発明は䞊蚘欠点を改善するためになされたも
ので、基材䞊にポリりレタン暹脂を介しお被芆す
るフツ玠系被芆材が、すくなくずも䞀皮以䞊の含
フツ玠単量䜓ず、分子内に二重結合ずペルオキシ
結合を同時に有する単量䜓ずを共重合せしめお、
そのガラス転䜍枩床が宀枩以䞋である含フツ玠匟
性共重合䜓幹ポリマヌを補造し、この幹ポリ
マヌ100重量郚に察しおフツ化ビニリデン単量䜓
を40〜70重量郚共重合せしめた軟質系フツ玠暹脂
からなる被芆材の提䟛にある。 本発明で察象ずする基材は特に限定されるもの
ではないが、䟋えば綿、矊毛、絹、麻等の倩然繊
維、もしくはレヌペン、ビスコヌス、スフ、アセ
テヌト等の再生繊維、たたはポリ゚ステル、ポリ
アクリロニトリル、ポリ塩化ビニル、ポリ塩化ビ
ニリデン等の合成繊維等の単独たたは各皮混繊
維、ガラス繊維、石綿等の無機質繊維からなる線
織垃、䞍織垃、さらには玙類、朚材、ゎム、プラ
スチツク、金属等である。 本発明で前蚘基材䞊に接着剀局ずしお䜿甚する
りレタン暹脂はフタル酞、アゞピン酞などの倚塩
基酞の゚チレングリコヌル、ゞ゚チレングリコヌ
ルなどの倚䟡ヒドロキシル化合物ずの瞮重合反応
によ぀お埗られるポリ゚ステルゞオヌルず、脂肪
族ゞむ゜シアネヌトから埗られる末端に−NCO
基を有するりレタンプレポリマヌをゞアミンで鎖
䌞長しおから埗られるポリりレタン暹脂、あるい
はポリオキシプロピレングリコヌル、゚チレング
リコヌル、トリレンゞむ゜シアネヌトずの反応で
埗たポリ゚ヌテル系ポリりレタンずグリセリン、
゚チレングリコヌルおよびトリレンゞむ゜シアネ
ヌトを反応させた架皿剀ず、アミン系接觊ゞ゚チ
ル゚タノヌルアミンを配合したもの等ポリりレタ
ン暹脂を䞻䜓ずするものすべおが䜿甚可胜であ
る。 次に本発明における最も重芁な特城郚分である
軟質フツ玠暹脂に぀いお説明する。 本発明者らは、特開昭58−206615においお柔軟
性を有するフツ玠暹脂の補造方法に関する提案を
行぀たが、䟋えば合成皮革被芆剀ずしお䜿甚する
ためには暹脂の溶解性および暹脂の柔軟性の面よ
り新たな怜蚎改良が必芁ずな぀た。 䜿甚する軟質フツ玠暹脂は少なくずも䞀皮の含
フツ玠単量䜓を含む䞀皮以䞊の単量䜓ず分子内に
二重結合ず、ペルオキシ結合を同時に有する単量
䜓ずを共重合せしめお、その分子内にペルオキシ
基を含有させか぀、そのガラス転䜍点枩床か宀枩
以䞋である含フツ玠匟性共重合䜓幹ポリマヌ
を補造し、この幹ポリマヌの氎性乳濁液たたは、
分散溶媒䞭で幹ポリマヌ100重量郚に察しおフツ
化ビニリデン単量䜓を40〜70重量郚グラフト重合
せしめたフツ玠暹脂で、か぀圓該暹脂が−
ゞメチルホルムアミド等の有機溶剀に150
以䞊溶解性のあるフツ玠暹脂で、特に圓該フツ玠
暹脂䞭の幹ポリマヌは、そのガラス転䜍点枩床が
宀枩以䞋である含フツ玠共重合䜓により構成され
おいるため、宀枩およびそれ以䞊の枩床では匟性
䜓の性状を呈し、埓来のPTFE、PFA、FEP、
ETFE、PCTFE、PVDF、PVF等のフツ玠暹脂
ず比范するず極めお柔軟性に富むものである。 本発明ではかかる軟質系フツ玠暹脂の䜿甚に特
城があるが、ポリりレタン系合成皮革衚皮に圓該
暹脂の薄いフむルム䟋えば、〜25ミクロン
厚を積局するためには、暹脂溶解液を塗垃し、
也燥機䞭で溶媒を蒞発せしめるこずによりフむル
ム化する成圢法、いわゆるテダステむングフむル
ム成圢法によ぀お埗られら暹脂局が適甚される。 フツ玠暹脂のキダステむングフむルム成圢法に
おける問題点は耐有機溶剀性が良奜なために、暹
脂溶解性が小さいこず、さらには有機溶剀ぞの溶
解性がポリマヌ䞭のフツ玠含量増加に぀れお極端
に䜎䞋するこずもあ぀お、珟圚のずころポリフツ
化ビニル暹脂PVFを陀いおキダステむング
フむルム成圢は実斜されおいない状況にある。し
かしPVFは硬い暹脂であり、柔軟性の必芁な各
皮基剀ぞの被芆材ずしおは良奜なものずはいえな
い。 本発明者らはその基材ぞの具䜓的実斜の䞀䟋に
合成皮革被芆材ずしお、ポリりレタン合成皮革の
問題点である耐汚染性、耐薬品性等を改良し぀
぀、合成皮革の匟力的な觊感を保持するための怜
蚎を行な぀おきたずころ、本発明に係るフツ玠暹
脂の薄いフむルムは合成皮革被芆材ずしお極めお
有甚であるこずが刀明し、そのためにキダステむ
ングフむルム圢成できる軟質系フツ玠暹脂の改
質、特に溶剀可溶性暹脂ぞの改質が重芁ずな぀
た。 ここでキダステむングフむルム圢成の暹脂溶解
液に䜿甚する有機溶剀は、−ゞメチルホル
ムアミドDMF、メチル゚チルケトンMEK
およびトル゚ンTOL等の混合溶剀の䜿甚が
䞀般的であり、これら溶剀の䞭ではDMFが圓該
フツ玠暹脂の溶解性が良奜であるためDMFを軟
質フツ玠暹脂の䞻芁配合溶剀ずしお遞定した。溶
解液の暹脂濃床は、少なくずも150、奜た
しくは200以䞊するこずが望たしく、キダ
ステむングフむルム成圢ラむンでフむルムを成圢
する堎合、150以䞋ではフむルム也燥工皋
で蒞発させる溶剀量が倚くなり、経枈的でない。 軟質フツ玠暹脂に぀いお、溶剀ぞの溶解性を増
加せしめる方法ずしお、含フツ玠匟性共重合䜓
幹ポリマヌにフツ化ビニリデンVDF単量
䜓をブラフト共重合させるこずにより溶解性が倧
きくなるこずが刀明した。テトラフルオロ゚チレ
ン単量䜓、クロロトリフルオロ゚チレン単量䜓、
テトラフルオロ゚チレン゚チレンおよびクロロ
トリフルオロ゚チレン゚チレン等の共重合䜓で
は溶剀䞭で暹脂の膚最は認められるが、150
以䞊の濃床を有する暹脂の可溶化はいずれも困
難であ぀た。 たた、溶解性に及がす幹ポリマヌぞのVDF単
量䜓のグラフト量の圱響は、幹ポリマヌ100重量
郚に察し40〜70重量郚が適圓であり、DMFぞの
溶解性詊隓で、40重量郚以䞋のグラフト量ではゲ
ル状ずな぀お溶解し難く、たた70重量郚以䞊では
暹脂物性の柔軟性が枛少し、軟質フツ玠暹脂の特
城であるゎム的性質が損なわれるため、各皮柔軟
性を有する基材䟋えば合成皮革の被芆材ずしおは
奜たしくなくなる。 このように、DMFに可溶性のある軟質フツ玠
暹脂は、第䞀段階の共重合反応で、ペルオキシ結
合を有する含フツ玠匟性共重合䜓幹ポリマヌ
を埗、第二段階反応で第䞀段階反応で埗られた共
重合䜓の分散溶媒䞭で、ペルオキシ結合を分解
し、ラゞカルを発生せしめる枩床以䞋でVDF単
量䜓をグラフト共重合するこずによ぀お埗られ
る。 圓該暹脂の重合条件枩床、撹拌数、オヌトク
レヌブ容量、觊媒量などはポリマヌ重合床に圱
響し、該重合床は暹脂溶解性に圱響するが、重合
反応が二段階反応であり耇雑ずなるため、最終物
質であるグラフト共重合䜓のDMFを䞻剀ずする
有機溶剀ぞの溶解性で暹脂の䜿甚範囲を遞定すれ
ばよい。 ここで甚いられる䞍飜和ペルオキシドずしお
は、−ブチルペルオキシメタクリレヌト、−
ブチルペルオキシクロトネヌト等の䞍飜和ペルオ
キシ゚ステル類、および−ブチルペルオキシア
リルカヌボネヌト、−メンタンペルオキシアリ
ルカヌボネヌト等の䞍飜和ペルオキシカヌボネヌ
ト類が䟋瀺できる。 たた、含フツ玠単量䜓の䞀皮以䞊の組成ずしお
は、フツ玠ゎムの組成を有する匟性重合䜓で、フ
ツ化ビニリデンVDFずヘキサフルオロピロ
ペンHFPの二元系、VDFずHFPずテトラフ
ルオロ゚チレンTFEの䞉元系、およびVDF
ずクロロトリフルオロ゚チレンCTFEの二元
系などの単量䜓組成が䟋瀺できる。 本発明においお、基材䞊に斜工されるポリりレ
タン暹脂局および軟質フツ玠暹脂の厚さには栌別
の制限はなく、䞀般に0.01〜mm皋床の厚さで䜿
甚されるが、耐䟯性、防汚性、耐久性䞊びに柔軟
性の目的を達するものであれば、より厚く、たた
はより薄くするこずができ特に制玄はない。 りレタン暹脂の塗垃は、トツピング、カレンダ
ヌリング、コヌテむングその他の方法で行なわ
れ、ポリりレタン暹脂には所芁の可塑剀、安定
剀、着色剀、滑剀等が慣甚の䜿甚範囲内で自由に
添加されおもよい。 䞀方衚面局を圢成する軟質フツ玠暹脂局にも着
色剀の添加、さらには暹脂フむルムの衚面コロナ
攟電凊理、薬品凊理等により、接着性胜を高める
ための粗面掻性化を図るこずもできる。 以䞋実斜䟋により本発明を詳述するが、これら
によ぀お限定されるものではない。 実斜䟋および比范䟋  幹ポリマヌの補造 30容量のステンレス補オヌトクレヌブに玔
æ°Ž15Kg、過硫酞カリりム30、パヌフロロオク
タン酞アンモニりム40および−ブチルペル
オキシアリルカヌボネヌト30を加え、排気埌
フツ化ビニリデン単量䜓3.8Kg、クロロトリフ
ルオロ゚チレン単量䜓2.3Kgを仕蟌み、撹拌し
ながら51℃の枩床で19時間重合反応を行ない、
反応終了時に撹拌の回転数を䞊げるこずによ぀
おポリマヌを析出させ、パりダヌ状のポリマヌ
を埗た。氎掗、也燥埌の収量は5.0Kgで、共重
合䜓䞭の−ブチルペルオキシアリルカヌボネ
ヌトにもずづく掻性酞玠量は、ペり玠滎定法に
より、0.041の枬定された。  グラフト共重合䜓の補造その 䞊蚘の共重合反応で埗られた幹ポリマヌ144
ずフロンR113、1500をステンレス補オヌ
トクレヌブに仕蟌み、排気埌、第衚に瀺す単
量䜓、VDF実斜䟋、TFE比范䟋およ
び゚チレン−CTFEモル比玄比范䟋
をそれぞれ100仕蟌み、98℃で22時間グ
ラフト重合を行な぀た。 生成したポリマヌを溶媒ず分離埌氎掗也燥
し、第衚の結果を埗た。
(Industrial Application Field) The present invention provides a base material made of a novel fluorocarbon resin that has elasticity, chemical resistance, stain resistance, light resistance, weather resistance, and non-adhesive properties. Regarding covering materials. (Prior art) Conventional well-known general polyurethane synthetic leather has a texture and appearance that closely resembles natural leather, so it is mainly used for bags, bags, footwear, clothing, etc., which have a relatively short fashion cycle. Furniture, which is often used as a fashionable material and has a long service life.
As an interior material, various proposals have been made to improve surface adhesion, as well as chemical resistance, stain resistance, and weather resistance due to its hydrolyzable property, which causes it to become brittle within a few years. A fluororesin coating has also been proposed. In other words, as a fluororesin film-coated laminate, a method of combining a polyfluorinated vinyl film with a high-strength fabric via a polyurethane layer (Japanese Patent Application Laid-open No.
56-162647), heat-fused polyvinylidene fluoride (Japanese Patent Laid-Open No. 52-69989), or sheets made by heating various resin films above their melting temperature and melting and pasting them onto glass substrates (Japanese Patent Laid-Open No. 61-1999). 61849), and even
Laminations with PVDF, PTFE, PFA, etc. have been proposed. (Problems to be Solved by the Invention) However, although these fluororesins have excellent chemical resistance, weather resistance, and stain resistance, they are inferior in flexibility compared to polyurethane resins, and are also sensitive to organic solvents. Because of its poor solubility, it is difficult to produce a resin solution for molding a casting film in the synthetic leather production process, for example. (Means for Solving the Problems) The present invention has been made to improve the above-mentioned drawbacks, and the fluorine-based coating material coated on the base material through the polyurethane resin contains at least one kind of fluorine-containing material. By copolymerizing a monomer and a monomer having both a double bond and a peroxy bond in the molecule,
A flexible fluorine-containing elastic copolymer (stem polymer) whose glass transition temperature is below room temperature is produced, and 40 to 70 parts by weight of vinylidene fluoride monomer is copolymerized with 100 parts by weight of this backbone polymer. The purpose of the present invention is to provide a coating material made of a fluorocarbon resin. The base materials targeted by the present invention are not particularly limited, but include natural fibers such as cotton, wool, silk, and hemp, recycled fibers such as rayon, viscose, cotton wool, and acetate, or polyester and polyacrylonitrile. , synthetic fibers such as polyvinyl chloride and polyvinylidene chloride alone or mixed fibers, woven fabrics and non-woven fabrics made of inorganic fibers such as glass fibers and asbestos, as well as paper, wood, rubber, plastics, metals, etc. . The urethane resin used as the adhesive layer on the base material in the present invention is a polyester diol obtained by a polycondensation reaction of a polybasic acid such as phthalic acid or adipic acid with a polyhydric hydroxyl compound such as ethylene glycol or diethylene glycol. and −NCO at the terminal obtained from aliphatic diisocyanate.
Polyurethane resin obtained by chain-extending a urethane prepolymer having a group with diamine, or polyether-based polyurethane obtained by reaction with polyoxypropylene glycol, ethylene glycol, tolylene diisocyanate and glycerin,
Any material based on polyurethane resin can be used, such as a crosslinking agent made by reacting ethylene glycol and tolylene diisocyanate with amine-based catalytic diethylethanolamine. Next, the soft fluororesin, which is the most important feature of the present invention, will be explained. The present inventors proposed a method for producing a flexible fluororesin in JP-A-58-206615. From this point of view, new examination and improvement became necessary. The soft fluororesin used is made by copolymerizing one or more monomers including at least one fluorine-containing monomer with a monomer having both a double bond and a peroxy bond in the molecule. A fluorine-containing elastic copolymer (stem polymer) that contains peroxy groups and whose glass transition temperature is below room temperature.
and produce an aqueous emulsion of this stem polymer or
A fluororesin in which 40 to 70 parts by weight of vinylidene fluoride monomer is graft-polymerized to 100 parts by weight of the main polymer in a dispersion solvent, and the resin is N,N-
150g/in organic solvent such as dimethylformamide
The above-mentioned soluble fluororesin, in particular, the backbone polymer in the fluororesin is composed of a fluorine-containing copolymer whose glass transition point temperature is below room temperature. exhibits the properties of an elastic body, and conventional PTFE, PFA, FEP,
It is extremely flexible compared to fluororesins such as ETFE, PCTFE, PVDF, and PVF. The present invention is characterized by the use of such a soft fluororesin, but in order to laminate a thin film (for example, 5 to 25 microns thick) of the resin on the polyurethane synthetic leather surface, a resin solution must be applied. ,
A resin layer obtained by a so-called tearing film molding method, in which a film is formed by evaporating a solvent in a dryer, is applied. The problem with the casting film molding method for fluorine resins is that they have good organic solvent resistance, but the resin solubility is low, and furthermore, the solubility in organic solvents decreases dramatically as the fluorine content in the polymer increases. For this reason, casting film molding is not currently being carried out except for polyvinyl fluoride (PVF). However, PVF is a hard resin and cannot be said to be a good coating material for various base materials that require flexibility. As a concrete example of its application to the base material, the present inventors have improved the stain resistance, chemical resistance, etc., which are problems of polyurethane synthetic leather, while also improving the elastic touch of synthetic leather. As a result of conducting studies on how to maintain the properties of the fluorine resin, it was found that the thin film of the fluorocarbon resin according to the present invention is extremely useful as a synthetic leather coating material. The modification of resins, especially to solvent-soluble resins, has become important. The organic solvents used in the resin solution for forming the casting film are N,N-dimethylformamide (DMF) and methyl ethyl ketone (MEK).
It is common to use mixed solvents such as and toluene (TOL), and among these solvents, DMF was selected as the main compounding solvent for the flexible fluororesin because it has good solubility for the fluororesin. It is desirable that the resin concentration of the solution be at least 150g/, preferably 200g/or more.When forming a film on a casting film forming line, if it is less than 150g/, the amount of solvent evaporated during the film drying process will increase, making it economical. Not on target. As a method for increasing the solubility of soft fluororesins in solvents, the solubility is increased by graft copolymerizing vinylidene fluoride (VDF) monomers with fluorine-containing elastic copolymers (backbone polymers). It has been found. Tetrafluoroethylene monomer, chlorotrifluoroethylene monomer,
With copolymers such as tetrafluoroethylene/ethylene and chlorotrifluoroethylene/ethylene, resin swelling is observed in solvents, but at 150g/ethylene, swelling of the resin is observed.
It was difficult to solubilize any resin having a concentration higher than that. In addition, regarding the influence of the amount of VDF monomer grafted onto the backbone polymer on solubility, the appropriate range is 40 to 70 parts by weight per 100 parts by weight of the backbone polymer, and the solubility test in DMF shows that it is 40 parts by weight or less. If the amount of grafting exceeds 70 parts by weight, it will become gel-like and difficult to dissolve, and if it exceeds 70 parts by weight, the flexibility of the resin's physical properties will decrease and the rubbery properties that are characteristic of soft fluororesins will be lost. It becomes undesirable as a covering material for materials such as synthetic leather. In this way, a soft fluororesin that is soluble in DMF is produced by forming a fluorine-containing elastic copolymer (base polymer) with peroxy bonds in the first stage of the copolymerization reaction.
In the second step reaction, VDF monomers are graft copolymerized in a dispersion solvent of the copolymer obtained in the first step reaction at a temperature below which decomposes peroxy bonds and generates radicals. You can get it. The polymerization conditions of the resin (temperature, stirring number, autoclave capacity, catalyst amount, etc.) affect the degree of polymerization, and the degree of polymerization affects the resin solubility, but since the polymerization reaction is a two-step reaction and is complicated. The range of use of the resin may be selected based on the solubility of the final material, the graft copolymer, in an organic solvent containing DMF as the main ingredient. The unsaturated peroxides used here include t-butyl peroxy methacrylate, t-
Examples include unsaturated peroxyesters such as butylperoxycrotonate, and unsaturated peroxycarbonates such as t-butylperoxyallyl carbonate and P-menthane peroxyallyl carbonate. In addition, as the composition of one or more fluorine-containing monomers, an elastic polymer having a composition of fluorine rubber, a binary system of vinylidene fluoride (VDF) and hexafluoropyropene (HFP), VDF and HFP and tetrafluoroethylene (TFE), and VDF
An example is a monomer composition such as a binary system of and chlorotrifluoroethylene (CTFE). In the present invention, there is no particular restriction on the thickness of the polyurethane resin layer and soft fluororesin applied on the base material, and they are generally used at a thickness of about 0.01 to 1 mm, but they have good weather resistance and antifouling properties. There are no particular restrictions, and the thickness can be made thicker or thinner as long as the objectives of durability and flexibility are achieved. The urethane resin is applied by topping, calendering, coating, or other methods, and necessary plasticizers, stabilizers, colorants, lubricants, etc. may be freely added to the polyurethane resin within the range of customary use. . On the other hand, by adding a coloring agent to the soft fluororesin layer forming the surface layer, and further treating the resin film with surface corona discharge, chemical treatment, etc., it is possible to activate the surface roughness in order to improve adhesive performance. The present invention will be described in detail below with reference to Examples, but is not limited thereto. Examples and Comparative Example 1 Production of backbone polymer 15 kg of pure water, 30 g of potassium persulfate, 40 g of ammonium perfluorooctanoate, and 30 g of t-butylperoxyallyl carbonate were added to a 30-capacity stainless steel autoclave, and after evacuation, the vinylidene fluoride monomer was dissolved. 3.8 kg of chlorotrifluoroethylene monomer and 2.3 kg of chlorotrifluoroethylene monomer were charged, and the polymerization reaction was carried out at a temperature of 51°C for 19 hours with stirring.
At the end of the reaction, the stirring speed was increased to precipitate the polymer to obtain a powdery polymer. The yield after washing with water and drying was 5.0 kg, and the amount of active oxygen based on t-butyl peroxyallyl carbonate in the copolymer was determined to be 0.041% by iodometric titration. 2 Production of graft copolymer (Part 1) Stem polymer 144 obtained by the above copolymerization reaction
Put 1,500 g of Freon R113 into a stainless steel autoclave, and after evacuation, add the monomers shown in Table 1, VDF (Example 1), TFE (Comparative Example 1), and ethylene-CTFE (molar ratio of about 1:1). (Comparative Example 2) was charged in an amount of 100 g each, and graft polymerization was carried out at 98° C. for 22 hours. The produced polymer was separated from the solvent, washed with water, and dried to obtain the results shown in Table 1.

【衚】  溶解性詊隓その 䞊蚘グラフト共重合で埗られたポリマヌ50
を倫々300mlのビヌカヌに入れ、−ゞメ
チルホルムアミドDMF、詊薬䞀玚を225ml
を加えお、䞉田村理研工業(æ ª)補ラボラトリヌデ
むスパヌザヌにお20分間撹拌し、䞀昌倜宀枩に
お静眮埌、メチル゚チルケトン25mlを添加し
お、再床ラボラトリヌデむスパヌザヌにお分
間撹拌埌静眮し、ポリマヌ溶解液の性状を芳察
し、粘床を枬定した。その結果を第衚に瀺
す。
[Table] 3 Solubility test (Part 1) 50g of polymer obtained from the above graft copolymerization
Place each in a 300 ml beaker and add 225 ml of N,N-dimethylformamide (DMF, first grade reagent).
was added, stirred for 20 minutes using a laboratory disperser manufactured by Mitamura Riken Kogyo Co., Ltd., and allowed to stand overnight at room temperature, then 25 ml of methyl ethyl ketone was added, stirred again using a laboratory disperser for 5 minutes, and then allowed to stand. The properties of the polymer solution were observed and the viscosity was measured. The results are shown in Table 2.

【衚】 䞊蚘結果により、VDFグラフト共重合䜓は
溶解するが、TFEおよび−CTFE共重合䜓
は溶解液ずならず、キダステむングフむルム成
圢甚暹脂ずしお䞍適であ぀た。  グラフト共重合䜓の補造その 䞊蚘の共重合䜓反応で埗られた幹ポリマヌ
144ずフロンR113、1500をステンレス補オ
ヌトクレヌブに仕蟌み、排気埌、VDF単量䜓
を第衚に瀺すようにその仕蟌量を倉化させお
仕蟌み、98℃、22時間でグラフト重合を行な぀
た。 生成したポリマヌを溶媒ず分離埌氎掗也燥
し、䞋蚘衚の結果を埗た。
[Table] According to the above results, the VDF graft copolymer was dissolved, but the TFE and E-CTFE copolymers were not dissolved and were unsuitable as resins for casting film molding. 4 Production of graft copolymer (Part 2) Stem polymer obtained by the above copolymer reaction
144 g and 1500 g of Freon R113 were placed in a stainless steel autoclave, and after evacuation, VDF monomer was charged in varying amounts as shown in Table 3, and graft polymerization was carried out at 98°C for 22 hours. The produced polymer was separated from the solvent, washed with water, and dried to obtain the results shown in the table below.

【衚】 ト増加量
 溶解性詊隓およびせん断匟性率の枬定 䞊蚘VDFグラフト共重合䜓で埗られたポリ
マヌに぀いお前蚘の溶解性詊隓法により、溶解
液の性状を芳察し、型粘床蚈を甚い、25℃に
おける粘床を枬定した。 たた、VDFグラフト共重合䜓を加熱ロヌル
で玠緎り埌、mm厚のシヌトを加熱プレスにお
成圢し、捩れ自由枛衰型粘匟性枬定装眮レス
カ瀟補RD−1100AD型、詊隓片寞法、cm×
cm×mm厚にお30℃におけるせん断匟性率
を枬定した。その結果を第衚に瀺す。
[Table] Increase in amount 5 Solubility test and shear modulus measurement For the polymer obtained with the VDF graft copolymer, the properties of the solution were observed using the solubility test method described above, and using a B-type viscometer. , the viscosity at 25°C was measured. In addition, after masticating the VDF graft copolymer with a heated roll, a 1 mm thick sheet was formed using a heated press, and a torsional free damping type viscoelasticity measuring device (Model RD-1100AD manufactured by Resca, test piece size, 8 cm ×
The shear modulus at 30°C was measured at 1 cm x 1 mm thick). The results are shown in Table 4.

【衚】 参考倀。
䞊蚘結果より、幹ポリマヌ100重量郚に察し
おのVDFグラフト量が40重量郚未満ではポリ
マヌの溶解液䜜成で問題があり、䞀方、70重量
郚を超えるず、ポリマヌのせん断匟性率が倧き
くなり、フむルムが硬くなるため合成皮革の衚
面材ずしおは䜿甚が奜たしくない。 たた、垂販のPVDF暹脂ペンりオルト瀟
補およびPTFE暹脂ダむキン瀟補に぀い
お、せん断匟性率を枬定した結果、30℃での枬
定倀は、 PVDF ×109 dynecm2 PTFE ×109 dynecm2 であり、圓該軟質フツ玠暹脂よりもPVDFおよ
びPTFEはより硬い暹脂であり、合成皮革被芆
材ずしおは奜たしくない。  合成皮革の䜜成 ポリプロピレン補離型玙䞊に前蚘溶解性詊隓
で補䜜した実斜䟋の溶解液VDFグラフト
量54重量郚、濃床200を第衚実斜䟋
に瀺す組成で塗垃し、100℃分間也燥し、固
圢分付着量20m2の衚面局10Όを圢成
させた。次いで第衚に瀺す組成の二液性ポリ
りレタン暹脂からなる接着剀を塗垃し、80℃で
分間也燥しお固圢分付着量40m2のポリり
レタン接着局20Όを圢成させたのち、盎
ちにクロス基材mmに貌り合わせ、垞枩で
24時間熟成を行぀た。しかるのち離型玙を剥離
しおフツ玠暹脂被芆の合成皮革を䜜成した。た
た、比范䟋ずしお同様な加工仕様により、ポリ
りレタン合成皮革を䜜成した。その組成仕様を
第衚に、評䟡テストの結果を第衚に瀺し
た。  合成皮革の詊隓方法 (1) 耐光性詊隓 JISA−6921「壁玙」に準じた方法でテスト
した。 (2) NOxè©Šéš“ 亜硝酞ナトリりム 0.4 垌硫酞 10ml デシケヌタヌの内壁に任意の倧きさの詊料
を貌り、デシケヌタヌ内に䞊蚘薬品を時蚈皿
に入れデシケヌタヌの蓋を閉め10分間埌に詊
料を取り出し刀定した。 評䟡方法は段階衚瀺でが最高倀を瀺
す。 (3) 耐薬品性、耐汚染性詊隓 倫々の共詊液滎䞋液を氎平に保持され
た合成皮革䞊に、玄1.0〜1.5ml滎䞋し24時間
埌湿垃で拭お取り也燥埌、䟛詊液を再床同䞀
堎所に滎䞋する操䜜を回くり返し目芖芳察
で評䟡し、倉化なし○、かすかに着色汚染
△、明らかに着色汚染が認められたものを×
ずした。 (4) 颚合いは、肌合觊感による評䟡で○は優で
ある。 (5) 掗濯性は倉化なしを○ずした。
[Table] Reference values.
From the above results, if the amount of VDF grafted to 100 parts by weight of the main polymer is less than 40 parts by weight, there will be a problem in creating a polymer solution, while if it exceeds 70 parts by weight, the shear modulus of the polymer will increase. Because the film becomes hard, it is not preferable to use it as a surface material for synthetic leather. In addition, as a result of measuring the shear modulus of commercially available PVDF resin (manufactured by Pennwalt) and PTFE resin (manufactured by Daikin), the measured value at 30°C was: PVDF 8 × 10 9 dyne/cm 2 PTFE 2 × 10 9 dyne/cm 2 , and PVDF and PTFE are harder resins than the soft fluororesin, and are not preferred as synthetic leather covering materials. 6. Preparation of synthetic leather The solution of Example 3 prepared in the above solubility test (54 parts by weight of VDF graft, concentration 200 g/) was applied onto a polypropylene release paper with the composition shown in Table 5 Example. It was dried for 1 minute at °C to form a surface layer (10 ÎŒm) with a solid content of 20 g/m 2 . Next, an adhesive made of a two-component polyurethane resin having the composition shown in Table 5 was applied and dried at 80°C for 1 minute to form a polyurethane adhesive layer (20 ÎŒm) with a solid content coverage of 40 g/m 2 . Immediately adhere to a cloth base material (1 mm) and leave at room temperature.
It was aged for 24 hours. Thereafter, the release paper was peeled off to create a fluororesin-coated synthetic leather. In addition, as a comparative example, polyurethane synthetic leather was created using the same processing specifications. The composition specifications are shown in Table 5, and the results of the evaluation test are shown in Table 6. 7 Test method for synthetic leather (1) Light resistance test Tested in accordance with JISA-6921 "Wallpaper". (2) NO x test Sodium nitrite 0.4g Dilute sulfuric acid 10ml A sample of any size was pasted on the inner wall of a desiccator, the above chemicals were placed in a watch glass, the lid of the desiccator was closed, and after 10 minutes the sample was taken out and evaluated. . The evaluation method is a 5-level scale, with 5 being the highest value. (3) Chemical resistance and stain resistance test Approximately 1.0 to 1.5 ml of each test solution (dropped solution) was dropped onto synthetic leather held horizontally. After 24 hours, wiped with a compress and dried. The operation of dropping the liquid on the same spot was repeated 7 times and visually observed, and the results were evaluated as ○ with no change, △ with faint colored contamination, and × with obvious colored contamination.
And so. (4) Texture was evaluated based on the feel against the skin, and ○ means excellent. (5) No change in washability was rated as ○.

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  基板材にポリりレタン暹脂局を介しお、被芆
するフツ玠暹脂が、すくなくずも䞀皮の含フツ玠
単量䜓を含む䞀皮以䞊の単量䜓ず、分子内に二重
結合ずペルオキシ結合を同時に有する単量䜓ずを
共重合せしめお、そのガラス転䜍枩床が、宀枩以
䞋である含フツ玠匟性共重合䜓幹ポリマヌを
補造し、該幹ポリマヌ100重量郚に察しおフツ化
ビニリデン単量䜓を40〜70重量郚グラフト重合せ
しめた軟質系フツ玠暹脂からなる被芆材。
1. The fluororesin coated on the substrate material via a polyurethane resin layer contains at least one kind of monomer containing at least one kind of fluorine-containing monomer and a monomer having both a double bond and a peroxy bond in the molecule. A fluorine-containing elastic copolymer (stem polymer) whose glass transition temperature is below room temperature is produced by copolymerizing the vinylidene fluoride monomer with 100 parts by weight of the backbone polymer. A coating material made of a soft fluororesin grafted with 40 to 70 parts by weight.
JP17721687A 1987-07-17 1987-07-17 Fluoroplastic covered material Granted JPS6422547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17721687A JPS6422547A (en) 1987-07-17 1987-07-17 Fluoroplastic covered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17721687A JPS6422547A (en) 1987-07-17 1987-07-17 Fluoroplastic covered material

Publications (2)

Publication Number Publication Date
JPS6422547A JPS6422547A (en) 1989-01-25
JPH052503B2 true JPH052503B2 (en) 1993-01-12

Family

ID=16027189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17721687A Granted JPS6422547A (en) 1987-07-17 1987-07-17 Fluoroplastic covered material

Country Status (1)

Country Link
JP (1) JPS6422547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031850A (en) * 2005-07-22 2007-02-08 Toray Coatex Co Ltd Synthetic leather having oil-repellent stain-resistant performance

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615225B2 (en) * 1989-04-17 1994-03-02 セントラル硝子株匏䌚瀟 STRUCTURAL MEMBRANE MATERIAL, MEMBRANE STRUCTURE, AND METHOD FOR PRODUCING THEM
JPH03113619U (en) * 1990-03-07 1991-11-20
JP3327447B2 (en) * 1995-12-04 2002-09-24 セントラル硝子株匏䌚瀟 Adhesive for vinylidene fluoride resin
EP0781824B1 (en) * 1995-12-27 2001-07-25 Central Glass Company, Limited Adhesive for bonding together vinylidene fluoride resin and substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031850A (en) * 2005-07-22 2007-02-08 Toray Coatex Co Ltd Synthetic leather having oil-repellent stain-resistant performance

Also Published As

Publication number Publication date
JPS6422547A (en) 1989-01-25

Similar Documents

Publication Publication Date Title
US2773050A (en) Water vapor permeable compositions and articles containing a polyacrylic ester and polyvinyl alcohol
JP2000517360A (en) Method of improving adhesion between fluoropolymer and hydrocarbon substrate
JPH0559942B2 (en)
US7345111B2 (en) Acrylic polymer emulsion and glove formed from the same
KR101790918B1 (en) Moisture-permeable waterproof fabric and method for manufacturing same
JPH052503B2 (en)
US5863657A (en) Adhesive for bonding together vinylidene fluoride resin and substrate
JPH0615225B2 (en) STRUCTURAL MEMBRANE MATERIAL, MEMBRANE STRUCTURE, AND METHOD FOR PRODUCING THEM
EP0098091A2 (en) Polymer compositions and their use in producing binders, coatings and adhesives and substrates coated or impregnated therewith
KR101665226B1 (en) Moisture-permeable waterproof fabric
US5795654A (en) Adhesive for bonding together polyvinylidene fluoride resin and substrate
JPH01185376A (en) Coating fluorocarbon resin and fluorocarbon resin solution
JP2000192329A (en) Yarn composed of functional grafted polyurethane and its production
JPS6116769B2 (en)
US3330886A (en) Graft copolymers of polyvinyl chloride with butadiene, acrylate ester and diethylenic compound
JP3652858B2 (en) Chloroprene-based copolymer latex and adhesive composition thereof
JPS63286340A (en) Laminate of soft fluorine resin and rubber
JPH03182538A (en) Fluororesin coating solution
JPH0576968B2 (en)
JP7111160B2 (en) ANTI-SLIP PROCESSING AGENT, ANTI-SLIP FIBERS AND METHOD FOR MANUFACTURING ANTI-SLIP FIBERS
JPS5840312A (en) Production of flexible thermoplastic resin
US2829066A (en) Antistatic copolymer of sulfonated styrene and vinyl-pyridine and treatment therewith of synthetic shaped articles
JPH034381B2 (en)
US3833684A (en) Stable,homogeneous solutions of polyalkyl glutamates containing dissolved elastomers
JPH02135269A (en) Fluororesin solution for coating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees