JPH0524986A - Vapor phase synthesis method for diamond - Google Patents

Vapor phase synthesis method for diamond

Info

Publication number
JPH0524986A
JPH0524986A JP20230591A JP20230591A JPH0524986A JP H0524986 A JPH0524986 A JP H0524986A JP 20230591 A JP20230591 A JP 20230591A JP 20230591 A JP20230591 A JP 20230591A JP H0524986 A JPH0524986 A JP H0524986A
Authority
JP
Japan
Prior art keywords
substrate
diamond
thin film
microwave
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20230591A
Other languages
Japanese (ja)
Other versions
JP2640053B2 (en
Inventor
Michifumi Nika
通文 丹花
Hirobumi Tashiro
博文 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP20230591A priority Critical patent/JP2640053B2/en
Publication of JPH0524986A publication Critical patent/JPH0524986A/en
Application granted granted Critical
Publication of JP2640053B2 publication Critical patent/JP2640053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for manufacturing a diamond thin film coated tool capable of increasing adhesivity between a substrate and a diamond thin film by a microwave plasma CVD method. CONSTITUTION:The circumference of a substrate 2 is deposited with a conductive thin sheet-shaped frame 3 in such a manner that the direction of the frame 3 is made perpendicular to the electric field direction of a microwave as well as the length in the electric filed direction of the microwave of the frame 3 is increased more than that of the substrate 2, by which the surface of the substrate is coated with a diamond thin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気相合成法によるダイ
ヤモンド薄膜を被覆した切削チップ、ドリル或はフライ
ス等の工具分野において、基体とダイヤモンド薄膜との
密着力を改良する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving the adhesion between a substrate and a diamond thin film in the field of tools such as a cutting tip, a drill or a milling cutter coated with a diamond thin film by a vapor phase synthesis method.

【0002】[0002]

【従来の技術】今日、ダイヤモンドが低圧で気相から容
易に合成できるようになり、気相合成法の特徴を生かし
た応用開発が盛んに進められている。気相合成法による
ダイヤモンド薄膜を機械工具分野で実用化する上での最
大の問題は、基体とダイヤモンド薄膜との間の密着性が
低く実用に耐えないことである。この密着性が低い最大
の原因は、基体とダイヤモンドとの熱膨張率の違いから
生じる応力、即ち基体にダイヤモンド薄膜を被覆すると
きと、ダイヤモンド薄膜を被覆した後冷却したときの温
度差により生じる残留応力に起因する。これまでにダイ
ヤモンドの気相合成法において、基体とダイヤモンド薄
膜との密着力を改良する方法として数多くの方法が提案
されている。例えば、次のような方法がある。 1)公開特許公報平2−188494 2)公開特許公報平2−188495 1)の方法は、基体の薄膜被形成面と保持部材の表面と
を同一面とすることにより、プラズマが該基体の薄膜被
形成面の局所に集中するのを防止して、ダイヤモンド薄
膜を膜厚が均一になるように形成する方法に関する。そ
して2)の方法は、凸状部を有する基体の凸状部に近接
して補助部材を存在させることにより、非平板状の特殊
形状を有する基体にダイヤモンド薄膜を形成する方法に
関する。
2. Description of the Related Art Today, diamond can be easily synthesized from a vapor phase at a low pressure, and application development utilizing the characteristics of the vapor phase synthesis method is actively pursued. The biggest problem in putting the diamond thin film by the vapor phase synthesis method into practical use in the field of mechanical tools is that the adhesion between the substrate and the diamond thin film is low and it cannot be put to practical use. The main reason for this low adhesion is the stress caused by the difference in the coefficient of thermal expansion between the substrate and diamond, that is, the residual temperature that occurs when the substrate is coated with a diamond thin film and when the diamond thin film is coated and then cooled. Due to stress. In the vapor phase synthesis method of diamond, many methods have been proposed to improve the adhesion between the substrate and the diamond thin film. For example, there are the following methods. 1) Japanese Unexamined Patent Publication No. 2-188494 2) Japanese Unexamined Patent Publication No. 2-188495 1) is a method in which the surface of a substrate on which a thin film is formed and the surface of a holding member are flush with each other, so that plasma causes The present invention relates to a method for forming a diamond thin film having a uniform film thickness while preventing the diamond film from being locally concentrated on the formation surface. The method 2) relates to a method of forming a diamond thin film on a substrate having a non-planar special shape by allowing an auxiliary member to exist in the vicinity of the convex portion of the substrate having a convex portion.

【0003】マイクロ波プラズマCVD法により基体表
面にダイヤモンド薄膜を被覆する際には、基体のエッジ
部から放電が起こり易く、放電部位では1000℃以上
の高温となる。前記1)の方法によっては、基体の薄膜
被形成面と保持部材の表面が同一面であるから、基体の
エッジ部からの放電を完全に抑制することはできず、放
電部位では実用に耐えるだけの密着力が得られないとい
う問題、即ち実施例1にみられるようにダイヤモンド薄
膜を被覆した後冷却して取り出した時点で5%の割合で
剥離が生じてしまう。また保持部材の容積及び材質を勘
案すると保持部材の熱容量が基体と比較して同程度に大
きいことが予測され、基体の側面においては、原料ガス
がプラズマによって励起されて生じた励起種が保持部材
により急冷されるため、グラファイトが形成され易くな
るという問題がある。また2)の方法によっても、凸状
部を有する薄膜被形成部材の凸部と補助部材との間で放
電が起こり易く、前記1)の方法と同様に実用に耐える
密着力が得られないという問題、並びに前記凸部にダイ
ヤモンドが形成され易いCVD条件を設定すると、側面
においてはグラファイトが形成され易くなるという問題
がある。
When the diamond thin film is coated on the surface of the substrate by the microwave plasma CVD method, discharge is likely to occur from the edge portion of the substrate, and the temperature at the discharge site becomes 1000 ° C. or higher. According to the method 1), since the thin film formation surface of the substrate and the surface of the holding member are on the same surface, it is not possible to completely suppress the discharge from the edge portion of the substrate and only to endure practical use at the discharge site. That is, the adhesion cannot be obtained, that is, as shown in Example 1, peeling occurs at a rate of 5% when the diamond thin film is coated and then cooled and taken out. Further, considering the volume and material of the holding member, it is expected that the heat capacity of the holding member is about the same as that of the base body, and on the side surface of the base body, the excited species generated by exciting the source gas by the plasma is the holding member. Therefore, there is a problem that graphite is likely to be formed because of rapid cooling. Further, also by the method of 2), discharge is likely to occur between the convex portion of the thin film forming member having the convex portion and the auxiliary member, and it is not possible to obtain the practical adhesion strength as in the method of 1) above. There is a problem that if the CVD condition is set so that diamond is easily formed on the convex portion, graphite is easily formed on the side surface.

【0004】[0004]

【発明が解決しようとする課題】ダイヤモンドが低圧で
気相から得られるようになり、現在広範な応用展開が盛
んに進められているが、基体とダイヤモンド薄膜との密
着性の問題及び任意の形状をした基体表面を被覆する技
術に関しては、未だに解決されてはいない。
Although diamond has been obtained from the gas phase at a low pressure and a wide range of applications are being developed at present, the problem of adhesion between the substrate and the diamond thin film and any shape are desired. The technique for coating the surface of the substrate having the heat treatment has not been solved yet.

【0005】本発明の目的は、前記課題を解決するため
になされたものであり、切削用チップのような平板状の
基体表面及びドリルのような棒状の基体表面に至るま
で、マイクロ波プラズマCVD法によりダイヤモンド薄
膜を被覆することができ、且つ工具として実用に耐える
ダイヤモンド薄膜との密着力が得られるダイヤモンドの
気相合成法を提供することである。
The object of the present invention is to solve the above-mentioned problems, and microwave plasma CVD is applied to a flat substrate surface such as a cutting tip and a rod substrate surface such as a drill. A vapor phase synthesis method of diamond capable of coating a diamond thin film by a method and obtaining an adhesion force with a diamond thin film that can be practically used as a tool.

【0006】[0006]

【課題を解決するための手段】TEモ−ドのマイクロ波
プラズマCVD法によるダイヤモンドの気相合成法にお
いて、基体表面から直接マイクロ波放電が起こることを
抑制し、基体から離れたところでマイクロ波プラズマを
発生させ、該プラズマ中で原料ガスを励起し、そして該
励起種を基体表面に導き、最適なCVD条件でダイヤモ
ンド薄膜を被覆することができれば、ダイヤモンド薄膜
と基体との密着性が向上するだろうと予測し、そしてそ
の技術を実現することができて、本発明に至った。
In the vapor phase synthesis method of diamond by the TE plasma microwave plasma CVD method, it is possible to suppress the occurrence of microwave discharge directly from the surface of the substrate, and to place the microwave plasma away from the substrate. If the raw material gas is excited in the plasma and the excited species are guided to the surface of the substrate so that the diamond thin film can be coated under the optimum CVD conditions, the adhesion between the diamond thin film and the substrate will be improved. We were able to anticipate it and realize the technology, which led to the present invention.

【0007】即ち、TEモ−ドのマイクロ波プラズマC
VD法によるダイヤモンドの気相合成法において、基体
の周囲に、導電性の薄板状の枠を、該枠の面の方向がマ
イクロ波の電場方向に対して垂直となり、且つ該枠のマ
イクロ波の電場方向における長さが基体よりも長くなる
ように配置することにより、基体とダイヤモンド薄膜と
の密着力を向上することができた。特に薄板状の枠とし
て、金網を用いることにより、基体の側面にもグラファ
イトの含有率の低いダイヤモンド薄膜を被覆することが
できた。
That is, the microwave plasma C in TE mode
In the vapor phase synthesis method of diamond by the VD method, a conductive thin plate-shaped frame is provided around the base, and the direction of the frame surface is perpendicular to the electric field direction of the microwave, and the microwave of the frame is By arranging so that the length in the direction of the electric field is longer than that of the substrate, the adhesion between the substrate and the diamond thin film could be improved. In particular, by using a wire mesh as the thin plate-shaped frame, it was possible to coat the side surface of the substrate with the diamond thin film having a low graphite content.

【0008】導電性の薄板状の枠の材質としては、耐熱
性が高く、グラファイトの形成を促進せずマイクロ波放
電により加熱されて熱電子を放出し易いもの、具体的に
はモリブデン、タンタル或いはタングステン等が好まし
い。薄板状の枠の肉厚は、0.01〜3mm、特に0.
1〜1mmの範囲であることが好ましい。枠が薄いとマ
イクロ波放電により溶融し、逆に厚いと薄板状の枠の熱
容量が大きくなり、原料ガスがプラズマによって励起さ
れて生じた励起種が枠により冷却されるため、基体の側
面ではグラファイトが形成され易くなる。薄板状の枠の
マイクロ波電場方向における長さは、基体より0.1〜
20mm特に1〜10mmの範囲で長くすることが好ま
しい。短いと基体のエッジ部からの放電を完全には抑制
できず、逆に長いとプラズマと基体との距離が遠くなる
ため、基体表面ではグラファイトが形成され易くなる。
薄板状の枠と基体との間隔は、0.1〜10mm、特に
1〜5mmの範囲とすることが好ましい。間隔が短いと
基体がプラズマの熱の影響を大きく受けるため密着力が
上がらず、逆に長いとプラズマと基体との距離が遠くな
るため、グラファイトが形成され易くなる。薄板状の枠
の構造としては、メッシュ状であることが特に好まし
い。この理由は、原料ガスがメッシュ状の枠のメッシュ
を通過するときに、メッシュ状の枠がマイクロ波放電に
より赤熱されて放出する熱電子により励起されるから、
基体の側面でも上面と同様にダイヤモンドが形成される
最適なCVD条件を満足することができるからである。
薄板状の枠としてメッシュ状の枠を用いるときには、メ
ッシュを構成する縦の線の方向がマイクロ波の電場方向
に対して平行になるように設置することによって、基体
のエッジ部からの放電を抑制することができる。メッシ
ュ状の枠の構成は、金網を構成する線の径が0.01〜
1mm、目開きが0.01〜2mmである。線径が細い
とプラズマの温度により金網が溶融し、太いと線の影響
で基体表面のダイヤモンド薄膜の形成にむらが生じる。
また目開きが小さいと基体の側面ではグラファイトが形
成され易くなり、逆に大きいと基体のエッジ部から放電
が起こり易くなる。
As the material of the conductive thin plate frame, a material having a high heat resistance and easily emitting thermoelectrons when heated by microwave discharge without promoting the formation of graphite, specifically, molybdenum, tantalum or Tungsten or the like is preferable. The thin plate-shaped frame has a wall thickness of 0.01 to 3 mm, particularly 0.
It is preferably in the range of 1 to 1 mm. If the frame is thin, it is melted by microwave discharge, and conversely, if it is thick, the heat capacity of the thin plate-like frame is large, and the excited species generated when the source gas is excited by the plasma are cooled by the frame, so that the graphite is Are easily formed. The length of the thin plate-shaped frame in the microwave electric field direction is 0.1 to 0.1 mm from the base.
The length is preferably 20 mm, particularly 1 to 10 mm. If the length is short, the discharge from the edge portion of the substrate cannot be completely suppressed, and conversely, if the length is long, the distance between the plasma and the substrate becomes long, so that graphite is likely to be formed on the surface of the substrate.
The distance between the thin plate-shaped frame and the substrate is preferably 0.1 to 10 mm, particularly preferably 1 to 5 mm. If the interval is short, the substrate is greatly affected by the heat of the plasma, so that the adhesion is not improved. On the contrary, if the interval is long, the distance between the plasma and the substrate becomes large, so that graphite is easily formed. The structure of the thin plate frame is particularly preferably a mesh. The reason for this is that when the source gas passes through the mesh of the mesh-shaped frame, the mesh-shaped frame is red-heated by the microwave discharge and excited by the emitted thermoelectrons,
This is because, like the upper surface, the side surface of the substrate can also satisfy optimum CVD conditions for forming diamond.
When using a mesh-shaped frame as a thin plate-shaped frame, suppress the discharge from the edge of the substrate by installing so that the direction of the vertical lines that make up the mesh is parallel to the electric field direction of the microwave. can do. The mesh-shaped frame has a wire diameter of 0.01-
It is 1 mm and the opening is 0.01 to 2 mm. If the wire diameter is small, the wire mesh will be melted by the temperature of the plasma, and if the wire diameter is thick, unevenness will occur in the formation of the diamond thin film on the substrate surface due to the effect of the wire.
If the mesh size is small, graphite is likely to be formed on the side surface of the substrate, and conversely, if the mesh size is large, discharge easily occurs from the edge portion of the substrate.

【0009】本発明においては基体として、超硬合金、
サ−メット及びセラミックス等で構成される成形物を用
いることができる。
In the present invention, as the substrate, a cemented carbide,
A molded product made of cermet, ceramics or the like can be used.

【0010】ダイヤモンドの原料ガスとしては、公知の
任意のガスを用いることができる。
Any known gas can be used as the raw material gas for diamond.

【0011】[0011]

【作用】基体の周囲に、導電性の薄板状の枠を、枠の面
の方向がマイクロ波の電場方向に対して垂直となり、且
つ枠のマイクロ波の電場方向における長さが基体よりも
長くなるように配置して、基体よりもマイクロ波の電場
方向に長い枠の先端から優先的にマイクロ波放電を起こ
させることによって、プラズマの位置を制御することが
できる。このようにして基体から直接マイクロ波放電が
起こるのを抑制することにより、基体とダイヤモンドと
の熱膨張率の違いによる残留応力を緩和することができ
る。更に、導電性の薄板状の枠の肉厚を薄くして熱容量
を小さく抑えることにより、枠がマイクロ波放電により
赤熱されて熱電子放射材として作用し、熱電子を放出し
て枠近辺の原料ガスを励起するから、基体の側面におい
てもダイヤモンド薄膜を被覆することができる。
A conductive thin plate-shaped frame is provided around the base, and the direction of the plane of the frame is perpendicular to the electric field direction of the microwave, and the length of the frame in the microwave electric field direction is longer than that of the base. The position of the plasma can be controlled by preferentially causing the microwave discharge from the tip of the frame that is longer than the substrate in the electric field direction of the microwave. In this way, by suppressing the occurrence of microwave discharge directly from the substrate, it is possible to relieve the residual stress due to the difference in the coefficient of thermal expansion between the substrate and diamond. Furthermore, by reducing the thickness of the conductive thin plate frame to keep the heat capacity small, the frame is red-heated by the microwave discharge and acts as a thermoelectron emitting material, emitting thermoelectrons and emitting raw materials near the frame. Since the gas is excited, the diamond thin film can be coated also on the side surface of the substrate.

【0012】[0012]

【実施例】以下に、本発明を実施例により説明する。 実施例1 図1は、本発明の実施例に用いられる反応装置の概略構
成断面図である。図1において、反応器1の内部に基体
として外径1mmの超硬合金製ドリル(JISK10)
2を設置し、その周囲に線径0.02mmで目開き0.
5mmのタングステン製金網3を円筒状に設置した。こ
の時、ドリルと金網との間隔は1.2mmとし、金網の
マイクロ波の電場方向の長さは基体よりも5mm長くな
るようにした。
EXAMPLES The present invention will be described below with reference to examples. Example 1 FIG. 1 is a schematic configuration sectional view of a reaction apparatus used in an example of the present invention. In FIG. 1, a cemented carbide drill (JISK10) with an outer diameter of 1 mm is used as a substrate inside the reactor 1.
2 is installed, and the wire diameter is 0.02 mm and the opening is 0.
A 5 mm tungsten wire mesh 3 was installed in a cylindrical shape. At this time, the distance between the drill and the wire mesh was 1.2 mm, and the length of the wire mesh in the microwave electric field direction was 5 mm longer than that of the substrate.

【0013】そして真空装置により、反応器を5×10
-6Torrまで排気した後、基体ホルダ−4に交流を印
加して600℃に昇温し、水素を200SCCM(標準
状態換算で毎分当たり立方センチメ−トル)、メタンを
2SCCMの割合で供給し、圧力を50Torrに調整
した。
Then, by using a vacuum device, the reactor was 5 × 10 5.
After exhausting to -6 Torr, an alternating current is applied to the substrate holder-4 to raise the temperature to 600 ° C., hydrogen is supplied at a rate of 200 SCCM (standard state conversion is cubic centimeter per minute), and methane is supplied at a rate of 2 SCCM. The pressure was adjusted to 50 Torr.

【0014】続いてTEモ−ドのマイクロ波600Wを
マイクロ波発振機からアイソレ−タ−、パワ−モニタ
−、スリ−スタブチュ−ナ−及び導波管5そして石英ガ
ラス6を通して反応器に導入した。
Subsequently, a TE mode microwave of 600 W was introduced into the reactor from a microwave oscillator through an isolator, a power monitor, a three-stub tuner, a waveguide 5 and a quartz glass 6. .

【0015】すると金網の先端部から放電が起こり、金
網の先端を包み込むようにプラズマが発生し、金網はマ
イクロ波放電により赤熱した。この時、ドリルからの放
電は認められなかった。以上の条件で8時間ドリル表面
にダイヤモンド薄膜を被覆した。
Then, electric discharge was generated from the tip of the wire mesh, plasma was generated so as to wrap around the tip of the wire mesh, and the wire mesh was red-heated by the microwave discharge. At this time, discharge from the drill was not recognized. Under the above conditions, the drill surface was coated with a diamond thin film for 8 hours.

【0016】その結果、ドリル先端から10mmの長さ
にわたり、ドリル表面に4μmのダイヤモンド薄膜が被
覆された。
As a result, a 4 μm diamond thin film was coated on the surface of the drill over a length of 10 mm from the tip of the drill.

【0017】このドリルを用いて、厚さ1.5mmのガ
ラスエポキシプリント基板(G10相当)に、回転数1
0,000rpmそして送り0.05mm/回転の条件
で穴あけ加工を施したところ、ダイヤモンド薄膜の剥離
は全く認められなかった。
Using this drill, a glass epoxy printed circuit board (equivalent to G10) having a thickness of 1.5 mm was rotated at a rotation speed of 1
When drilling was performed under the conditions of 10,000 rpm and a feed rate of 0.05 mm / revolution, no peeling of the diamond thin film was observed.

【0018】比較例1 図2は、本発明の比較例に用いられる反応装置の概略構
成断面図である。図2において、反応器1の内部に基体
として実施例1で用いた同じ材質及び同じ形状のドリル
2、並びに補助部材として線径が1mmのタングステン
線7をドリルの先端との距離が1mmとなるように配置
した。そのほかの条件は実施例1と同様の条件で基体表
面にダイヤモンド薄膜の被覆を試みた。
Comparative Example 1 FIG. 2 is a schematic sectional view of a reactor used in a comparative example of the present invention. In FIG. 2, a drill 2 having the same material and shape as used in Example 1 as a substrate inside a reactor 1, and a tungsten wire 7 having a wire diameter of 1 mm as an auxiliary member has a distance of 1 mm from the tip of the drill. It was arranged as follows. Other conditions were the same as in Example 1, and an attempt was made to coat the surface of the substrate with a diamond thin film.

【0019】するとドリルの先端から放電が発生してい
た。そして2時間経過すると放電による熱のためにドリ
ルが曲がっていた。そして8時間の後にドリルを取り出
したところ、温度が上がり過ぎたためにダイヤモンドの
形成は認められなかった。
Then, discharge was generated from the tip of the drill. After 2 hours, the drill was bent due to the heat generated by the discharge. When the drill was taken out after 8 hours, the formation of diamond was not recognized because the temperature was too high.

【0020】実施例2 実施例1において、基体としてドリルに代えて超硬合金
製切削用スロ−アウェイチップ(JIS K10、TN
GG160404R)を設置し、その周囲に肉厚が0.
5mmのモリブデン製の薄板をマイクロ波の電場方向の
長さが基体よりも1.1mmほど長く基体との間隔が
2.0mmとなるように設置したほかは、実施例1と同
様の条件で基体表面に20時間ダイヤモンド薄膜を被覆
した。
Example 2 In Example 1, instead of a drill as a substrate, a cemented carbide cutting slow-away tip (JIS K10, TN) was used.
GG160404R) is installed and the wall thickness is around 0.
Substrate under the same conditions as in Example 1 except that a 5 mm thin plate made of molybdenum was installed such that the length of the microwave in the electric field direction was 1.1 mm longer than the substrate and the distance to the substrate was 2.0 mm. The surface was coated with a diamond film for 20 hours.

【0021】するとモリブデン製の枠に沿って放電が起
こり、基体を包み込むようにプラズマが発生し、枠はマ
イクロ波放電により赤熱した。この時基体からの直接の
放電は認められなかった。
Then, discharge was generated along the molybdenum frame, plasma was generated so as to wrap the substrate, and the frame was red-heated by the microwave discharge. At this time, no direct discharge from the substrate was observed.

【0022】その結果、基体上面並びに上面から1mm
の幅で側面にも厚さが10μmのダイヤモンド薄膜が被
覆された。
As a result, the upper surface of the substrate and 1 mm from the upper surface
And the side surface was coated with a diamond thin film having a thickness of 10 μm.

【0023】この切削チップを用いて、シリコン12w
t%含有アルミニウム合金の丸棒を切削速度が300m
/min、送りが0.15mm、切り込みが0.5mm
の切削条件で、10分間CNC旋盤により切削評価した
ところ、全くダイヤモンド薄膜の剥離は認められなかっ
た。
Using this cutting tip, silicon 12w
Cutting speed of round bar of aluminum alloy containing t% is 300m
/ Min, feed 0.15 mm, notch 0.5 mm
When the cutting was evaluated by a CNC lathe for 10 minutes under the above cutting conditions, no peeling of the diamond thin film was observed.

【0024】比較例2 実施例2において、同じ材質及び形状の超硬合金性切削
用スロ−アウェイチップの周囲に、マイクロ波電場方向
の長さがスロ−アウェイチップの長さと全く同じ長さ
で、スロ−アウェイチップとの間隔が1mmとなるよう
に、巾が5mmの材質がJIS K10相当の補助部材
を設置したほかは、実施例2と同様な条件で基体表面に
ダイヤモンド薄膜を被覆した。
Comparative Example 2 In Example 2, the length in the microwave electric field direction was exactly the same as the length of the throw-away tip around the throw-away tip for cemented carbide cutting made of the same material and shape. A diamond thin film was coated on the surface of the substrate under the same conditions as in Example 2 except that an auxiliary member having a width of 5 mm and a material equivalent to JIS K10 was installed so that the distance from the throw-away tip was 1 mm.

【0025】すると基体のエッジ部2箇所で放電が起こ
り、ダイヤモンド薄膜を被覆後室温に冷却してスロ−ア
ウェイチップを取り出したところ、放電が起こっていた
部分ではダイヤモンド薄膜が剥離した。
Then, discharge was generated at two points on the edge of the substrate, the diamond thin film was coated and then cooled to room temperature to take out the throw-away chip, and the diamond thin film was peeled off at the portion where discharge was generated.

【発明の効果】本発明によれば、導電性の薄板状の枠を
基体の周囲に設置することにより、基体から直接放電が
起こることを抑制することができ、且つ薄板状の枠がマ
イクロ波放電により赤熱して熱電子を放出するから、基
体の表面に密着力の高いダイヤモンド薄膜を被覆した工
具を製造することができる。
According to the present invention, by disposing a conductive thin plate-shaped frame around the base, it is possible to suppress direct discharge from the base, and the thin plate-shaped frame is provided with microwaves. Since red heat is generated by the discharge and thermoelectrons are emitted, it is possible to manufacture a tool in which the surface of the substrate is coated with a diamond thin film having high adhesion.

【0026】[0026]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いられた反応装置の概略構
成断面図である。
FIG. 1 is a schematic structural cross-sectional view of a reaction apparatus used in an example of the present invention.

【図2】本発明の比較例で用いられた反応装置の概略構
成断面図である。
FIG. 2 is a schematic structural cross-sectional view of a reaction device used in a comparative example of the present invention.

【符号の説明】[Explanation of symbols]

1 反応器 2 超硬合金製ドリル 3 タングステン製金網 4 基体ホルダ− 5 導波管 6 石英ガラス 7 プラズマ 8 タングステン線 1 reactor 2 Cemented carbide drill 3 Tungsten wire mesh 4 Base holder 5 Waveguide 6 Quartz glass 7 plasma 8 Tungsten wire

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 TEモ−ドのマイクロ波プラズマCVD
法により、基体の表面にダイヤモンド薄膜を被覆するに
際して、該基体の周囲に、導電性の薄板状の枠を、該枠
の面の方向がマイクロ波の電場方向に対して垂直となる
ように、且つ該枠のマイクロ波の電場方向における長さ
が基体よりも長くなるように配置して該基体表面にダイ
ヤモンド薄膜を被覆することを特徴とするダイヤモンド
の気相合成法。
1. TE mode microwave plasma CVD
When the diamond thin film is coated on the surface of the substrate by the method, a conductive thin plate frame is provided around the substrate so that the direction of the surface of the frame is perpendicular to the electric field direction of the microwave. A method for vapor phase synthesis of diamond characterized in that the frame is arranged such that the length of the frame in the direction of the electric field of microwaves is longer than that of the substrate, and the surface of the substrate is coated with a diamond thin film.
【請求項2】 導電性の薄板状の枠の厚さが0.01〜
3mmであることを特徴とする請求項1のダイヤモンド
の気相合成法。
2. The thickness of the conductive thin plate frame is 0.01 to.
The vapor phase synthesis method for diamond according to claim 1, wherein the length is 3 mm.
JP20230591A 1991-07-18 1991-07-18 Gas phase synthesis of diamond Expired - Fee Related JP2640053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20230591A JP2640053B2 (en) 1991-07-18 1991-07-18 Gas phase synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20230591A JP2640053B2 (en) 1991-07-18 1991-07-18 Gas phase synthesis of diamond

Publications (2)

Publication Number Publication Date
JPH0524986A true JPH0524986A (en) 1993-02-02
JP2640053B2 JP2640053B2 (en) 1997-08-13

Family

ID=16455346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20230591A Expired - Fee Related JP2640053B2 (en) 1991-07-18 1991-07-18 Gas phase synthesis of diamond

Country Status (1)

Country Link
JP (1) JP2640053B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102070A1 (en) * 2008-02-12 2009-08-20 Imott Inc. Diamond-like carbon film forming apparatus and method for forming diamond-like carbon film
JP2015034114A (en) * 2013-08-09 2015-02-19 住友電気工業株式会社 Diamond composite, diamond joint body, single crystal diamond and tool including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102070A1 (en) * 2008-02-12 2009-08-20 Imott Inc. Diamond-like carbon film forming apparatus and method for forming diamond-like carbon film
CN102112650A (en) * 2008-02-12 2011-06-29 株式会社iMott Diamond-like carbon film forming apparatus and method for forming diamond-like carbon film
JP5208139B2 (en) * 2008-02-12 2013-06-12 株式会社iMott Diamond-like carbon film forming apparatus and method for forming diamond-like carbon film
JP2015034114A (en) * 2013-08-09 2015-02-19 住友電気工業株式会社 Diamond composite, diamond joint body, single crystal diamond and tool including the same

Also Published As

Publication number Publication date
JP2640053B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
US5186973A (en) HFCVD method for producing thick, adherent and coherent polycrystalline diamonds films
US5124179A (en) Interrupted method for producing multilayered polycrystalline diamond films
US5584045A (en) Polycrystalline diamond tool and method for producing same
US5139372A (en) Polycrystalline diamond tool and method for producing the polycrystalline diamond tool
EP0693573B1 (en) Synthesizing diamond film
JPH04228497A (en) Diamond thin sheet without base body and method and apparatus for preparation thereof
US5147687A (en) Hot filament CVD of thick, adherent and coherent polycrystalline diamond films
IE912496A1 (en) Cvd diamond coated twist drills
US5173089A (en) Method for producing the polycrystalline diamond tool
TWI718800B (en) Method of diamond nucleation and structure formed thereof
EP0190710B1 (en) Electric discharge machining electrode and method for producing the same
JP2002353390A (en) Heat sink and its manufacturing method
US5626908A (en) Method for producing silicon nitride based member coated with film of diamond
JP2003051485A (en) Coating silicon electrode plate for plasma etching
JPH0524986A (en) Vapor phase synthesis method for diamond
JP2679067B2 (en) Manufacturing method of substrate with diamond film
KR940003099B1 (en) Method of and apparatus for producing diamond thin films
JPH0536847A (en) Manufacture of diamond multilayer wiring board
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JPH0423480B2 (en)
JPH05195224A (en) Method of obtaining thickly adhered diamond coating film by using intermediate screen made of metal
JP4517363B2 (en) Silicon electrode plate for plasma etching
JPH0925196A (en) Apparatus and method for accumulation of diamond film
JPH07150358A (en) Diamond coating method by microwave plasma cvd
JP2780497B2 (en) Method for forming diamond film on Si substrate by CVD method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970304

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees