JPH05249525A - Microwave signal generator - Google Patents

Microwave signal generator

Info

Publication number
JPH05249525A
JPH05249525A JP5029092A JP5029092A JPH05249525A JP H05249525 A JPH05249525 A JP H05249525A JP 5029092 A JP5029092 A JP 5029092A JP 5029092 A JP5029092 A JP 5029092A JP H05249525 A JPH05249525 A JP H05249525A
Authority
JP
Japan
Prior art keywords
microwave
electric field
electrode
light
optical waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5029092A
Other languages
Japanese (ja)
Inventor
Masahiro Agawa
昌弘 阿河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5029092A priority Critical patent/JPH05249525A/en
Publication of JPH05249525A publication Critical patent/JPH05249525A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the generation of microwaves signals of a wide frequency band and to enable the easy execution of the arbitrary phase control of microwaves regardless of an oscillation frequency by utilizing an electrooptical effect by using two wavelength variable semiconductor lasers. CONSTITUTION:The light beams emitted from the semiconductor lasers 12, 13 pass optical waveguides 14. An electrode 15 is provided on the one optical waveguide. A difference in the refractive index between the optical waveguides proportional to an impressed electric field is generated by the electrooptical effect of GaAs when the electric field is impressed into the optical waveguides from the outside. The microwave of the wavelength corresponding to the difference is then formed. The microwave can be controlled in the frequency over the wide band by changing the one implantation current of the lasers 12, 13. The arbitrary phase control is enabled regardless of the oscillation frequency by changing the intensity of the electric field in the electrode 15. In addition, the signal processing function of the microwave is possible as well as an MMIC is formed in the part in the middle 18 of a microstrip line 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2つのレーザ光からマイ
クロ波を発生することを可能にする、マイクロ波信号発
生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave signal generator capable of generating microwaves from two laser beams.

【0002】[0002]

【従来の技術】近代のレーザ光の発明によって、電気の
分野で用いられていた技術の、光の分野への応用が可能
となってきた。ヘテロダイン検波もその一つである。こ
の技術は、長距離光通信の開発に盛んに利用されている
が、2レーザ光によるヘテロダイン検波後の電気信号
を、単にマイクロ波の信号として活用する研究も行われ
ている。例えば、IEEE TRANSACTION ON MICROWAVE THEO
RY AND TECHNIQUES,VOL.38,NO.5,MAY 1990 で発表され
た"Optical Generation, Distribution, and Control o
f Microwaves Using Laser Heterodyne" では、Nd:Y
AGレーザのヘテロダイン検波を用いてマイクロ波発生
を行っている。
2. Description of the Related Art The invention of modern laser light has made it possible to apply the technology used in the field of electricity to the field of light. Heterodyne detection is one of them. This technique has been actively used for the development of long-distance optical communication, but research has also been conducted in which the electric signal after heterodyne detection by two laser beams is simply used as a microwave signal. For example, IEEE TRANSACTION ON MICROWAVE THEO
RY AND TECHNIQUES, VOL.38, NO.5, MAY 1990 "Optical Generation, Distribution, and Control o"
f Microwaves Using Laser Heterodyne ", Nd: Y
Microwave generation is performed using heterodyne detection of an AG laser.

【0003】従来この様な光ヘテロダイン法によるマイ
クロ波発生は、空間光学系あるいは光ファイバを用いる
構成によって行われていた。以下その構成について、図
2,図3を参照して説明する。
Conventionally, microwave generation by such an optical heterodyne method has been performed by a structure using a spatial optical system or an optical fiber. The configuration will be described below with reference to FIGS.

【0004】シングルモード発振を行い、かつ発振周波
数が近接したレーザ光源21,22(図3では31,3
2)から出た光は、図2ではビームスプリッタ23によ
り、図3では光ファイバカプラ33によって合波され
る。この合波光を光検出器24(図3では34)に入射
する。この時光検出器の表面でヘテロダイン検波され、
2つのレーザ光の周波数の差が、マイクロ波の信号とし
て発生することになる。
Laser light sources 21 and 22 that perform single-mode oscillation and have oscillation frequencies close to each other (31 and 3 in FIG. 3).
The light emitted from 2) is combined by the beam splitter 23 in FIG. 2 and the optical fiber coupler 33 in FIG. This combined light is made incident on the photodetector 24 (34 in FIG. 3). At this time, heterodyne detection is performed on the surface of the photodetector,
The difference between the frequencies of the two laser beams is generated as a microwave signal.

【0005】[0005]

【発明が解決しようとする課題】このような構成法で
は、各部品がそれぞれ独立しているため、非常に大きな
装置となる上、光の損失も大きく非実用的であり、さら
に図2の方法では、光軸合わせの煩わしさや振動による
光軸ずれ、図3の方法では光ファイバ内での偏波ゆらぎ
による検波信号強度の不安定性の問題があった。また、
周波数及び位相を各々独自に制御ができなかった。
In such a construction method, since each part is independent, it becomes a very large device, and the loss of light is large and impractical. Furthermore, the method shown in FIG. Then, there was a problem of inconvenience of alignment of the optical axis and optical axis shift due to vibration, and instability of the detection signal intensity due to polarization fluctuation in the optical fiber in the method of FIG. Also,
The frequency and phase could not be controlled independently.

【0006】本発明は上記課題を解決するためのもので
あり、小型,軽量,高安定,低損失の広帯域な周波数可
変マイクロ波信号発生装置を提供する。
The present invention is intended to solve the above problems and provides a wide frequency variable microwave signal generator having a small size, a light weight, a high stability and a low loss.

【0007】[0007]

【課題を解決するための手段】本発明のマイクロ波信号
発生装置は、単一の半導体基板に形成された2つの波長
可変半導体レーザの各出力光を光導波路を通して合波
し、その合波光を前記半導体基板に形成されたホトダイ
オードに印加することにより前記両出力光の波長差に応
じた波長のマイクロ波を作成することを特徴とするもの
である。
A microwave signal generator according to the present invention combines output lights of two wavelength tunable semiconductor lasers formed on a single semiconductor substrate through an optical waveguide and outputs the combined light. It is characterized in that a microwave having a wavelength corresponding to a wavelength difference between the two output lights is created by applying the light to a photodiode formed on the semiconductor substrate.

【0008】[0008]

【作用】本発明は上記した構成により全ての素子が単一
基板上にあるため、非常に小型,軽量,高安定,低損失
となり、さらにこの構造によって、位相制御機能や信号
処理機能等を簡単に付加することができると共に、出力
マイクロ波信号の周波数と位相を各々独自に制御するこ
とを可能にするものである。
According to the present invention, all the elements are formed on a single substrate by the above-mentioned structure, so that it is very compact, lightweight, highly stable, and has low loss. Furthermore, this structure simplifies the phase control function and the signal processing function. It is possible to control the frequency and phase of the output microwave signal independently.

【0009】[0009]

【実施例】以下本発明の一実施例について、図1を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0010】図1において、半導体基板11はGaAs
からなり、温度安定装置上に乗せ一定温度に保たれてい
る。この半導体基板11には、シングルモード発振を行
う分布帰還型半導体レーザ12,13及びホトダイオー
ド16が形成され、光導波路14によって光学的に接続
されている。さらにホトダイオード16からは、マイク
ロ波伝送用のマイクロストリップ線路17に接続され、
信号処理回路のMMIC18に入力される。また一方の
半導体レーザ13側の光導波路14上には、位相制御用
の電極15を蒸着している。
In FIG. 1, the semiconductor substrate 11 is GaAs.
It consists of a temperature stabilizer and is kept at a constant temperature. Distributed feedback semiconductor lasers 12 and 13 for performing single-mode oscillation and a photodiode 16 are formed on the semiconductor substrate 11, and are optically connected by an optical waveguide 14. Furthermore, from the photodiode 16, it is connected to a microstrip line 17 for microwave transmission,
It is input to the MMIC 18 of the signal processing circuit. An electrode 15 for phase control is vapor-deposited on the optical waveguide 14 on the side of the one semiconductor laser 13.

【0011】上記構成において、以下その動作を説明す
る。半導体レーザ12,13は温度が安定化されている
ため、それぞれ近接した周波数で安定に発光する。この
ときの光波の電界をそれぞれ(数1)に示す様に考え
る。
The operation of the above arrangement will be described below. Since the semiconductor lasers 12 and 13 are stabilized in temperature, they emit light stably at frequencies close to each other. Consider the electric fields of the light waves at this time as shown in (Equation 1).

【0012】[0012]

【数1】 [Equation 1]

【0013】半導体レーザ12,13から出た光は光導
波路14を通過するが、片方の光導波路上には電極15
を設けている。これによって光導波路中に外部から電界
を印加すると、GaAsの電気光学効果によって、(数
2)に示す様な印加電界に比例した光導波路の屈折率差
が生じる。
Light emitted from the semiconductor lasers 12 and 13 passes through the optical waveguide 14, but an electrode 15 is provided on one of the optical waveguides.
Is provided. When an electric field is applied to the optical waveguide from the outside, a difference in refractive index of the optical waveguide proportional to the applied electric field as shown in (Equation 2) occurs due to the electro-optic effect of GaAs.

【0014】[0014]

【数2】 [Equation 2]

【0015】この屈折率差によって、光波の位相シフト
が得られる。このシフト量を(数3)に示す。
Due to this difference in refractive index, a phase shift of the light wave can be obtained. This shift amount is shown in (Equation 3).

【0016】[0016]

【数3】 [Equation 3]

【0017】従ってこの時の光波の電界は(数4)に示
す様になる。
Therefore, the electric field of the light wave at this time is as shown in (Equation 4).

【0018】[0018]

【数4】 [Equation 4]

【0019】この光と半導体レーザ12から出た光が、
光導波路内で合波され、ホトダイオード16においてヘ
テロダイン検波される。このときの受光電流の直流成分
は除去され、交流成分のみがマイクロストリップ線路1
7を通過して外部に取り出される。この信号がマイクロ
波となり、(数5)で与えられる様な形になる。
This light and the light emitted from the semiconductor laser 12 are
The light is multiplexed in the optical waveguide and heterodyne detection is performed in the photodiode 16. The DC component of the received light at this time is removed, and only the AC component is received by the microstrip line 1.
It passes through 7 and is taken out. This signal becomes a microwave and has a shape as given by (Equation 5).

【0020】[0020]

【数5】 [Equation 5]

【0021】そしてこのマイクロ波は、半導体レーザ1
2あるいは13の一方の注入電流を変化させることによ
って、広帯域に周波数制御が可能となり、また電極15
での電界強度を変化させることにより、発振周波数とは
無関係に任意の位相制御が可能となるのである。さらに
マイクロストリップ線路17の途中18の部分にMMI
Cを形成し、発生したマイクロ波の信号処理機能を付加
することができる。
The microwave is generated by the semiconductor laser 1
By changing one of the injection currents of 2 and 13, frequency control can be performed in a wide band, and the electrode 15
By changing the electric field strength at, the arbitrary phase control is possible regardless of the oscillation frequency. In addition, the MMI is inserted in the middle 18 of the microstrip line 17.
C can be formed and a signal processing function of the generated microwave can be added.

【0022】[0022]

【発明の効果】以上のように本発明は、次の優れた効果
を持つマイクロ波信号発生装置を実現できるものであ
る。
As described above, the present invention can realize a microwave signal generator having the following excellent effects.

【0023】(イ)2つの波長可変半導体レーザを用い
ることにより、広帯域なマイクロ波信号の発生が容易に
できると共に、電気光学効果を利用することにより、発
振周波数とは無関係にマイクロ波の任意の位相制御を簡
単に行うことができる。
(A) By using two wavelength tunable semiconductor lasers, it is possible to easily generate a microwave signal in a wide band, and by utilizing the electro-optic effect, an arbitrary microwave signal can be generated regardless of the oscillation frequency. Phase control can be easily performed.

【0024】(ロ)単一基板上に集積化することによ
り、非常に小型,軽量の装置ができる。
(B) By integrating on a single substrate, a very small and lightweight device can be obtained.

【0025】(ハ)レーザ光の伝搬と合波に光導波路を
用いることにより、光学系の安定性と光の偏波安定性が
よくなる。
(C) By using an optical waveguide for propagation and multiplexing of laser light, the stability of the optical system and the polarization stability of light are improved.

【0026】(ニ)同一基板上にマイクロ波信号処理用
のMMICを形成することが出来、多機能なマイクロ波
発信ができる。
(D) An MMIC for microwave signal processing can be formed on the same substrate, and multifunctional microwave transmission can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における集積型マイクロ波信号
発生装置のブロック図
FIG. 1 is a block diagram of an integrated microwave signal generator according to an embodiment of the present invention.

【図2】空間光学系を用いた従来のマイクロ波信号発生
法のブロック図
FIG. 2 is a block diagram of a conventional microwave signal generation method using a spatial optical system.

【図3】光ファイバカプラを用いた従来のマイクロ波信
号発生法のブロック図
FIG. 3 is a block diagram of a conventional microwave signal generation method using an optical fiber coupler.

【符号の説明】[Explanation of symbols]

11 GaAs基板 12,13 分布帰還型半導体レーザ 14 光導波路 15 位相制御用電極 16 ホトダイオード 17 マイクロストリップ線路 18 MMIC 21,22 レーザ光源 23 ビームスプリッタ 24 光検出器 31,32 レーザ光源 33 光ファイバカプラ 34 光検出器 11 GaAs Substrate 12, 13 Distributed Feedback Semiconductor Laser 14 Optical Waveguide 15 Phase Control Electrode 16 Photodiode 17 Microstrip Line 18 MMIC 21, 22 Laser Light Source 23 Beam Splitter 24 Photodetector 31, 32 Laser Light Source 33 Optical Fiber Coupler 34 Optical Detector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】単一の半導体基板に形成された2つの波長
可変半導体レーザの各出力光を光導波路を通して合波
し、その合波光を前記半導体基板に形成されたホトダイ
オードに印加することにより前記両出力光の波長差に応
じた波長のマイクロ波を作成することを特徴とするマイ
クロ波信号発生装置。
1. An output light of two wavelength tunable semiconductor lasers formed on a single semiconductor substrate is multiplexed through an optical waveguide, and the combined light is applied to a photodiode formed on the semiconductor substrate. A microwave signal generation device, wherein a microwave having a wavelength corresponding to a wavelength difference between both output lights is created.
【請求項2】波長可変半導体レーザの出力光を導く光導
波路の一部を覆うように電極を形成し、その電極に可変
の電圧を印加可能にしたことを特徴とする請求項1記載
のマイクロ波信号発生装置。
2. The micro according to claim 1, wherein an electrode is formed so as to cover a part of an optical waveguide for guiding the output light of the wavelength tunable semiconductor laser, and a variable voltage can be applied to the electrode. Wave signal generator.
JP5029092A 1992-03-09 1992-03-09 Microwave signal generator Pending JPH05249525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5029092A JPH05249525A (en) 1992-03-09 1992-03-09 Microwave signal generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5029092A JPH05249525A (en) 1992-03-09 1992-03-09 Microwave signal generator

Publications (1)

Publication Number Publication Date
JPH05249525A true JPH05249525A (en) 1993-09-28

Family

ID=12854786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5029092A Pending JPH05249525A (en) 1992-03-09 1992-03-09 Microwave signal generator

Country Status (1)

Country Link
JP (1) JPH05249525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508802A (en) * 2014-12-17 2018-03-29 タレス Optoelectronic components for generating and radiating microwave frequency signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508802A (en) * 2014-12-17 2018-03-29 タレス Optoelectronic components for generating and radiating microwave frequency signals

Similar Documents

Publication Publication Date Title
Hao et al. Recent advances in optoelectronic oscillators
Masanovic et al. Widely tunable monolithically integrated all-optical wavelength converters in InP
EP1695463A2 (en) Continuously tunable coupled opto-electronic oscillators having balanced opto-electronic filters
Maury et al. Microwave-frequency conversion methods by optical interferometer and photodiode
US6867904B2 (en) Integrated optical circuit for effecting stable injection locking of laser diode pairs used for microwave signal synthesis
US5323406A (en) Photonic mixer for photonically multiplying two electrical signals in two optically interconnected interferometric modulators operated at modulation outside the linear range
US5377284A (en) Interferometric optical switch
JPS62116030A (en) Coherent light wave transmitter
Zou et al. Parity-time symmetric optoelectronic oscillator based on an integrated mode-locked laser
CN111490438B (en) Tunable microwave signal generation system and method
Vergnol et al. Integrated lightwave millimetric single side-band source: Design and issues
JP3952227B2 (en) Wavelength converter
US6498675B2 (en) Wavelength converter
Ganjali et al. Microwave photonic frequency multiplication based on Sagnac interferometer with the capability of phase shifting
Wang et al. Microwave/millimeter-wave frequency subcarrier lightwave modulations based on self-sustained pulsation of laser diode
CN113900282B (en) Silicon-based integrated broadband high-speed tunable microwave photon phase shifter chip
JPH05249525A (en) Microwave signal generator
CN114499670A (en) Microwave signal processing device
Srivastava et al. Monolithically Integrated Optical Frequency Comb Generator based on Mutually Injection Locked Gain Switched Lasers
Lu et al. Photonic generation of broadly tunable radio-frequency signal using a reflective semiconductor optical amplifier
Salehi et al. Signal and noise conversions in RF-modulated optical links
JPH08160475A (en) Superhigh-speed optical solinton pulse generating device
JPS6328088A (en) Semiconductor laser light pulse generator
RU103431U1 (en) NANOSTRUCTURAL FORMER OF FREQUENCY-MODULATED SIGNALS
Dai et al. A Frequency-Tunable Parity-Time Symmetric Optoelectronic Oscillator With Two Coupled Loops Having a Rational Loop Length Ratio