JPH0524876B2 - - Google Patents

Info

Publication number
JPH0524876B2
JPH0524876B2 JP62072518A JP7251887A JPH0524876B2 JP H0524876 B2 JPH0524876 B2 JP H0524876B2 JP 62072518 A JP62072518 A JP 62072518A JP 7251887 A JP7251887 A JP 7251887A JP H0524876 B2 JPH0524876 B2 JP H0524876B2
Authority
JP
Japan
Prior art keywords
drying
ceramics
water
temperature
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62072518A
Other languages
Japanese (ja)
Other versions
JPS63236766A (en
Inventor
Koji Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP62072518A priority Critical patent/JPS63236766A/en
Publication of JPS63236766A publication Critical patent/JPS63236766A/en
Publication of JPH0524876B2 publication Critical patent/JPH0524876B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] セラミツクスグリーンの製造技術の分野に属す
る。さらに詳しくは、所望の収縮特性をもつたグ
リーンを得ることのできるセラミツクスの均一乾
燥技術の分野に属する。 なお、この発明において使用する技術的用語の
意味は以下の通りである。 坏土…成形前の水を含んだ粘土。 含水グリーン……乾燥前の水を含んだセラミ
ツクス成形物。 グリーン……乾燥後の水を含まないセラミツ
クス成形物。 焼成品…グリーンを焼成して得た最終製品。 収縮…特に断わらない限り焼成時の収縮を表
わす。 [背景技術] セラミツク製品は非常に広範囲な用途に用いら
れる様になり、それに応じて諸特性の性能向上の
要求が益々厳しくなつて来た。特にセラミツクス
の場合、所望の形に成形した後、焼成を行うと約
10〜20%の寸法収縮を起こす。この寸法収縮性は
成形等を含めたグリーンの調整方法に大きく依存
するため、その調整方法に様々な工夫が盛り込ま
れてきた。例えばハイブリツドIC用基板の場合、
自動化ラインで基板上にIC等をアセンブリング
するため、その寸法精度は所望の寸法に対して±
0.25%以下というように、非常に高レベルの要求
がなされている。寸法が不安定になり、またバラ
ツキが大きくなる原因はグリーン密度のバラツキ
が大きいためである。成形直後は高含水率である
ため、乾燥工程により略絶乾状態にするが、その
際の脱水の方法により成形物系内に疎密が生じる
ため、収縮率にバラツキがあつたり極端な場合に
はクラツクが発生したりする。 従つて、均一に乾燥することが高寸法精度のセ
ラミツクス製品を得るための必須条件となる。 従来、含水グリーンの乾燥には遠赤外や熱風乾
燥が用いられ、また一部マイクロ波乾燥法も採用
されて来た。前二者では、遠赤外ヒーターや熱風
からの熱がセラミツクス表面に伝えられ、伝熱に
よつて内部が加熱されて乾燥が進行する。従つて
乾燥の効率が悪く、また表面付近が先に加熱され
るため、表面の有機バインダーの乾燥収縮によ
り、表面が水の移動に対して抵抗となり、乾燥速
度がむしろ低下する。また、マイクロ波乾燥では
セラミツクス内部から加熱されるため、前述の問
題点はないが、逆に急激に加熱されるため、不均
一なグリーンしか得られないと言う欠点があつ
た。したがつて、予想しうる焼成収縮特性をもつ
たグリーンを得るための均一乾燥方法の提供が要
望されていた。 [発明の目的] この発明は、予想しうる焼成収縮特性を持つ
た、均一に乾燥されたグリーンを得るための燥方
法を提供することを目的とする。 [発明の開示] 本発明の方法は、水系バインダーを用いた系に
適用される。例としてバインダーにメチルセルロ
ース(以下MCという)を用いた系について考え
る。同様の考え方は、他の水系バインダーを用い
た系にも適用できる。セラミツクスに適当量の
MC、および必要に応じて可塑剤を添加し、混合
混練した坏土を、所望の形状に成形して得た含水
グリーンの乾燥工程においては、水分の移動(脱
水)により収縮が起こる。この過程をもう少し詳
細にみると、脱水によりセラミツクス粉体が毛管
吸引力で引き寄せられ凝集するのに加えて、MC
の加熱、脱水による縮合により収縮が起こる。後
者は加熱方法により大きく左右され、場合によつ
てはMC分子内に水がとり残された形で収縮が止
まる場合もあり、焼成収縮の不均一の原因とな
る。これはMCの熱ゲル化の機構とも密接に関連
する。すなわち、MCのゲル化機構は、MCの高
メトキシ置換部分が疏水和し、架橋点となり、網
目構造(ゲル)を形成する。そのゲル化温度は60
〜90℃程度であるが、急激にこれ以上の温度に加
熱すると、網目構造の内部に水が閉じ込められ、
容易には脱水しなくなる。この場合、グリーン見
掛密度は小さくなる。従つて熱の与え方が、焼成
時の収縮特性に大きく影響することが分かる。次
に一般的な乾燥方法の特徴について述べる。 (1) 遠赤外乾燥法、熱風乾燥法 遠赤外ヒーターまたは熱風により、セラミツク
含水グリーン表面が加熱され、伝熱により内部が
加熱される。この加熱は伝熱加熱であるため、後
に述べるマイクロ波乾燥に比べて効率が悪い。ま
た表面が先に加熱されるので、前述したMCのゲ
ル化が表面で最初に進行し、内部が十分乾燥され
ないうちに表面が収縮する。それが抵抗となつて
脱水を妨げるため、その分余計に効率が低下す
る。バインダーによつても差があるが、アクリル
系バインダーではこの傾向は顕著である。また連
続乾燥工程でグリーンの安定化を計るため、表面
温度を計測しても内部との温度差があるため、精
度のよい計測が望めず、また応答速度も遅い。 (2) マイクロ波乾燥 一般にセラミツクスは誘電損失係数(εr
tanδ)が小さく水は大きいので、含水グリーンの
乾燥にはマイクロ波乾燥が効率的である。しかも
材料内部から加熱される為、材料が均一温度とな
り、表面が先に収縮して脱水の抵抗となることも
ない。また応答性が速いため、連続乾燥工程で表
面温度をモニターしながらマイクロ波出力をコン
トロールし、表面温度を一定に保ことも可能であ
る。反面、急激に材料が加熱されるため、先に述
べた様な含水ゲルを生成しやすく、不均一グリー
ンの原因にもなりやすい。 本発明は、両者の欠点を補いつつ、かつ焼成時
の収縮率が予測できるグリーンの均一乾燥方法を
提供するものである。 セラミツクス粉と水、水系バインダーおよび必
要に応じて可塑剤を添加した混合物を、ニーダー
等で十分混練し成形機で所望の形に成形する方法
は、一般的に採用されている。簡単のためにセラ
ミツクス粉にアルミナ、水系バインダーとして
MC、可塑剤としてグリセリンを用い、押出機で
シート状に成形し、連続的に乾燥巻取りする場合
について述べる。同様の考え方は他の系の成形
法、水系バインダーあるいは可塑剤等の系にも適
用できる。 この系の含水率と乾燥収縮率の関係を第1図に
示す。このグラフによれば、高含水率(10%以
上)での含水率変化に対する乾燥収縮率の変化が
大きいことが分かる。この領域の乾燥にマイクロ
波を導入すると急激な収縮率のため含水ゲルが生
じやすい。また、含水グリーンを搬送するための
ベルトとの摩擦によるインタラクシヨンも大き
く、不均一乾燥の原因となる。この問題点を解決
するためマイクロ波乾燥機の前に予熱炉を設け
る。この予熱炉の目的は、含水グリーンをマイク
ロ波乾燥機に通す前に予熱し、併せて予備乾燥す
ることにあり、余熱炉としては熱風循環式予熱炉
が望ましい。何故なら遠赤外ヒーターによる加熱
では、シート表面が熱輻射により加熱されるた
め、表面が収縮し抵抗になる傾向がより強いのに
対し、熱風循環式ではこの傾向が少ないのに加え
て、表面から蒸発した水が熱風により持ち去られ
るため効率が高い。しかしこの方式でも先に述べ
た表面抵抗増加の問題は避けられないため、適当
な含水率までの乾燥に止めるべきである。どの程
度の含水率まで可能かは、乾燥速度対含水率の関
係を予備的に測定すれば分かる。その関係を第2
図に示すが、熱風循環式では8〜10%程度まで乾
燥可能であり、8〜10%程度まで予熱炉で予熱、
乾燥し、次いでマイクロ波乾燥機に連続的に搬入
する。なお、前記の予備乾燥の程度は、使用する
乾燥方式により異なる。含水グリーンは、マイク
ロ波炉に入つた時点では予熱されていて、含水率
も急激な乾燥収縮の起こらない程度まで減少して
おり、また表面抵抗もほとんどないことから非常
に効率よく乾燥される。第3図にマイクロ波
(2450MHz)パワーを横軸にしてセラミツクスの
表面温度および焼成時の線収縮率をプロツトした
グラフを示した。表面温度は赤外線温度計(ミノ
ルタ(株)製、IR−0510)を用い、マイクロ波炉出
口付近の天井に監視窓を設け、CaF2ガラスを介
してモニターした。この図よりマイクロ波出力が
高くなければ、ほぼ線形に表面温度は上昇する
が、線収縮率は2kwまではほぼ一定しており、
2kwを超すと急激に変化することが分かる。そし
て2kwのときの表面温度は約60℃であり、この温
度はMCのゲル化点である。従つて60℃以下の温
度になる様なマイクロ波パワーを選定し、一定出
力で乾燥すれば、ほぼ安定した線収縮率のグリー
ンが得られる。ここでの温度設定は、使用するバ
インダーのゲル化温度により変えることができ
る。 マイクロ波炉内に熱風を循環させれば、より乾
燥能力がアツプするので、熱風温度を一定にすれ
ばより効果的に安定したグリーンが得られる。こ
の様に調整したグリーンの焼成後の寸法およびそ
のバラツキは非常に安定しており、またクラツク
等が生じることもない。一方先に述べた様に、表
面に膜が張つたままで乾燥を終了した場合は、グ
リーンの密度が低く不均一であるためバラツキも
大きく、クラツクが生じやすい。この様な均一乾
燥方法は厚みの厚いもの、体積の大きいものに対
してより効果的である。何故ならマイクロ波がセ
ラミツクス成形物内部に入り込み、内部より加
熱、乾燥するためである。 前述のように、収縮率の安定化のためには材料
温度を安定させる必要があることが分かる。前記
の方法では、MCのゲル化点である60℃以下の材
料温度になるようなマイクロ波パワーを、一定出
力で与えれば安定化するが、更に高寸法精度の要
求される製品では、材料温度が一定になる様にコ
ントロールすることが必要となる。これを達成す
る為に、前述した赤外線温度計を用いて材料温度
をモニターしながら、常に一定温度となる様にマ
イクロ波パワーをコントロールした。温度をセン
シングしてパワーをコントロールするその応答性
は非常に良好で、温度のふれ幅は、一定出力の場
合±4℃であつたのに対し±1℃以内におさま
り、非常に好結果であつた。焼成後の寸法精度、
バラツキもより安定し、クラツク等の生じにくい
グリーンが得られる効果がある。 実施例 アルミナ粉(昭和電工(株)製、AL−45H)を96
重量部、タルク(松村産業(株)製、ハイフイラー
HF5000PJ)を4重量部、MC(信越化学(株)製、
SH−6000)を5重量部、水を15重量部、グリセ
リンを2重量部配合して坏土を調整した。 上記坏土を混合、混練後押出機にてシート状
(2mm厚)に成形した。得られたシートを第1表
に示した乾燥態様で乾燥した。第1表に示した通
り、本発明の方法が、乾燥の均一性において優れ
ていることが分かる。
[Technical field] Belongs to the field of ceramic green manufacturing technology. More specifically, it belongs to the field of uniform drying technology for ceramics that can obtain greens with desired shrinkage characteristics. Note that the meanings of technical terms used in this invention are as follows. Clay: Clay containing water before being molded. Hydrated green: A ceramic molded product containing water before drying. Green: A ceramic molded product that does not contain water after drying. Fired product: The final product obtained by firing green. Shrinkage...represents shrinkage during firing unless otherwise specified. [Background Art] Ceramic products have come to be used in a very wide range of applications, and accordingly, demands for improved performance in various properties have become increasingly severe. Particularly in the case of ceramics, when fired after being molded into the desired shape, approximately
Causes dimensional shrinkage of 10-20%. Since this dimensional shrinkage largely depends on the green adjustment method, including molding, various ideas have been incorporated into the adjustment method. For example, in the case of a hybrid IC substrate,
Because ICs, etc. are assembled on the board on an automated line, the dimensional accuracy is within ± of the desired dimensions.
A very high level of 0.25% or less is required. The reason why the dimensions become unstable and the variation becomes large is due to the large variation in green density. Immediately after molding, the water content is high, so the drying process is used to bring it to an almost bone-dry state, but the dehydration method at that time creates density and density within the molded product, so the shrinkage rate may vary or, in extreme cases, Cracks may occur. Therefore, uniform drying is an essential condition for obtaining ceramic products with high dimensional accuracy. Conventionally, far infrared rays and hot air drying have been used to dry hydrated greens, and microwave drying has also been used in some cases. In the first two cases, heat from a far-infrared heater or hot air is transferred to the ceramic surface, and the interior is heated by the heat transfer and drying progresses. Therefore, the drying efficiency is poor, and since the vicinity of the surface is heated first, the drying shrinkage of the organic binder on the surface causes the surface to become resistant to the movement of water, and the drying rate is rather reduced. Further, microwave drying does not have the above-mentioned problems because it heats the ceramic from within, but it does have the disadvantage that it heats up rapidly, resulting in an uneven green. Therefore, there was a need to provide a uniform drying method to obtain greens with predictable firing shrinkage characteristics. OBJECTS OF THE INVENTION It is an object of the present invention to provide a drying method for obtaining uniformly dried greens with predictable firing shrinkage characteristics. DISCLOSURE OF THE INVENTION The method of the present invention is applied to systems using water-based binders. As an example, consider a system using methyl cellulose (hereinafter referred to as MC) as a binder. Similar ideas can be applied to systems using other water-based binders. Appropriate amount for ceramics
In the drying process of the hydrated green obtained by molding the mixed and kneaded clay into a desired shape with the addition of MC and, if necessary, a plasticizer, shrinkage occurs due to movement of water (dehydration). Looking at this process in more detail, we can see that during dehydration, ceramic powder is attracted by capillary suction force and coagulates.
Shrinkage occurs due to condensation due to heating and dehydration. The latter is greatly influenced by the heating method, and in some cases, shrinkage may stop with water remaining in the MC molecules, causing non-uniform firing shrinkage. This is closely related to the mechanism of thermal gelation of MC. That is, the gelation mechanism of MC is that highly methoxy-substituted portions of MC are hydrated, become crosslinking points, and form a network structure (gel). Its gelling temperature is 60
The temperature is approximately 90℃, but if it is rapidly heated to a temperature higher than this, water will be trapped inside the network structure.
Does not dehydrate easily. In this case, the green apparent density becomes small. Therefore, it can be seen that the way heat is applied greatly affects the shrinkage characteristics during firing. Next, we will discuss the characteristics of common drying methods. (1) Far-infrared drying method, hot air drying method The hydrous green surface of the ceramic is heated by a far-infrared heater or hot air, and the interior is heated by heat transfer. Since this heating is conductive heating, it is less efficient than microwave drying, which will be described later. Furthermore, since the surface is heated first, the aforementioned gelation of MC proceeds on the surface first, and the surface shrinks before the inside is sufficiently dried. This creates resistance and prevents dehydration, further reducing efficiency. Although there are differences depending on the binder, this tendency is remarkable for acrylic binders. In addition, since the green is stabilized during the continuous drying process, even if the surface temperature is measured, there is a temperature difference between it and the inside, making it difficult to measure accurately and the response speed is slow. (2) Microwave drying Ceramics generally have a dielectric loss coefficient (ε r
Since water is large and has a small tan δ), microwave drying is efficient for drying hydrated greens. Moreover, since the material is heated from within, the material has a uniform temperature, and the surface does not shrink first and become a resistance to dehydration. Also, because of its fast response, it is possible to monitor the surface temperature during the continuous drying process and control the microwave output to keep the surface temperature constant. On the other hand, since the material is heated rapidly, it tends to generate hydrous gel as described above, which tends to cause uneven greening. The present invention provides a method for uniformly drying greens, which compensates for the drawbacks of both methods and allows predicting the shrinkage rate during firing. A commonly used method is to sufficiently knead a mixture of ceramic powder, water, a water-based binder, and optionally a plasticizer using a kneader or the like, and mold the mixture into a desired shape using a molding machine. For simplicity, use ceramic powder with alumina as a water-based binder.
We will describe the case in which MC and glycerin are used as plasticizers, are formed into a sheet using an extruder, and are continuously dried and rolled up. Similar ideas can be applied to other molding methods and systems using water-based binders or plasticizers. The relationship between moisture content and drying shrinkage rate of this system is shown in FIG. According to this graph, it can be seen that the drying shrinkage rate changes greatly with respect to the change in the moisture content at high moisture contents (10% or more). When microwaves are introduced to dry this area, hydrogels tend to form due to the rapid shrinkage rate. In addition, interaction due to friction with the belt for conveying the hydrated greens is also large, causing uneven drying. To solve this problem, a preheating oven is installed in front of the microwave dryer. The purpose of this preheating furnace is to preheat and pre-dry the hydrated green before passing it through the microwave dryer, and a hot air circulation type preheating furnace is preferable as the preheating furnace. This is because when heating with a far-infrared heater, the sheet surface is heated by thermal radiation, so there is a stronger tendency for the surface to contract and create resistance, whereas with hot air circulation, this tendency is less, and the surface The efficiency is high because the water evaporated from the water is carried away by the hot air. However, even with this method, the above-mentioned problem of increased surface resistance cannot be avoided, so drying should be limited to an appropriate moisture content. The possible moisture content can be determined by preliminary measurement of the relationship between drying rate and moisture content. That relationship is the second
As shown in the figure, it is possible to dry to about 8 to 10% with the hot air circulation method, and it is possible to dry by preheating in a preheating oven to about 8 to 10%.
Dry and then continuously transfer to a microwave dryer. Note that the degree of the preliminary drying described above differs depending on the drying method used. The hydrated green is preheated when it enters the microwave oven, its moisture content has been reduced to a level that does not cause rapid drying shrinkage, and it has almost no surface resistance, so it can be dried very efficiently. Figure 3 shows a graph plotting the surface temperature of ceramics and the linear shrinkage rate during firing with microwave (2450MHz) power as the horizontal axis. The surface temperature was monitored using an infrared thermometer (manufactured by Minolta Corporation, IR-0510) through CaF 2 glass through a monitoring window provided on the ceiling near the outlet of the microwave oven. This figure shows that unless the microwave output is high, the surface temperature increases almost linearly, but the linear shrinkage rate remains almost constant up to 2kw.
It can be seen that when the power exceeds 2kw, there is a sudden change. The surface temperature at 2kw is approximately 60℃, which is the gelation point of MC. Therefore, if you select a microwave power that will keep the temperature below 60°C and dry at a constant output, you can obtain a green with a nearly stable linear shrinkage rate. The temperature setting here can be changed depending on the gelling temperature of the binder used. Circulating hot air in the microwave oven will increase the drying ability, so keeping the hot air temperature constant will produce more stable greens more effectively. The dimensions and variations thereof after firing of the greens prepared in this manner are very stable, and no cracks or the like occur. On the other hand, as mentioned above, if drying is completed with the film still on the surface, the density of the green will be low and non-uniform, resulting in large variations and cracks are likely to occur. Such a uniform drying method is more effective for thick items and large volume items. This is because microwaves penetrate into the ceramic molded product and heat and dry it from the inside. As mentioned above, it is understood that it is necessary to stabilize the material temperature in order to stabilize the shrinkage rate. In the above method, it can be stabilized by applying a constant microwave power that brings the material temperature below 60°C, which is the gelling point of MC, but for products that require even higher dimensional accuracy, it is necessary to It is necessary to control it so that it remains constant. To achieve this, we controlled the microwave power to always maintain a constant temperature while monitoring the material temperature using the aforementioned infrared thermometer. The responsiveness of controlling power by sensing temperature is very good, and the temperature fluctuation was within ±1°C, compared to ±4°C with constant output, which is a very good result. Ta. Dimensional accuracy after firing,
This has the effect of making the variation more stable and producing greens that are less prone to cracks. Example Alumina powder (manufactured by Showa Denko K.K., AL-45H)
Part by weight, talc (manufactured by Matsumura Sangyo Co., Ltd., High Filler)
4 parts by weight of HF5000PJ), MC (manufactured by Shin-Etsu Chemical Co., Ltd.),
A clay was prepared by blending 5 parts by weight of SH-6000), 15 parts by weight of water, and 2 parts by weight of glycerin. After mixing and kneading the above clay, it was formed into a sheet (2 mm thick) using an extruder. The obtained sheet was dried in the drying manner shown in Table 1. As shown in Table 1, it can be seen that the method of the present invention is excellent in drying uniformity.

【表】 [発明の効果] この発明は、セラミツクス粉に対して、水およ
び水系バインダーを配合し、さらに必要に応じて
可塑剤を添加して調整したセラミツクス坏土を、
所望の形に成形した後乾燥する際に、予備乾燥し
た後、マイクロ波乾燥機を用いて、連続的に乾燥
することを特徴とするので、均一に乾燥されたグ
リーンを提供することができる効果がある。
[Table] [Effects of the Invention] This invention provides ceramic clay prepared by blending water and an aqueous binder with ceramic powder, and further adding a plasticizer as necessary.
When drying after forming into a desired shape, the method is characterized by pre-drying and then continuous drying using a microwave dryer, which has the effect of providing uniformly dried greens. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は含水グリーンの含水率と乾燥収縮率の
関係を示すグラフ、第2図は含水グリーンの含水
率と乾燥速度の関係を示すグラフ、第3図はマイ
クロ波パワーとマイクロ波乾燥機内のセラミツク
スの表面温度およびセラミツクスの焼結時の線収
縮率の関係を示すグラフである。
Figure 1 is a graph showing the relationship between moisture content and drying shrinkage rate of hydrated green, Figure 2 is a graph showing the relationship between moisture content and drying rate of hydrated green, and Figure 3 is a graph showing the relationship between the moisture content and drying rate of hydrated green. 2 is a graph showing the relationship between the surface temperature of ceramics and the linear shrinkage rate during sintering of ceramics.

Claims (1)

【特許請求の範囲】 1 セラミツクス粉に対して、水および水バイン
ダーを配合し、さらに必要に応じて可塑剤を添加
して調整したセラミツクス坏土を、所望の形に成
形して得た含水グリーンを乾燥する際に、予備乾
燥手段を施し、ついでマイクロ波乾燥機を用いて
連続的に乾燥するセラミツクスの乾燥法であつ
て、前記予備乾燥手段において、熱風乾燥機を使
用し、かつ8〜10%の含水率まで予備乾燥するこ
ととし、さらに前記マイクロ波乾燥機の炉内温度
を、セラミツクス坏土に使用したバインダーのゲ
ル化温度以下の温度にコントロールすることによ
り乾燥することを特徴とするセラミツクスの乾燥
法。 2 マイクロ波乾燥機の炉内温度をコントロール
する手段として、セラミツクス含水グリーンの温
度を、赤外線温度計を使用してモニターしなが
ら、前記成形物の表面温度が一定になる様にマイ
クロ波出力を調整する手段を用いることを特徴と
する特許請求の範囲第1項記載のセラミツクスの
乾燥法。
[Scope of Claims] 1. Water-containing green obtained by molding ceramic clay prepared by blending water and a water binder with ceramic powder and adding a plasticizer as needed into a desired shape. A method of drying ceramics in which a pre-drying means is applied when drying the ceramics, and then a microwave dryer is used to continuously dry the ceramics, the pre-drying means using a hot air dryer, and The ceramics are pre-dried to a water content of drying method. 2. As a means of controlling the temperature inside the oven of the microwave dryer, the temperature of the ceramic hydrated green is monitored using an infrared thermometer, and the microwave output is adjusted so that the surface temperature of the molded product is constant. A method for drying ceramics according to claim 1, characterized in that a method for drying ceramics is used.
JP62072518A 1987-03-26 1987-03-26 Method of drying ceramics Granted JPS63236766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072518A JPS63236766A (en) 1987-03-26 1987-03-26 Method of drying ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072518A JPS63236766A (en) 1987-03-26 1987-03-26 Method of drying ceramics

Publications (2)

Publication Number Publication Date
JPS63236766A JPS63236766A (en) 1988-10-03
JPH0524876B2 true JPH0524876B2 (en) 1993-04-09

Family

ID=13491627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072518A Granted JPS63236766A (en) 1987-03-26 1987-03-26 Method of drying ceramics

Country Status (1)

Country Link
JP (1) JPS63236766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015909A1 (en) * 2006-07-31 2008-02-07 Daikin Industries, Ltd. Water repellent powder drying method, production process and production apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375485A (en) * 1989-08-18 1991-03-29 Kawasaki Refract Co Ltd Drying of prepared unshaped refratory raw material
JPH06293555A (en) * 1993-04-08 1994-10-21 Shinagawa Refract Co Ltd Method for drying refractory kneaded clay and granular material or the like
GB2281016A (en) * 1993-08-10 1995-02-15 Ea Tech Ltd Microwave-assisted processing of materials
WO1997013137A2 (en) * 1995-10-03 1997-04-10 Cem Corporation Microwave assisted chemical processes
JPH1157476A (en) * 1997-08-25 1999-03-02 Mitsubishi Rayon Co Ltd Preparation of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP2003137662A (en) * 2001-10-30 2003-05-14 Kyocera Corp Method of manufacturing sintered ceramic compact
JP5632229B2 (en) * 2010-08-06 2014-11-26 美濃窯業株式会社 Microwave drying apparatus and method for producing inorganic material molded body using the same
JP6815124B2 (en) * 2016-08-04 2021-01-20 蘇州松之源環保科技有限公司Suzhou Songzhiyuan Environmental Protection Technology Co., Ltd. A hot air circulation type heating device and a method for manufacturing a separation membrane structure using this hot air circulation type heating device.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199001A (en) * 1985-02-28 1986-09-03 Inoue Japax Res Inc Powder sintering method
JPS6265982A (en) * 1985-09-12 1987-03-25 株式会社島津製作所 Method for special drying of ceramics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199001A (en) * 1985-02-28 1986-09-03 Inoue Japax Res Inc Powder sintering method
JPS6265982A (en) * 1985-09-12 1987-03-25 株式会社島津製作所 Method for special drying of ceramics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015909A1 (en) * 2006-07-31 2008-02-07 Daikin Industries, Ltd. Water repellent powder drying method, production process and production apparatus

Also Published As

Publication number Publication date
JPS63236766A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
JPH0524876B2 (en)
CN1307121C (en) Method for processing ceramics using electromagnetic energy
CN101538147A (en) Drying method of formed ceramic article
US4140887A (en) Method for microwave heating
US3848038A (en) Drying expanded plastic with microwave energy
JP2003519071A (en) Hybrid method for firing ceramics
KR102101314B1 (en) Aparatus of manufacturing nano diameter potassium titanate
JPH0389139A (en) Measurement of moisture
JP3774299B2 (en) Inorganic fibrous refractory insulation and method for producing the same
JPS5825573B2 (en) How do you know what to do?
JP3210208B2 (en) Method for manufacturing silicon carbide ceramic heater
JPH06293555A (en) Method for drying refractory kneaded clay and granular material or the like
JP2598590B2 (en) Drying method for molded ceramic products
KR100371309B1 (en) Electro-ceramic Sintering Method using Microwave
JPS6216508B2 (en)
JP2899912B2 (en) Drying method of ceramic green sheet
JPH04357168A (en) Electroconductive sintered ceramics and its production
CN117754715A (en) Equipment and method for preparing sintered brick by microwave and resistance wire mixed heating
JPH0313318A (en) Curing method of phenol resin foamed board
JP2577086B2 (en) Drying equipment
JP2001330375A (en) Fireproof insulating material
GB1454301A (en) Methods and apparatus for measuring and/or controlling the moisture content of a material during a drying process
SU1228165A1 (en) Load for microwave furnace
Shimizu et al. Fabrication of High Porosity Mullite Foams and their Thermal Properties
Kasuriya et al. Rapid Drying of Ceramic and Efficient Food Processing with a Continuous Microwave Belt Furnace