JPH05246774A - Silicon carbide porous body and production thereof - Google Patents

Silicon carbide porous body and production thereof

Info

Publication number
JPH05246774A
JPH05246774A JP4713792A JP4713792A JPH05246774A JP H05246774 A JPH05246774 A JP H05246774A JP 4713792 A JP4713792 A JP 4713792A JP 4713792 A JP4713792 A JP 4713792A JP H05246774 A JPH05246774 A JP H05246774A
Authority
JP
Japan
Prior art keywords
silicon carbide
porous body
silicon
molded body
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4713792A
Other languages
Japanese (ja)
Inventor
Norihiro Murakawa
紀博 村川
Tadashi Kojima
忠 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4713792A priority Critical patent/JPH05246774A/en
Publication of JPH05246774A publication Critical patent/JPH05246774A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a silicon carbide porous body high in porosity, uniform in pore size and high in strength and to provide the production method of the silicon carbide porous body. CONSTITUTION:The subject silicon carbide porous body is made by heating a mixed solution of a silicon compound having at least one of Si-C bond in the molecule and a self curing reactive compound capable of dissolving the silicon compound and it is also a ceramic porous body made by heating a mixed slurry obtained by dispersing a ceramic powder into the mixed solution. Furthermore, the subject method is for producing a silicon carbide or ceramic porous molded body by hardening the mixed solution or the mixed slurry after casting into a mold to form a molded body and by heating. Injection molding method, extrusion molding method, press molding method or these combined method are used as the method for molding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化ケイ素多孔体及びセ
ラミックス多孔体更に炭化ケイ素もしくはセラミックス
多孔質成形体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon carbide porous body, a ceramic porous body, and a silicon carbide or ceramic porous molded body.

【0002】[0002]

【従来の技術】従来炭化ケイ素の多孔質成形体は炭化ケ
イ素微粉末に有機質バインダー、例えばポリエチレン、
ポリプロビレン、ポリエチレングリコール、ポリビニル
アルコール、カルボキシメチルセルロースなどを添加し
た配合物とし、これを成形した後、2000℃以上の温
度で焼成することにより炭化ケイ素微粒子を粒成長させ
て、粒子を相互に結合させることにより製造する方法が
知られている。しかし、この方法では空隙率が高々40
%に留まり、多孔質体中の流体の透過性が低いという欠
点があった。
2. Description of the Related Art Conventionally, a porous molded body of silicon carbide has a fine powder of silicon carbide and an organic binder such as polyethylene,
Polypropylene, polyethylene glycol, polyvinyl alcohol, carboxymethyl cellulose, etc. are added to form a mixture, which is molded and then fired at a temperature of 2000 ° C. or more to grow silicon carbide fine particles to bond the particles to each other. A method of manufacturing is known. However, this method has a porosity of at most 40.
%, And the fluid permeability in the porous body was low.

【0003】このため空隙率を上げる方法として、炭化
ケイ素粉末にカーボンブラック等の炭素質物質を配合
し、同様に成形焼成して炭素質物質が分散含有された炭
化ケイ素成形体を得、その後炭素質物質を燃焼除去して
空隙率の高い成形体を得る方法も提案されている。しか
しながらこの方法では炭素質物質の配合割合を増やすこ
とで空隙率を増加させることは容易であるが、それと共
に強度が急激に低下してしまうという欠点がある。また
炭化ケイ素粉末や炭素質物質の分散が不均一によるため
の密度のむらが生じ易く、粗大な孔が発生し易いという
欠点もある(特開平3−215375)。
Therefore, as a method of increasing the porosity, a carbonaceous substance such as carbon black is mixed with silicon carbide powder, and similarly shaped and fired to obtain a silicon carbide compact containing the carbonaceous substance dispersed therein. A method has also been proposed in which a substance having a high porosity is obtained by burning and removing the substance. However, in this method, it is easy to increase the porosity by increasing the blending ratio of the carbonaceous material, but there is a drawback in that the strength is sharply reduced. There is also a drawback that uneven density is likely to occur due to non-uniform dispersion of silicon carbide powder and carbonaceous material, and coarse pores are likely to occur (JP-A-3-215375).

【0004】一方ケイ素化合物としてSi(OCH3
4 を用い、これとフェノール樹脂より樹脂状の重合体を
得、次に1600〜1850℃に加熱して炭化ケイ素と
する方法も提案されている(日本セラミックス協会学術
論文誌 98[6]607−10(1990))。しか
しながら、この方法では炭化ケイ素成形体の強度が極端
に低いという欠点があった。
On the other hand, Si (OCH 3 ) as a silicon compound
4 , a method of obtaining a resinous polymer from this and a phenol resin, and then heating it to 1600 to 1850 ° C. to obtain silicon carbide has been proposed (Journal of the Ceramic Society of Japan 98 [6] 607- 10 (1990)). However, this method has a drawback that the strength of the silicon carbide molded body is extremely low.

【0005】[0005]

【発明が解決しようとする課題】本発明はこれらの従来
技術の欠点を解決することを目的として、空隙率が高
く、孔の大きさが均等で、強度が高い炭化ケイ素多孔体
及び炭化ケイ素多孔質成形体の製造方法を提供するもの
である。
SUMMARY OF THE INVENTION In order to solve these drawbacks of the prior art, the present invention has a high porosity, a uniform pore size, and a high strength silicon carbide porous body and silicon carbide porous body. A method for producing a quality molded article is provided.

【0006】[0006]

【課題を解決するための手段】本発明は、分子中に少な
くとも一つのSi−C結合を含むケイ素化合物と、該ケ
イ素化合物を溶解し得る自己硬化型の反応性化合物との
混合液を加熱してなる炭化ケイ素多孔体であり、また混
合液にセラミックス粉末を分散させた混合スラリーを加
熱してなるセラミックス多孔体であり、更に混合液もし
くは混合スラリーを金型に流入させた後硬化させて成形
体とし、次いで加熱することを特徴とする炭化ケイ素も
しくはセラミックス多孔質成形体の製造方法である。
According to the present invention, a mixed solution of a silicon compound having at least one Si-C bond in the molecule and a self-curing reactive compound capable of dissolving the silicon compound is heated. Is a porous silicon carbide body, and is a ceramics porous body formed by heating a mixed slurry in which a ceramic powder is dispersed in a mixed solution. Further, the mixed solution or the mixed slurry is made to flow into a mold and then cured to be molded. A method for producing a porous body of silicon carbide or ceramics, which comprises forming a body and then heating.

【0007】本発明で使用可能な分子中に少なくとも一
つのSi−C結合を含むケイ素化合物としては、モノマ
ーあるいはポリマーであり、モノマーであっては分子中
に少なくとも一つのSi−C結合を含むもの、ポリマー
にあっては繰り返し単位中に少なくとも一つのSi−C
結合を含むものであり、一般式Rm Sin 2n+2-mで表
される化合物である。ただしnは正の整数、mは1乃至
2n+2の整数である。Rは炭素数1乃至30のアルキ
ル基、アルケニル基、アルケニル基、アリール基であっ
て、COOH,NH2 ,Cl,OHなどの置換基を含ん
でいても良い。Xは炭素あるいはケイ素以外の元素をも
ってSiと結合を形成するもので、水素、ハロゲン、ア
ルコキシ基、アミノ基、シロキサン基などである。
The silicon compound containing at least one Si-C bond in the molecule that can be used in the present invention is a monomer or a polymer, and a monomer containing at least one Si-C bond in the molecule. , A polymer has at least one Si--C in the repeating unit.
It is a compound containing a bond and represented by the general formula R m Si n X 2n + 2-m . However, n is a positive integer and m is an integer of 1 to 2n + 2. R is an alkyl group having 1 to 30 carbon atoms, an alkenyl group, an alkenyl group, or an aryl group, and may contain a substituent such as COOH, NH 2 , Cl, OH. X is an element other than carbon or silicon that forms a bond with Si, and is hydrogen, halogen, an alkoxy group, an amino group, a siloxane group, or the like.

【0008】このようなケイ素化合物としてはCH3
iCl3 ,(CH3 2 SiCl2 ,(CH3 3 Si
Cl,CH3 SiHCl2 ,ΦSiCl3 (ここではΦ
はフェニル基をいう),Φ2 SiCl2 ,Φ3 SiC
l,ΦSiHCl2 ,Φ(CH3 )SiCl2 ,ΦSi
(CH=CH2 )Cl2 ,CH3 SiH3 ,ΦSi(C
H=CH2 2 H,(CH3 4 Si,CH2 =CH−
SiCl3 ,(CH2 =CH)2 SiCl2 ,CH2
CH−SiH3 ,CH2 =CH−CH2 −SiH3 ,C
3 CH2 CH2 SiCl3 ,NCCH2 CH2 SiC
3 ,CH3 Si(OCH3 2 Cl,(CH3 3
iOH,CF3 SO3 Si(CH3 3 ,(CH3 3
SiOSi(CH3 3 ,(CH3 3 SiN(C
3 2 ,ΦSiH3 ,HOCH2 C≡CSi(C
3 3 ,(CH3 6 Si2 ,(CH3 3 SiSi
Cl3
As such a silicon compound, CH3S
iCl3, (CH3)2SiCl2 , (CH3)3Si
Cl, CH3SiHCl2, ΦSiCl3(Here Φ
Means a phenyl group), Φ2SiCl2, Φ3SiC
l, ΦSiHCl2, Φ (CH3) SiCl2, ΦSi
(CH = CH2) Cl2, CH3SiH3, ΦSi (C
H = CH2)2H, (CH3)FourSi, CH2= CH-
SiCl3, (CH2= CH)2SiCl2, CH2=
CH-SiH3, CH2= CH-CH2-SiH3, C
F3CH2CH2SiCl3, NCCH2CH2SiC
l 3, CH3Si (OCH3)2Cl, (CH3)3S
iOH, CF3SO3Si (CH3)3, (CH3)3
SiOSi (CH3)3, (CH3)3SiN (C
H3)2, ΦSiH3, HOCH2C≡CSi (C
H3)3, (CH3)6Si2, (CH3)3Si Si
Cl3

【0009】[0009]

【化1】 などのモノマーや[Chemical 1] Such as monomers and

【0010】[0010]

【化2】 [Chemical 2]

【0011】[0011]

【化3】 [Chemical 3]

【0012】[0012]

【化4】 などのポリマーがある。[Chemical 4] There are polymers such as.

【0013】本発明では、これらのケイ素化合物を溶解
し得る自己硬化型の反応性化合物を用いる。自己硬化型
の反応性化合物としては、例えばラジカル重合性化合
物、イオン重合性化合物、付加重合性化合物、開
環重合性化合物、重縮合性化合物、付加縮合性化合
物などがある。にはスチレン、ジビニルベンゼン、ジ
イソペニルベンゼン、酢酸ビニル、メタクリル酸メチ
ル、メタクリル酸エチル、メタクリル酸t−ブチル、メ
タクリル酸2−エチルヘキシル、メタクリル酸ドデシ
ル、クロロプレン、あるいはアクリロニトリルなどある
いはこれらの一種または二種以上が反応して生成した化
合物などがあり、これらは必要によりラジカル開始剤と
してジブチルパーオキサイド、過酸化ベンゾイルなどの
過酸化物やアゾビスブチロニトリルなどのアゾ化合物
を、ラジカル重合性化合物の100重量部に対して0.
02〜1.0重量%添加して使用される。にはブタジ
エン、イソブチレン、ビニルエーテル、ピペリレンなど
がある。にはビスフェノールA型エポキシ樹脂、グリ
シジルF型エポキシ樹脂、ノボラック型エポキシ樹脂な
どのジグリシジル化合物やトリレンジイソシアネート、
ジフェニルメタンジイソシアネート、ヘキサメチレンジ
イソシアネートなどのジイソシアネート化合物などと、
エチレンジアミンなどのアミン化合物、エチレングリコ
ール、プロピレングリコールなどのグリコール化合物な
どとの混合液などがある。にはエチレンオキサイド、
プロピレンオキサイドなどの環状エーテル化合物などが
ある。には無水フタル酸、無水マレイン酸などの多塩
基酸とエチレングリコール、プロピレングリコールなど
のグリコール化合物との混合液などがある。には尿
素、メラミンなどのアミノ化合物やフェノール、クレゾ
ールなどのフェノール化合物とホルムアルデヒドとの混
合液などがある。
In the present invention, a self-curing reactive compound capable of dissolving these silicon compounds is used. Examples of the self-curable reactive compound include a radically polymerizable compound, an ionic polymerizable compound, an addition polymerizable compound, a ring-opening polymerizable compound, a polycondensable compound and an addition condensable compound. Is styrene, divinylbenzene, diisophenylbenzene, vinyl acetate, methyl methacrylate, ethyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, chloroprene, acrylonitrile, etc., or one of these or There are compounds formed by reacting two or more kinds, and these are radical initiators such as dibutyl peroxide, benzoyl peroxide and other azo compounds, and azobisbutyronitrile and other azo compounds as radical initiators. 0 to 100 parts by weight of
It is used by adding 02 to 1.0% by weight. Examples include butadiene, isobutylene, vinyl ether and piperylene. Is a diglycidyl compound such as bisphenol A type epoxy resin, glycidyl F type epoxy resin, novolac type epoxy resin or tolylene diisocyanate,
With diisocyanate compounds such as diphenylmethane diisocyanate and hexamethylene diisocyanate,
Mixtures with amine compounds such as ethylenediamine and glycol compounds such as ethylene glycol and propylene glycol are available. Is ethylene oxide,
Examples include cyclic ether compounds such as propylene oxide. Examples thereof include a mixed solution of a polybasic acid such as phthalic anhydride and maleic anhydride and a glycol compound such as ethylene glycol and propylene glycol. Include a mixture of formaldehyde with an amino compound such as urea or melamine, or a phenol compound such as phenol or cresol.

【0014】これらのケイ素化合物と反応性化合物と
は、相互に溶解する組み合わせにおいて選定すれば良
い。ケイ素化合物(主としてポリマーのとき)の反応性
化合物への混合割合は、とくに制限はないが、飽和溶液
となるまでの量が最も好ましい。ケイ素化合物の量が少
ないと空隙率が極めて高くかつ強度も極めて小さくな
る。飽和溶液以上となると不均一性が生じ初めて、強度
のバラツキが大きくなったり、空隙が不均一になる。反
応性化合物の重量を1とすると、ケイ素化合物の重量が
0.01〜50の範囲であり、好ましくは0.05〜5
である。
The silicon compound and the reactive compound may be selected in combination with each other. The mixing ratio of the silicon compound (mainly in the case of a polymer) to the reactive compound is not particularly limited, but the most preferable amount is a saturated solution. When the amount of silicon compound is small, the porosity is extremely high and the strength is extremely low. When the concentration is higher than that of the saturated solution, non-uniformity first occurs, and the dispersion of strength becomes large and the voids become non-uniform. When the weight of the reactive compound is 1, the weight of the silicon compound is in the range of 0.01 to 50, preferably 0.05 to 5
Is.

【0015】これらのケイ素化合物と自己硬化型の反応
性化合物とを混合し、次いで一次加熱することにより架
橋した樹脂相にミクロに均一にケイ素化合物が分散した
状態の固形体ができる。これを更に高温で加熱すること
により保形された状態の炭化ケイ素多孔体となる。常圧
で加熱すると揮散する性質のケイ素化合物を用いた場
合、それが揮散することを防ぐためには適切な加圧をす
る必要があり、加圧加熱設備が必要になる。加圧の設備
を軽減もしくは不要とするためには、不揮発性のケイ素
化合物を用いるが、ポリビニルシラン、ポリカルボシラ
ンなどのポリマーを選定することも好ましい。ここで得
られる炭化ケイ素多孔体の強度の面からは、ケイ素化合
物中のSiは4価の結合手のうち少なくとも1つ以上は
Si−C結合であることが必要であり、好ましくは2つ
以上である。またSi−O結合が共存する場合、Si−
C結合がSi−O結合よりも多いことが好ましく、Si
−C結合がSi−O結合の2倍以上であることがより好
ましい。
By mixing these silicon compounds with a self-curing reactive compound and then heating the mixture primarily, a solid body in which the silicon compounds are dispersed microscopically and uniformly in the crosslinked resin phase is formed. By further heating this at a higher temperature, it becomes a silicon carbide porous body in a shape-retained state. When a silicon compound which has a property of volatilizing when heated at normal pressure is used, it is necessary to apply appropriate pressure in order to prevent volatilization of the silicon compound, and a pressurizing and heating facility is required. In order to reduce or eliminate the need for pressurizing equipment, a non-volatile silicon compound is used, but it is also preferable to select a polymer such as polyvinylsilane or polycarbosilane. From the viewpoint of the strength of the silicon carbide porous body obtained here, at least one or more of the tetravalent bonds of Si in the silicon compound needs to be a Si—C bond, and preferably two or more. Is. When Si-O bond coexists, Si-
It is preferable that there are more C bonds than Si—O bonds, and
It is more preferable that the number of —C bonds is twice or more that of the number of Si—O bonds.

【0016】このようなケイ素化合物と自己硬化型の反
応性化合物との混合液を硬化反応の条件を満たす温度で
加熱する。光硬化反応、イオン反応若しくはラジカル反
応など単なる熱反応以外の反応により固形体を製造して
もよい。得られた固形体を更に高温にして、炭化ケイ素
多孔体を得ることができる。ここで加熱温度は1500
〜2300℃が適切であり、雰囲気は窒素、アルゴン、
ヘリウム、ネオンなどの不活性ガス中が適切である。1
500℃未満では炭化ケイ素の生成が不充分であり、2
300℃を越えると炭化ケイ素が分解するためである。
また混合液に炭化ケイ素、窒化ケイ素、炭化ホウ素、窒
化ホウ素などのセラミックス粉末やウィスカーを分散さ
せた混合スラリーを加熱することにより、炭化ケイ素と
窒化ケイ素などとの複合セラミックス多孔体を得ること
ができる。
A mixed solution of such a silicon compound and a self-curing reactive compound is heated at a temperature satisfying a curing reaction. The solid may be produced by a reaction other than a simple thermal reaction such as a photocuring reaction, an ionic reaction or a radical reaction. The obtained solid body can be further heated to obtain a silicon carbide porous body. Here, the heating temperature is 1500
~ 2300 ° C is suitable and the atmosphere is nitrogen, argon,
Inert gas such as helium or neon is suitable. 1
If the temperature is less than 500 ° C, the formation of silicon carbide is insufficient, and 2
This is because if the temperature exceeds 300 ° C, silicon carbide will decompose.
Moreover, a composite ceramic porous body of silicon carbide and silicon nitride or the like can be obtained by heating a mixed slurry in which ceramic powder or whiskers of silicon carbide, silicon nitride, boron carbide, boron nitride or the like is dispersed in a mixed liquid. ..

【0017】このようにして得られた炭化ケイ素多孔体
は、従来にない新規な多孔体としての構造を有してい
る。まず、多孔体の空隙率が従来の50%以下に対し本
発明の多孔体は50%を越えるものが容易にできる。さ
らに、多孔体の構造の相違を敏感に反映するものとし
て、機械的強度が指標となる。例えば、従来の炭化ケイ
素多孔体の曲げ強度は、高々3〜4kg/mm2であるが、本
発明のこの強度は、製造条件によるけれども5kg/mm2
上のものが得られ、通常10〜30kg/mm2のものが得ら
れる。言い換えると、本発明の新規な多孔体は、空隙率
が高く且つ機械的強度が高い構造を有しているものであ
る。
The silicon carbide porous body thus obtained has a structure as a novel porous body which has never been obtained. First, the porosity of the porous body of the present invention can easily exceed 50%, whereas the porosity of the present invention exceeds 50%. Further, the mechanical strength is an index that sensitively reflects the difference in the structure of the porous body. For example, the bending strength of a conventional porous silicon carbide body is at most 3 to 4 kg / mm 2 , but this strength of the present invention can be 5 kg / mm 2 or more although it depends on the manufacturing conditions, and usually 10 to 30 kg. / mm 2 is obtained. In other words, the novel porous body of the present invention has a structure with high porosity and high mechanical strength.

【0018】従来、セラミックス成形体の製造におい
て、複雑な形状、長尺形状の成形体は、製造し難く、グ
リーンシートに代表されるように収縮率のバラツキなど
により寸法の安定した製造も難しい。しかしながら、本
発明では、上述したように均一に混合された混合液もし
くは混合スラリーを金型に流入させた後、自己硬化型の
反応性化合物を硬化せしめて容易に成形体とすることが
できる。この成形体を炭化ケイ素化用の加熱炉に入れ
て、加熱することによって、炭化ケイ素もしくはセラミ
ックス多孔体の成形体を得ることもできる。混合液やス
ラリーが単なる混練でなく溶液混合を主とするために硬
化後の成形体は均一性が保たれている。
Conventionally, in the production of a ceramic molded body, it is difficult to manufacture a molded body having a complicated shape or a long shape, and it is also difficult to manufacture the dimensionally stable due to variations in shrinkage ratio as represented by a green sheet. However, in the present invention, after the mixed liquid or mixed slurry uniformly mixed as described above is flown into the mold, the self-curable reactive compound can be cured to easily form a molded body. It is also possible to obtain a molded body of silicon carbide or a ceramic porous body by putting this molded body in a heating furnace for silicon carbide and heating it. Since the mixed solution or slurry is mainly a solution mixture rather than a simple kneading, the cured molded body maintains uniformity.

【0019】ここで混合液などを成形する方法として
は、射出成形法、押し出し成形法、圧縮成形法などがあ
る。いづれの成形法でもよく、またこれらの組合せによ
ってもよい。この工程で目的とする形状を得る。液状や
スラリー状の流動性のある状態でこれらの成形機の金型
に流入させ、必要により50〜300℃付近の温度に加
熱して反応性化合物を硬化せしめて成形体として取り出
す。その後、この成形体を炭化ケイ素化用の加熱炉に入
れて、1500〜2300℃の範囲で加熱することによ
り炭化ケイ素多孔質成形体などを得る。なお、混合液に
分散させるセラミックス粉末などの添加量としては、こ
こでは特に限定する必要はないが、スラリー中の粉末な
どの体積割合で60%を越えると流動性が低下するた
め、射出成形法、押し出し成形法においてはこれ以下の
範囲が好ましい。
As a method for molding the mixed liquid or the like, there are an injection molding method, an extrusion molding method, a compression molding method and the like. Any molding method may be used, or a combination thereof may be used. The target shape is obtained in this step. It is made to flow into a mold of these molding machines in a liquid or slurry-like fluid state, and if necessary, heated to a temperature of about 50 to 300 ° C. to cure the reactive compound and take it out as a molded body. Then, this molded product is put into a heating furnace for silicon carbide and heated in a range of 1500 to 2300 ° C. to obtain a silicon carbide porous molded product and the like. The addition amount of the ceramic powder or the like to be dispersed in the mixed liquid is not particularly limited here, but if the volume ratio of the powder or the like in the slurry exceeds 60%, the fluidity decreases, so the injection molding method is used. In the extrusion molding method, the range below this is preferable.

【0020】[0020]

【実施例】以下、実施例により本発明を説明する。 実施例1 ケイ素化合物として分子量が2000のポリビニルシラ
ンを用い、自己硬化型の反応性化合物としてジビニルベ
ンゼンを用い、これらのそれぞれ50gとジブチルパー
オキサイド0.05gとを混合した液の52gを100
℃に保持した金型に圧入し、10分間後に取り出して1
0mm×50mm×100mmの板状の成形体を得た。
次にこの成形体を高周波加熱炉を用いて大気圧の窒素雰
囲気中で、100℃/Hの昇温速度で2000℃まで加
熱し、30分間保持した。その後大気中で750℃に3
時間加熱して炭素を燃焼除去し、6mm×31mm×6
2mmの板状の炭化ケイ素成形体を得た。得られた炭化
ケイ素は見掛け密度が0.95g/cm3 で、空隙率が
71%の多孔体であった。この多孔質成形体より3mm
×4mm×36mmの試験片を切り出し、JISR16
02による三点曲げ強度試験を行ったところ、11kg/m
m2であった。
The present invention will be described below with reference to examples. Example 1 Polyvinylsilane having a molecular weight of 2000 was used as a silicon compound, divinylbenzene was used as a self-curing reactive compound, and 52 g of a liquid obtained by mixing 50 g of each of these with 0.05 g of dibutyl peroxide was used as 100
Press into the mold kept at ℃, take out after 10 minutes, and
A plate-shaped compact having a size of 0 mm × 50 mm × 100 mm was obtained.
Next, this molded body was heated to 2000 ° C. at a temperature rising rate of 100 ° C./H in a nitrogen atmosphere at atmospheric pressure using a high-frequency heating furnace and held for 30 minutes. After that, at 750 ℃ in the atmosphere, 3
Heated for hours to remove carbon by burning, 6 mm x 31 mm x 6
A 2 mm plate-shaped silicon carbide molded body was obtained. The obtained silicon carbide was a porous body having an apparent density of 0.95 g / cm 3 and a porosity of 71%. 3 mm from this porous compact
Cut out a test piece of × 4 mm × 36 mm, JISR16
When the three-point bending strength test according to 02 was conducted, it was 11 kg / m.
It was m 2 .

【0021】比較例1 ケイ素化合物としてSi(OCH3 4 を用い、これの
70gとジビニルベンゼンの30gとジブチルパーオキ
サイド0.03gとを混合した液の53gより実施例1
と全く同様にして10mm×50mm×100mmの板
状の成形体を得た。次にこの成形体を30Kg/cm2
の加圧下で100℃/Hの昇温速度で2000℃まで加
熱し、30分間保持した。その後大気中で750℃に5
時間加熱して炭素を燃焼除去し、6mm×28mm×5
8mmの板状の炭化ケイ素成形体を得た。得られた炭化
ケイ素は見掛け密度が0.96g/cm3 で、空隙率が
70%の多孔体であった。この多孔質成形体の曲げ強度
を実施例1と同様にして測定したところ、1kg/mm2以下
であった。実施例1と比較例1の比較より、空隙率は同
等であっても、本発明によって得られる炭化ケイ素多孔
体の方が格段に強度が高いことが分かる。
Comparative Example 1 Si (OCH 3 ) 4 was used as a silicon compound, and 53 g of a liquid obtained by mixing 70 g of this with 30 g of divinylbenzene and 0.03 g of dibutyl peroxide was used.
A plate-shaped molded body of 10 mm × 50 mm × 100 mm was obtained in exactly the same manner as in. Next, this molded body is subjected to 30 kg / cm 2
It was heated to 2000 ° C. at a temperature rising rate of 100 ° C./H under a pressure of 1 and held for 30 minutes. After that, at 750 ° C in the atmosphere, 5
Heat for 6 hours to remove carbon by burning, 6 mm x 28 mm x 5
An 8 mm plate-shaped silicon carbide molded body was obtained. The obtained silicon carbide was a porous body having an apparent density of 0.96 g / cm 3 and a porosity of 70%. When the bending strength of this porous molded article was measured in the same manner as in Example 1, it was 1 kg / mm 2 or less. From the comparison between Example 1 and Comparative Example 1, it can be seen that the porous silicon carbide body obtained by the present invention has significantly higher strength even if the porosity is the same.

【0022】実施例2 実施例1と同じポリビニルシランとジビニルベンゼンの
それぞれ50gとジブチルパーオキサイド0.05gと
を混合した液に、平均粒子径が0.25μの炭化ケイ素
粉末を100gをミキサーで混合してスラリーとした。
このスラリーの62gを100℃に保持した金型に圧入
し、10分間後に取り出して10mm×50mm×10
0mmの板状の成形体を得た。次にこの成形体を実施例
1と同様にして、高周波加熱炉を用いて2000℃で3
0分間保持した。その後大気中で750℃に5時間加熱
して炭素を燃焼除去し、8mm×41mm×82mmの
板状の炭化ケイ素成形体を得た。得られた炭化ケイ素は
見掛け密度が1.41g/cm3 で、空隙率が56%の
多孔体であった。この多孔質成形体より3mm×4mm
×36mmの試験片を切り出し、JISR1602によ
る三点曲げ強度試験を行ったところ、21kg/mm2であっ
た。
Example 2 100 g of a silicon carbide powder having an average particle size of 0.25 μ was mixed with a liquid in which 50 g each of the same polyvinylsilane and divinylbenzene as described in Example 1 and 0.05 g of dibutyl peroxide were mixed with a mixer. And made into a slurry.
62 g of this slurry was press-fitted into a mold kept at 100 ° C., taken out after 10 minutes and taken out to 10 mm × 50 mm × 10.
A 0 mm plate-shaped molded body was obtained. Next, this molded body was subjected to the same procedure as in Example 1 using a high-frequency heating furnace at 2000 ° C. for 3 hours.
Hold for 0 minutes. After that, carbon was burned and removed by heating at 750 ° C. for 5 hours in the air to obtain a plate-shaped silicon carbide molded body of 8 mm × 41 mm × 82 mm. The obtained silicon carbide was a porous body having an apparent density of 1.41 g / cm 3 and a porosity of 56%. 3mm x 4mm from this porous compact
When a test piece of 36 mm was cut out and subjected to a three-point bending strength test according to JIS R1602, it was 21 kg / mm 2 .

【0023】比較例2 ケイ素化合物としてSi(OCH3 4 を用い、これの
50gとジビニルベンゼンの50gとジブチルパーオキ
サイド0.05gとを混合した液に、平均粒子径が0.
25μの炭化ケイ素粉末を100gをミキサーで混合し
てスラリーとした。このスラリーの63gを実施例2と
同様にして、100℃に保持した金型に圧入し、10分
間後に取り出して10mm×50mm×100mmの板
状の成形体を得た。次にこの成形体を30Kg/cm2
の加圧下で100℃/Hの昇温速度で2000℃まで加
熱し、30分間保持した。その後大気中で750℃に5
時間加熱して炭素を燃焼除去し、8mm×40mm×8
1mmの板状の炭化ケイ素成形体を得た。得られた炭化
ケイ素は見掛け密度が1.39g/cm3 で、空隙率が
57%の多孔体であった。この多孔質成形体の曲げ強度
を実施例2と同様にして測定したところ、2kg/mm2であ
った。
Comparative Example 2 Si (OCH 3 ) 4 was used as a silicon compound, and 50 g of it was mixed with 50 g of divinylbenzene and 0.05 g of dibutyl peroxide to obtain a liquid having an average particle diameter of 0.
100 g of 25 μ silicon carbide powder was mixed with a mixer to form a slurry. In the same manner as in Example 2, 63 g of this slurry was pressed into a mold kept at 100 ° C., and after 10 minutes, taken out to obtain a plate-shaped molded body of 10 mm × 50 mm × 100 mm. Next, this molded body is subjected to 30 kg / cm 2
It was heated to 2000 ° C. at a temperature rising rate of 100 ° C./H under a pressure of 1 and held for 30 minutes. After that, at 750 ° C in the atmosphere, 5
8 hours × 40mm × 8
A 1 mm plate-shaped silicon carbide molded body was obtained. The obtained silicon carbide was a porous body having an apparent density of 1.39 g / cm 3 and a porosity of 57%. When the bending strength of this porous molded article was measured in the same manner as in Example 2, it was 2 kg / mm 2 .

【0024】実施例3 ケイ素化合物としてポリカルボシランを用い、これの5
0gとジビニルベンゼンの50gとジブチルパーオキサ
イド0.05gとを混合した液に、平均粒子径が0.2
5μの炭化ケイ素粉末を150gをミキサーで混合して
スラリーとし、このスラリーの62gを実施例2と同様
にして100℃に保持した金型に圧入し、10分間後に
取り出して10mm×50mm×100mmの板状の成
形体を得た。次にこの成形体を実施例1と同様にして、
高周波加熱炉を用いて2000℃で30分間保持した。
その後大気中で750℃に5時間加熱して炭素を燃焼除
去し、8mm×43mm×84mmの板状の炭化ケイ素
成形体を得た。得られた炭化ケイ素は見掛け密度が1.
52g/cm3 で、空隙率が53%の多孔体であった。
この多孔質成形体の曲げ強度を実施例2と同様にして測
定したところ、24kg/mm2であった。
Example 3 Polycarbosilane was used as a silicon compound,
A liquid obtained by mixing 0 g, 50 g of divinylbenzene and 0.05 g of dibutyl peroxide had an average particle size of 0.2
150 g of 5 μ silicon carbide powder was mixed with a mixer to form a slurry, and 62 g of this slurry was pressed into a mold kept at 100 ° C. in the same manner as in Example 2, and after 10 minutes, it was taken out to obtain 10 mm × 50 mm × 100 mm. A plate-shaped molded body was obtained. Next, this molded body was treated in the same manner as in Example 1,
It was held at 2000 ° C. for 30 minutes using a high frequency heating furnace.
After that, carbon was burned and removed by heating at 750 ° C. for 5 hours in the air to obtain a plate-shaped silicon carbide molded body of 8 mm × 43 mm × 84 mm. The obtained silicon carbide has an apparent density of 1.
The porous body had a porosity of 53% at 52 g / cm 3 .
When the bending strength of this porous molded article was measured in the same manner as in Example 2, it was 24 kg / mm 2 .

【0025】[0025]

【発明の効果】本発明の炭化ケイ素はセラミックスの中
でも耐蝕性や耐熱性に優れる性質を有し、とくに、空隙
率が高く、孔の大きさが均等で、強度が高い炭化ケイ素
多孔体であり、セラミックス多孔体更に炭化ケイ素もし
くはセラミックス多孔質成形体を任意にしかも容易に成
形体を製造する方法を提供することができる。これらの
利点を利用して炭化ケイ素の多孔質成形体を酸やアルカ
リ中の不溶物を除去したり、ディーゼルエンジンから排
出されるガス中の炭素質粒子を除去するフィルターとし
て用いることができる。その他の応用分野も広く、産業
上の利用価値も高い。
INDUSTRIAL APPLICABILITY The silicon carbide of the present invention has excellent corrosion resistance and heat resistance among ceramics. In particular, it is a porous silicon carbide body having high porosity, uniform pore size, and high strength. It is possible to provide a method for producing a molded body of a ceramic porous body and further a silicon carbide or ceramic porous molded body optionally and easily. By utilizing these advantages, the porous molded body of silicon carbide can be used as a filter for removing insoluble matters in acid or alkali and for removing carbonaceous particles in gas discharged from a diesel engine. It has a wide range of other application fields and has a high industrial utility value.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 分子中に少なくとも一つのSi−C結合
を含むケイ素化合物と、該ケイ素化合物を溶解し得る自
己硬化型の反応性化合物との混合液を加熱してなる炭化
ケイ素多孔体。
1. A silicon carbide porous body obtained by heating a mixed liquid of a silicon compound having at least one Si—C bond in the molecule and a self-curing reactive compound capable of dissolving the silicon compound.
【請求項2】 混合液にセラミックス粉末を分散させた
混合スラリーを加熱してなるセラミックス多孔体。
2. A ceramic porous body obtained by heating a mixed slurry in which ceramic powder is dispersed in a mixed liquid.
【請求項3】 混合液もしくは混合スラリーを金型に流
入させた後硬化させて成形体とし、次いで加熱すること
を特徴とする炭化ケイ素もしくはセラミックス多孔質成
形体の製造方法。
3. A method for producing a silicon carbide or ceramic porous molded body, which comprises injecting a mixed solution or a mixed slurry into a mold, curing the mixture to obtain a molded body, and then heating the molded body.
JP4713792A 1992-03-04 1992-03-04 Silicon carbide porous body and production thereof Pending JPH05246774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4713792A JPH05246774A (en) 1992-03-04 1992-03-04 Silicon carbide porous body and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4713792A JPH05246774A (en) 1992-03-04 1992-03-04 Silicon carbide porous body and production thereof

Publications (1)

Publication Number Publication Date
JPH05246774A true JPH05246774A (en) 1993-09-24

Family

ID=12766731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4713792A Pending JPH05246774A (en) 1992-03-04 1992-03-04 Silicon carbide porous body and production thereof

Country Status (1)

Country Link
JP (1) JPH05246774A (en)

Similar Documents

Publication Publication Date Title
US4248814A (en) Process for producing ceramic sintered bodies
US4722988A (en) Organopolysilazane composition containing free radical generators and capable of being crosslinked by an energy input
US4720532A (en) Organopolysilazane precursors to silicon nitride-rich mixed SiC/Si3 N4
US4164528A (en) Method for producing metal nitride sintered moldings
JPS60226890A (en) Preseramic organosilazane polymer
US4336215A (en) Sintered ceramic body and process for production thereof
US5268496A (en) Process for the preparation of polysilazanes
US5010158A (en) Process for preparing polysiloxazane compositions and the products formed thereby
US5112779A (en) High density silicon carbide sintered bodies from borosiloxanes
US4962069A (en) Highly densified bodies from preceramic polysilazanes filled with silicon carbide powders
US4556526A (en) Process for production of sintered ceramic body
JPS627735A (en) Cationic catalytic treatment of polysilazane averagely containing at least two sih groups
US4866149A (en) Process for catalytic treatment of a polysilazane containing on average at least two hydrocarbon groups having aliphatic unsaturation per molecule
JPH0379306B2 (en)
EP0468066B1 (en) Process for molding ceramics using a liquid, curable ceramic precursor
JPH05246774A (en) Silicon carbide porous body and production thereof
CN113354821A (en) High-modulus silicon-containing aryne resin, composite material and preparation method thereof
JPH05270937A (en) Silicon carbide filter and its production
EP0560258B1 (en) Reaction injection molding of silicon nitride ceramics having crystallized grain boundary phases
JP3483920B2 (en) Method for producing high-purity β-type silicon carbide sintered body for semiconductor production equipment
JPH06145361A (en) Poly(silylene)vinylene from ethynylhydridosilane
JP2001525310A (en) Crosslinked polyamide binder for ceramics
JPH05319959A (en) Production of high-density ceramic
JP3150754B2 (en) Silazane polymer and method for producing the same
Barati et al. Forming alumina parts using acrylamide gels