JPH0524601B2 - - Google Patents

Info

Publication number
JPH0524601B2
JPH0524601B2 JP433785A JP433785A JPH0524601B2 JP H0524601 B2 JPH0524601 B2 JP H0524601B2 JP 433785 A JP433785 A JP 433785A JP 433785 A JP433785 A JP 433785A JP H0524601 B2 JPH0524601 B2 JP H0524601B2
Authority
JP
Japan
Prior art keywords
conductor
longitudinal direction
copper
ingot
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP433785A
Other languages
Japanese (ja)
Other versions
JPS61163505A (en
Inventor
Kazuo Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP433785A priority Critical patent/JPS61163505A/en
Publication of JPS61163505A publication Critical patent/JPS61163505A/en
Priority to US07/427,956 priority patent/US4976792A/en
Publication of JPH0524601B2 publication Critical patent/JPH0524601B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、例えばTV,CRT{Cathode Rey
Tube(ブラウン管)}等の画像表示機器や、例え
ばオーデイオ機器等の音響機器の高周波信号伝達
回路が必要な機器の配線に用いられる導体の製造
方法に関するものである。 (背景技術) これらの電子機器は、信号が正確に、位相差を
生じることなく伝達されないと、画像や音響にお
いて像がぼやけたり、音が鮮明でなかつたりす
る。 従来、タフピツチ銅(酸素200〜500ppm程度含
有する純銅)や無酸素銅(酸素をほとんど含まな
い純銅)を冷間加工後焼鈍軟化して再結晶させた
軟銅線や、時として冷間加工したままの硬銅線、
又はこれらに錫等のめつきを施した線がこれらの
用途に使用されてきた。 しかし、これらの線は次の理由により必ずしも
信号の正確な伝達に好都合なものではなかつた。 軟銅線は、しなやかさが優れるので、多用され
るが、焼鈍による再結晶で結晶粒は通常等軸に近
い形状に分布するため、導体の長手方向に電流が
流れる際、横切るであろう結晶粒界の数が多くな
り、結晶粒界は特に高周波成分信号にとつて位相
差発生等の原因として大きく作動すると考えられ
る。 硬銅線の場合、軟銅線に比べて繊維状に長手方
向に伸びた結晶の形を呈しているので、長手方向
に電流が流れる際、横切るであろう結晶粒界は見
掛け上少ない点より、結晶粒界の悪影響は受けに
くいが、原子空孔(点欠陥)、転位(線状の結晶
欠陥)の密度が、軟銅線に比べて極端に多く、電
気伝導に不適当な電子密度の不均質などが多く、
これも高周波成分信号にとつて位相差発生の原因
となると考えられる。 (発明の開示) 本発明は、上述の問題点を解決するため成され
たもので、結晶粒が長手方向に平行に並んだ、結
晶間の異方性の少ない組織とし、信号電流が流れ
る際の信号の乱れ、位相差の発生を防止し得る画
像表示機器、音響機器用導体を製造する方法を提
供せんとするものである。 本発明は、銅又は銀を長手方向に一方向凝固さ
せた後、冷間加工は温間加工することを特徴とす
る画像表示機器、音響機器用導体の製造方法であ
る。 本発明の対象となる導体は、例えばTV、
CRT、ビデオ機器、OA機器等の画像表示機器、
又は例えばオーデイオ機器等の音響機器の配線に
用いられる導体であるが、信号伝達回路用に限定
されるものではなく、単線、これに錫、半田等の
めつきを施した単線又はこれらの複数本を撚合せ
た撚線の状態で使用される。導体の断面形状は円
形、楕円形、四角形、その他の異形等のいずれで
も良い。 本発明において、銅又は銀は、原料として純度
99.95%以上のものを使用したもが好ましい。純
度99.95.%未満では、不純物原子の存在が結晶の
電子構造と乱れをつくり易く、これが高周波信号
の乱れ、位相差を生じる原因となる恐れがある。 又純度99.95%以上の銅又は銀は導電率が高く、
高周波信号の信号伝達に有利である。 本発明においては、先ず銅又は銀を長手方向に
一方向凝固させて鋳塊を作成する。これにより鋳
塊中の結晶粒は長手方向に平行に並び、この時結
晶粒間の方位の違いも少ない状態となる。 鋳塊を作る方法としては、例えば第1図、第2
図に示す方法がある。第1図に示す方法は垂直ブ
リツジマン法と呼ばれる方法で、管状加熱炉1中
の真空又は不活性雰囲気に保持される容器2中に
原料3を装入し、容器2を下方に移動しながら原
料を下部から順次溶解後、凝固して鋳塊4とする
方法である。鋳塊は底部より長手方向に下方向
(一方向)に凝固され、結晶粒は長手方向に平行
に並ぶ。 第2図に示す方法は、底部に水冷鋳型7を用い
る方法で、水冷鋳型7上に置いた原料3を収容し
た容器6を管状加熱炉5内に配置し、原料3を溶
解後、底部の水冷鋳型7を水冷して、容器6の底
部より金属を凝固させる方法である。この場合も
鋳塊は底部より長手方向に下方向(一方向)に凝
固され、結晶粒は長手方向に平行に並ぶ。 これらの方法は、上述の結晶粒が並ぶ効果の他
に、画像、音響に悪影響を及ぼす異物、不純物、
ガスを上方に移動させ、除去する効果がある。 なお、本発明における鋳塊を作る方法は第1
図、第2図に示す方法に限定されるものはない。 次に、鋳塊は例間加工又は再結晶を起こさない
温度範囲での温間加工により引き伸ばされる。こ
れらの加工は再結晶を起こさない条件で加工する
点に特徴があり、上述の一方向凝固により得た結
晶組織の方向性を保持させ、加工後も長手方向を
横切る結晶粒界が少なく、又結晶間の異方性が少
なく、結晶粒界の画像、音響への悪影響が少なく
なる、若し加工途中再結晶させると、前述の一方
向凝固による効果が減少する。 本発明においては、例間加工もしくは温間加工
の途中又は加工後において、必要により、再結晶
を起こさぬ温度範囲での加熱処理を施しても良
い。ここで加工後の加熱処理は、画像や音響に悪
影響を及ぼす点欠陥や転位等の欠陥を少なくする
ため行なわれるものである。この時再結晶させて
しまうと、前述の一方向凝固の効果が減少する。
又加工途中の加熱処理は、結晶の歪や、蓄積させ
る加工エネルギーが過度に大きくなつたり、集中
したりしないようにするものである。 実施例 1 第1図に示したブリツジマンにより、純度
99.99%の銅を原料として用い、一方向凝固させ
て直径20mmの鋳塊を作成した。この時、凝固組織
は長手方向に平行であつた。 この鋳塊を軽く表面切削し、表面洗滌した後、
冷間伸線と、その途中130℃で1時間の中間段階
での加熱処理(結晶組織が加熱前と変らない熱処
理)を3回施し、0.1mmφの線を作成した。 この線の19本を撚合せて撚線とした後、130℃
で1時間の加熱処理を施して導体とした。 この導体を絶縁被覆した電線をビデオ装置とテ
レビの機内、外の配線用電線として使用してセツ
トを製作した。 比較のため、従来のタフピツチ銅線(従来例)、
無酸素導線(比較例)を用いた19/0.1mmの撚線
導体を用いた絶縁を使用して同様にセツトを製作
した。 これらのセツトについて、画像、音響の状態を
調査した結果は表1に示す通りである。
(Industrial Application Field) The present invention is applicable to, for example, TV, CRT {Cathode Rey
The present invention relates to a method for manufacturing conductors used for wiring of image display devices such as tubes (cathode ray tubes) and devices that require high-frequency signal transmission circuits, such as audio devices and other audio devices. (Background Art) In these electronic devices, if signals are not transmitted accurately without creating a phase difference, the image or sound may become blurred or the sound may not be clear. Conventionally, annealed copper wires are made by cold-working tough copper (pure copper containing about 200 to 500 ppm of oxygen) or oxygen-free copper (pure copper containing almost no oxygen) and recrystallizing it by annealing and softening it, or sometimes leaving it cold-worked. hard copper wire,
Alternatively, wires plated with tin or the like have been used for these purposes. However, these lines are not always convenient for accurate signal transmission for the following reasons. Annealed copper wire is often used because it has excellent flexibility, but when recrystallized by annealing, the crystal grains are usually distributed in an almost equiaxed shape, so when a current flows in the longitudinal direction of the conductor, the crystal grains that would cross It is thought that the number of fields increases, and the grain boundaries act significantly as a cause of phase difference generation, etc., especially for high frequency component signals. In the case of hard copper wire, compared to annealed copper wire, it has a fibrous crystal shape that extends in the longitudinal direction, so when a current flows in the longitudinal direction, there are apparently fewer grain boundaries to cross. Although it is less susceptible to the adverse effects of grain boundaries, the density of atomic vacancies (point defects) and dislocations (linear crystal defects) is extremely high compared to annealed copper wire, and the electron density is non-uniform, making it unsuitable for electrical conduction. There are many such things,
This is also considered to be a cause of phase difference generation for high frequency component signals. (Disclosure of the Invention) The present invention has been made to solve the above-mentioned problems. It is an object of the present invention to provide a method for manufacturing a conductor for an image display device or an audio device that can prevent signal disturbance and phase difference from occurring. The present invention is a method for manufacturing a conductor for an image display device or an audio device, characterized in that after copper or silver is unidirectionally solidified in the longitudinal direction, cold working is performed by warm working. Conductors to which the present invention is applied include, for example, TVs,
Image display equipment such as CRT, video equipment, OA equipment, etc.
Or, for example, a conductor used for wiring audio equipment such as audio equipment, but not limited to signal transmission circuits, such as a single wire, a single wire plated with tin, solder, etc., or a plurality of these. It is used in the form of a twisted wire. The cross-sectional shape of the conductor may be circular, oval, square, or other irregular shapes. In the present invention, copper or silver is used as a raw material with purity
It is preferable to use 99.95% or more. If the purity is less than 99.95%, the presence of impurity atoms tends to create disturbances in the electronic structure of the crystal, which may cause disturbances in high-frequency signals and phase differences. Also, copper or silver with a purity of 99.95% or higher has high conductivity.
It is advantageous for signal transmission of high frequency signals. In the present invention, first, copper or silver is unidirectionally solidified in the longitudinal direction to create an ingot. As a result, the crystal grains in the ingot are arranged parallel to the longitudinal direction, and at this time, there is little difference in orientation between the crystal grains. Examples of methods for making ingots include Figures 1 and 2.
There is a method shown in the figure. The method shown in FIG. 1 is a method called the vertical Bridgeman method, in which a raw material 3 is charged into a container 2 maintained in a vacuum or inert atmosphere in a tubular heating furnace 1, and the raw material 3 is moved downward while the container 2 is moved downward. In this method, the ingot is melted sequentially from the bottom and then solidified to form the ingot 4. The ingot is solidified downward (in one direction) in the longitudinal direction from the bottom, and the crystal grains are arranged parallel to the longitudinal direction. The method shown in FIG. 2 is a method using a water-cooled mold 7 at the bottom, in which a container 6 containing raw material 3 placed on the water-cooled mold 7 is placed in a tubular heating furnace 5, and after melting the raw material 3, the bottom part is This is a method in which the water-cooled mold 7 is cooled with water and the metal is solidified from the bottom of the container 6. In this case as well, the ingot is solidified downward (in one direction) in the longitudinal direction from the bottom, and the crystal grains are arranged parallel to the longitudinal direction. In addition to the above-mentioned effect of arranging crystal grains, these methods also prevent foreign matter, impurities, and
It has the effect of moving gas upward and removing it. Note that the method for making an ingot in the present invention is the first method.
There is no limitation to the method shown in FIGS. The ingot is then elongated by cold working or warm working at a temperature range that does not cause recrystallization. These processes are characterized in that they are processed under conditions that do not cause recrystallization, and the orientation of the crystal structure obtained by the above-mentioned unidirectional solidification is maintained, and there are few grain boundaries that cross the longitudinal direction even after processing. The anisotropy between crystals is small, and the adverse effects of grain boundaries on images and sound are reduced.If recrystallization is performed during processing, the effect of the unidirectional solidification described above is reduced. In the present invention, heat treatment may be performed at a temperature range that does not cause recrystallization, if necessary, during or after the intermediate processing or warm processing. Here, the heat treatment after processing is performed to reduce defects such as point defects and dislocations that adversely affect images and sound. If recrystallization is performed at this time, the effect of the unidirectional solidification described above will be reduced.
Further, the heat treatment during processing is performed to prevent distortion of the crystal and to prevent the accumulated processing energy from becoming excessively large or concentrated. Example 1 Purity was determined by Bridgeman shown in Figure 1.
Using 99.99% copper as a raw material, an ingot with a diameter of 20 mm was created by unidirectional solidification. At this time, the solidified structure was parallel to the longitudinal direction. After lightly cutting the surface of this ingot and washing the surface,
A wire of 0.1 mmφ was produced by cold wire drawing and an intermediate heat treatment at 130°C for 1 hour (a heat treatment in which the crystal structure remains unchanged from before heating) three times. After twisting 19 of these wires together to make a twisted wire, it is heated to 130℃.
It was heat-treated for 1 hour to become a conductor. A set was fabricated using wires coated with this conductor as wiring wires inside and outside the video equipment and television. For comparison, conventional tough pitch copper wire (conventional example),
A similar set was made using insulation using 19/0.1 mm stranded conductors using oxygen-free conductors (comparative example). Table 1 shows the results of investigating the image and sound conditions for these sets.

【表】 表1より、本発明によるものは、従来例、比較
例に比べ、画像、音響共に鮮明であることが分
る。 実施例 2 第2図に示すような鋳塊作成法により、原料と
して純度99.995%の銀を用い、一方向凝固させて
直径25mmの鋳塊を作成した。この時凝固組織は長
手方向に平行であつた。 この鋳塊に、再結晶しない条件の温度下で、温
間伸線加工を施し、10mmφの線とし、続いて、冷
間伸線を施し、0.3〜0.05mmφの細線とした。 これらの細線を用い、エナメル被覆した巻線お
よび7本〜19本撚線導体を用いた絶縁電線を作成
した。 これらの電線を用いて音響マニア用音響機器の
ボイスコイルやピツクアツプコード等の機内配線
およびコンポネント間の機器配線に用いて機器を
製作した。 比較のため、従来のタフピツチ銅線を用いた電
線(従来例)を用いて同様に機器を作成した。 これらの音響システムを比較した所、本発明を
用いたシステムは、従来例に比べ、高音から低音
域まで音が割れたり、歪んだりすることなく、鮮
明な透明感のある澄んだ音質であり、臨場感にあ
ふれる高品質の音が得られた。 (発明の効果) 上述のように構成された本発明の画像表示機
器、音響機器用導体の製造方法は次のような効果
がある。 (イ) 銅又は銀を長手方向に一方向凝固させるた
め、結晶粒が長手方向に平行に並び、結晶間の
異方性がなく、その後冷間加工又は温間加工す
るため、加工途中再結晶を起こさず、結晶粒が
長手方向に平行に並び、結晶間の異方性が少な
い導体が得られるので、導体を流れる画像、音
響の信号電流に信号の乱れや位相差を生じない
ので、画像表示機器では、白さがより鮮明に白
く、色彩があざやかとなり、画像が鮮明とな
る。又音響機器では、澄んだ透明感のある鮮明
な音響となる。 (ロ) 一方向凝固方法により画像、音響に悪影響を
及ぼす異物、不純物が除去されるので、画像、
音響が鮮明になる。 (ハ) 導体の結晶間の異方性が少ないため、長手方
向に平行に存在する粒界の悪影響が少ないの
で、画像、音響が鮮明になる。
[Table] From Table 1, it can be seen that the image and sound of the device according to the present invention are clearer than the conventional example and the comparative example. Example 2 An ingot with a diameter of 25 mm was produced by unidirectionally solidifying silver with a purity of 99.995% as a raw material using the ingot production method shown in FIG. 2. At this time, the solidified structure was parallel to the longitudinal direction. This ingot was subjected to warm wire drawing at a temperature without recrystallization to form a wire of 10 mmφ, and then cold wire drawn to form a fine wire of 0.3 to 0.05 mmφ. Using these thin wires, insulated wires were created using enamel-coated windings and 7 to 19 stranded conductors. These electric wires were used for internal wiring such as voice coils and pick-up cords of audio equipment for audio enthusiasts, and for equipment wiring between components. For comparison, a similar device was created using a conventional electric wire (conventional example) using tough pitch copper wire. A comparison of these sound systems revealed that, compared to conventional systems, the system using the present invention did not crack or distort the sound from high to low frequencies, and had a clear sound quality with a clear sense of transparency. We were able to obtain high-quality sound that was full of realism. (Effects of the Invention) The method for manufacturing a conductor for image display equipment and audio equipment of the present invention configured as described above has the following effects. (b) Copper or silver is unidirectionally solidified in the longitudinal direction, so the crystal grains are aligned parallel to the longitudinal direction, and there is no anisotropy between the crystals. Since it is then cold worked or warm worked, recrystallization occurs during processing. A conductor with crystal grains arranged parallel to the longitudinal direction and with little anisotropy between crystals can be obtained without causing any disturbance or phase difference in the image and acoustic signal currents flowing through the conductor. In display devices, whites become more vivid, colors become more vivid, and images become clearer. Also, with audio equipment, the sound is clear and transparent. (b) The unidirectional solidification method removes foreign substances and impurities that have a negative impact on images and sound, so
The sound becomes clearer. (c) Since there is little anisotropy between the conductor's crystals, there is little negative influence from grain boundaries that exist parallel to the longitudinal direction, resulting in clearer images and sounds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明における
鋳塊作成法を説明するための断面模式図である。 1,5……管状加熱炉、2,6……容器、3…
…原料、4……鋳塊、7……水冷鋳型。
FIG. 1 and FIG. 2 are schematic cross-sectional views for explaining the method of producing an ingot according to the present invention, respectively. 1, 5... Tubular heating furnace, 2, 6... Container, 3...
...Raw material, 4...Ingot, 7...Water-cooled mold.

Claims (1)

【特許請求の範囲】 1 銅又は銀を長手方向に一方向凝固させた後、
冷間加工又は温間加工することを特徴とする画像
表示機器、音響機器用導体の製造方法。 2 銅又は銀が、純度99.95%以上の原料を使用
したものである特許請求の範囲第1項記載の画像
表示機器、音響機器用導体の製造方法。 3 冷間加工もしくは温間加工の途中又は加工
後、再結晶を起こさない温度範囲での加熱処理を
施す特許請求の範囲第1項又は第2項記載の画像
表示機器、音響機器用導体の製造方法。
[Claims] 1. After coagulating copper or silver in one direction in the longitudinal direction,
A method for manufacturing a conductor for image display equipment and audio equipment, characterized by cold working or warm working. 2. The method for manufacturing a conductor for image display equipment and audio equipment according to claim 1, wherein copper or silver is a raw material with a purity of 99.95% or more. 3. Manufacture of a conductor for image display equipment or audio equipment according to claim 1 or 2, which is subjected to heat treatment during or after cold working or warm working in a temperature range that does not cause recrystallization. Method.
JP433785A 1985-01-14 1985-01-14 Manufacture of image display device and acoustic device Granted JPS61163505A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP433785A JPS61163505A (en) 1985-01-14 1985-01-14 Manufacture of image display device and acoustic device
US07/427,956 US4976792A (en) 1985-01-14 1989-10-25 Electric conductor and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP433785A JPS61163505A (en) 1985-01-14 1985-01-14 Manufacture of image display device and acoustic device

Publications (2)

Publication Number Publication Date
JPS61163505A JPS61163505A (en) 1986-07-24
JPH0524601B2 true JPH0524601B2 (en) 1993-04-08

Family

ID=11581623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP433785A Granted JPS61163505A (en) 1985-01-14 1985-01-14 Manufacture of image display device and acoustic device

Country Status (1)

Country Link
JP (1) JPS61163505A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627149B1 (en) 1996-06-21 2003-09-30 Dowa Mining Co., Ltd. High-purity silver wires for use in recording, acoustic or image transmission applications
JP3725621B2 (en) 1996-06-21 2005-12-14 同和鉱業株式会社 High-purity silver wire for recording or sound or image transmission
JP2012136719A (en) * 2009-04-14 2012-07-19 Metal Labo Co Ltd Metallic material having highly conductive structure
JP4691740B1 (en) 2010-10-13 2011-06-01 オーディオ・ラボ有限会社 Method for producing metal material and metal material

Also Published As

Publication number Publication date
JPS61163505A (en) 1986-07-24

Similar Documents

Publication Publication Date Title
US8663388B2 (en) Method of manufacturing single crystal wire and other single crystal metallic articles
CN104099491A (en) Copper wire and method of manufacturing the same
JP3725621B2 (en) High-purity silver wire for recording or sound or image transmission
JPH0524601B2 (en)
JPS60125357A (en) Manufacture of conductor for electronic apparatus
JPS61163504A (en) Conductor for image display device and acoustic device
US4976792A (en) Electric conductor and method of manufacturing same
JPH0790430A (en) Copper wire for extra fine wire and its production
JPS62136707A (en) Manufacture of conductor for audio/video equipment
US5443665A (en) Method of manufacturing a copper electrical conductor, especially for transmitting audio and video signals and quality control method for such conductors
JP4914153B2 (en) Copper conductors for audio and video signals
JPH0715139B2 (en) Method for manufacturing conductor for image display device and audio device
JPH0694587B2 (en) Method for manufacturing conductor for image display device and audio device
JP3374401B2 (en) Manufacturing method of conductors for audio / visual equipment
JPS6092011A (en) Manufacture of super slender wire conductor
JPS62287508A (en) Copper wire for signal transmission
JP2006336047A (en) Copper wire, and method for manufacturing the same
JPS6316503A (en) Manufacture of conductor for acoustic/image apparatus
JPS6355806A (en) Conductor for video cable
JP3718036B2 (en) Extra fine copper wire and method for producing the same
JPH0747809B2 (en) Manufacturing method of high-purity copper wire consisting of coarse crystal grains
JPH0743966B2 (en) Ritsutsu Line
JPH07118216B2 (en) Sound and image equipment conductors
JPH0673243B2 (en) Electrical conductor for audio / video equipment
JPS63174217A (en) Copper wire for signal transmission

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term