JPH05245636A - Consumable electrode arc welding method - Google Patents

Consumable electrode arc welding method

Info

Publication number
JPH05245636A
JPH05245636A JP6523891A JP6523891A JPH05245636A JP H05245636 A JPH05245636 A JP H05245636A JP 6523891 A JP6523891 A JP 6523891A JP 6523891 A JP6523891 A JP 6523891A JP H05245636 A JPH05245636 A JP H05245636A
Authority
JP
Japan
Prior art keywords
welding
control
root gap
width
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6523891A
Other languages
Japanese (ja)
Other versions
JP2933737B2 (en
Inventor
Toshio Aoki
俊雄 青木
Nobuyuki Maruyama
修志 丸山
Mitsuaki Otoguro
盈昭 乙黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6523891A priority Critical patent/JP2933737B2/en
Publication of JPH05245636A publication Critical patent/JPH05245636A/en
Application granted granted Critical
Publication of JP2933737B2 publication Critical patent/JP2933737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To provide the consumable electrode arc welding method which settler a problem of groove width profile control in arc sensing and can perform stable accumulative layer welding by arc sensing. CONSTITUTION:In the consumable electrode arc welding method which controls the oscillating width of a welding torch and the welding speed or the wire feed rate according to variation of a root gap and performs one pass welding per layer by arc sensing control to execute control succeessively so as to maintain the bead height constant, the consumable electrode arc welding method to execute control in the range of 2-12mm of bead height above from a straight line AB is provided. Consequently, the bead height for the root gap is selected for width control of arc sensing, by which sure control is executed even in the narrow root gap, stable automatic welding with high efficiency is made possible in the wide root gap, especially, welding accuracy of thick plate welding requiring multilayer welding is improved and a great contribution is made to automation and robotization of the welding process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアークセンシングによる
開先倣い制御での、開先幅変動検出とこれに伴うビード
高さ一定制御が確実に行なえる、消耗電極式アーク溶接
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a consumable electrode type arc welding method capable of surely performing groove width variation detection and accompanying bead height constant control in groove tracking control by arc sensing. ..

【0002】[0002]

【従来の技術】溶接開先は開先加工および組み立て精度
が十分でなく、また、溶接中の歪みにより開先が変形す
るため、溶接中に開先を計測し倣いや溶接条件を制御し
なければならない。溶接中に開先をセンシングする方法
として、アークセンシング方法が開発されているが(特
開昭61−230476)、この方法は溶接トーチのル
ートギャップ方向の揺動に応じた溶接電流の変動から開
先の変化を検出する方法で、溶接トーチ付近に特別なセ
ンサーを取り付ける必要がなく、取り扱いおよびメンテ
ナンスが容易なため溶接現場への適用が最も適している
と考えられている。このようなアークセンシング制御に
よる倣い制御方法は古くから実用化が試みられてきた
が、安定した制御が難しく実用化されていないのが現状
である。
2. Description of the Related Art A welding groove has insufficient groove processing and assembling accuracy, and since the groove is deformed due to distortion during welding, it is necessary to measure the groove during welding and control copying and welding conditions. I have to. An arc sensing method has been developed as a method for sensing a groove during welding (Japanese Patent Laid-Open No. Sho 61-230476). However, this method starts from the fluctuation of the welding current according to the swing of the welding torch in the direction of the root gap. It is a method to detect the change mentioned above, and it is considered to be most suitable for application to the welding site because it does not require a special sensor to be installed near the welding torch and is easy to handle and maintain. Although such a copying control method using arc sensing control has been attempted for practical use for a long time, stable control is difficult and is not in practical use at present.

【0003】アークセンシングによる開先倣い制御は主
に線倣い、高さ倣いおよび幅倣いがある。最も基本的な
方法は揺動幅両端部近傍における電流値を検出して比較
するものである。他の一例として図2に示すように溶接
線倣いは溶接トーチの揺動中心から左端へ至る過程の溶
接電流値の積算値ILG(図2でILGとして示す線の
下側の面積に相当、ILC等他も同様)と左端から揺動
中心へ至る過程の溶接電流値の積算値ILCとの差SL
=ILG−ILC、揺動中心から右端へ至る過程の溶接
値の積算値IRGと右端から揺動中心へ至る過程の溶接
電流値の積算値IRCとの差SR=IRG−IRCとを
比較して、電流値の小さい方向へ揺動の中心を修正し、
SLとSRとが等しくなるように制御する。すなわち、
SL>SRのとき揺動中心を右へ制御し、SL<SRの
とき揺動中心を左へ制御する。
The groove tracking control by arc sensing mainly includes line scanning, height scanning and width scanning. The most basic method is to detect and compare current values near both ends of the swing width. As another example, as shown in FIG. 2, the welding line profile is the integrated value ILG of the welding current value in the process from the swing center of the welding torch to the left end (corresponding to the area under the line indicated by ILG in FIG. 2, ILC And so on) and the difference SL between the integrated value ILC of the welding current value in the process from the left end to the swing center
= ILG-ILC, the difference between the integrated value IRG of the welding value in the process from the swing center to the right end and the integrated value IRC of the welding current value in the process from the right end to the swing center SR = IRG-IRC is compared. , Correct the center of oscillation in the direction of smaller current value,
Control is performed so that SL and SR are equal. That is,
When SL> SR, the swing center is controlled to the right, and when SL <SR, the swing center is controlled to the left.

【0004】高さ倣いはILG,ILC,IRGおよび
IRCを加算した電流値が目標のチップ母材間距離と対
応した所定の電流値SAKと比較して小さい(または大
きい)ときは溶接トーチを下げ(または上げ)て溶接ト
ーチ高さを制御する。すなわち、ILG+ILC+IR
G+IRC>SAKのときトーチを上げ、ILG+IL
C+IRG+IRC<SAKのときトーチを下げる。
The height profile lowers the welding torch when the current value obtained by adding ILG, ILC, IRG and IRC is smaller (or larger) than the predetermined current value SAK corresponding to the target chip base material distance. (Or raise) to control the welding torch height. That is, ILG + ILC + IR
When G + IRC> SAK, raise the torch, ILG + IL
Lower the torch when C + IRG + IRC <SAK.

【0005】幅倣いはSLおよびSRをそれぞれルート
ギャップに対応した目標の揺動幅に応じた幅制御しきい
値SBKと比較して、SLおよびSRがともに大きい
(または小さい)ときは揺動幅を小さく(または大き
く)するとともに溶接速度を速く(または遅く)して、
一定のビード高さとなるように制御する方法である。す
なわち、SL>SBKかつSR>SBKのとき揺動幅を
小さく溶接速度を速く、SL<SBKかつSR<SBK
のとき揺動幅を大きく溶接速度を遅くする。
In width scanning, SL and SR are compared with a width control threshold value SBK corresponding to the target swing width corresponding to the root gap, and when both SL and SR are large (or small), the swing width is large. Is decreased (or increased) and the welding speed is increased (or decreased),
This is a method of controlling so that the bead height is constant. That is, when SL> SBK and SR> SBK, the swing width is small and the welding speed is fast, and SL <SBK and SR <SBK.
When, the swing width is increased and the welding speed is decreased.

【0006】[0006]

【発明が解決しようとする課題】しかし、図3は開先角
度40度、ルートギャップ5mmで揺動溶接したときの
溶接電流を示すが変動が大きく、このためアークセンシ
ングによる制御の揺らぎは避けられない。特に、幅倣い
は溶接速度および揺動幅など溶接条件を制御するため、
ビード形状、とけ込み、余盛り高さに影響があり、累層
溶接したとき各層の変動が累積する問題があり実用化が
非常に困難であった。本発明の目的はアークセンシング
における開先幅倣い制御の問題を解決し、安定したアー
クセンシングによる累層溶接が可能な消耗電極式アーク
溶接方法を提供することである。
However, FIG. 3 shows the welding current when swing welding is carried out with a groove angle of 40 degrees and a root gap of 5 mm, but the fluctuation is large, and therefore fluctuations in control due to arc sensing can be avoided. Absent. In particular, width scanning controls welding conditions such as welding speed and swing width.
There was a problem that the bead shape, melt-in, and excess height were affected, and the fluctuations of each layer accumulated during formation welding, making it extremely difficult to put into practical use. An object of the present invention is to solve the problem of groove width profile control in arc sensing and to provide a consumable electrode type arc welding method capable of stable formation welding by stable arc sensing.

【0007】[0007]

【課題を解決するための手段】本発明はこのような問題
点に着目しこれを解決した溶接方法で、その要旨はルー
トギャップGの変動に応じて溶接トーチの揺動幅と溶接
速度あるいはワイヤ送給速度を制御して、ビード高さH
が一定となるよう逐次制御するアークセンシング制御に
より1層1パス溶接する消耗電極式アーク溶接方法にお
いて、前記H(mm)が2以上12以下であり、かつ前
記G(mm)との関係において、G≧0.6H+0.8
の式が成立する領域で制御することを特徴とする消耗電
極式アーク溶接方法である。以下、本発明をより詳細に
説明する。
SUMMARY OF THE INVENTION The present invention is a welding method which addresses such problems and solves them. The gist of the invention is to adjust the swing width of the welding torch and the welding speed or the wire according to the variation of the root gap G. The bead height H is controlled by controlling the feeding speed.
In the consumable electrode type arc welding method in which one layer and one pass are welded by the arc sensing control for sequentially controlling so as to be constant, the H (mm) is 2 or more and 12 or less, and in the relationship with the G (mm), G ≧ 0.6H + 0.8
The consumable electrode type arc welding method is characterized in that the control is performed in a region where the formula of (3) holds. Hereinafter, the present invention will be described in more detail.

【0008】[0008]

【作用】本発明者らはアークセシングは、なぜ安定した
制御が出来ないかを調査した結果、次のような原因を突
き止めることができた。溶接中のアークセシング制御さ
れた溶接トーチの揺動の位置は、図4に示すように開先
部ではなく溶融プール上を揺動させている。図5および
図6はアークセンシングにより揺動幅のみを制御し、溶
接速度は故意に速くおよび遅く溶接した時の揺動位置を
示したもので、同じルートギャップGをアークセンシン
グしても溶接速度が速くなれば、揺動する位置は溶融プ
ールの前方に移動するとともに揺動幅が狭くなり、溶接
速度が遅くなれば、揺動する位置は溶融プールの後方に
移動するとともに揺動幅が広くなる。このため、揺動幅
の変化でルートギャップの変化を検出するアークセンシ
ングでは、見かけ上ルートギャップが変動したように検
出される。
The present inventors have investigated why arc control cannot be stably controlled, and as a result, have been able to find the following cause. As shown in FIG. 4, the position of rocking of the welding torch controlled by arc processing during welding is rocking not on the groove but on the molten pool. 5 and 6 show the swing position when only the swing width is controlled by arc sensing and the welding speed is intentionally fast and slow. Even if the same root gap G is arc-sensed, the welding speed is If the welding speed becomes faster, the rocking position moves to the front of the molten pool and the rocking width becomes narrower.If the welding speed becomes slow, the rocking position moves to the rear of the melting pool and the rocking width becomes wider. Become. For this reason, in arc sensing in which a change in the root gap is detected by a change in the swing width, it is detected that the root gap has apparently changed.

【0009】図7は図4から図6の実験と同様に一定開
先を所定のビード高さになるように溶接速度とワイヤ送
給速度を所定の速度に設定し、アークセンシングで揺動
幅の制御のみ行い、ある幅制御しきい値SBKに応じた
揺動幅を求めた結果で、ルートギャップ5mmおよび1
0mmのビード高さの変化に応じた揺動幅の変化を示し
ている。ここで注目したいことは、ビード高さ1mmの
変化に対し揺動幅の変化は約1.3mmで、同図に示し
たビード幅の変化の約0.7mmに比べ大きく、明らか
に揺動幅の変化がビード幅の変化によるものだけでな
く、図4、図5および図6に示した、溶融プール上を揺
動する位置が変わるために揺動幅が変化した量が加わっ
ていると考えられる。従って、ビード高さの変動はアー
クセンシング中の揺動幅に与える影響が大きく、このた
め、ルートギャップの変化を安定に検出する大きな妨げ
になっていた。
In FIG. 7, the welding speed and wire feeding speed are set to predetermined speeds so that the constant groove has a predetermined bead height as in the experiments of FIGS. 4 to 6, and the swing width is determined by arc sensing. The result of calculating the swing width according to a certain width control threshold value SBK by performing only the control of
The change in the swing width according to the change in the bead height of 0 mm is shown. It should be noted here that the change in the swing width is about 1.3 mm for a change in the bead height of 1 mm, which is larger than the change in the bead width of about 0.7 mm shown in the figure, which is clearly the swing width. It is considered that not only the change in the bead width is caused by the change in the bead width, but also the amount of change in the swing width is added due to the change in the swing position on the molten pool shown in FIGS. 4, 5 and 6. Be done. Therefore, the variation of the bead height has a great influence on the swing width during arc sensing, which is a great obstacle to the stable detection of the change in the root gap.

【0010】また、図3に示すように、溶接電流は溶接
中に大きく変動し、このため溶接電流を利用しているア
ークセンシングは制御の揺らぎが避けられない。このた
め、ルートギャップ一定の開先を溶接してもルートギャ
ップが変動しているように制御され、揺動幅が広がると
ともに溶接速度が遅く制御されたり、揺動幅が狭くなる
とともに溶接速度が速く制御されることがランダムに繰
り返される。
Further, as shown in FIG. 3, the welding current fluctuates greatly during welding, so that arc sensing using the welding current inevitably suffers from control fluctuations. Therefore, even if a groove with a constant root gap is welded, the root gap is controlled so that it fluctuates, the swing width is widened and the welding speed is controlled slow, and the swing width is narrowed and the welding speed is reduced. Rapid control is repeated randomly.

【0011】このようなとき、図8に示すようにルート
ギャップRGとビード高さBHに応じた揺動幅OWで溶
接しているとき、あるアークセンシング結果がSL〈S
BKおよびSR〈SBK(またはSL〉SBKおよびS
R〉SBK)となったとき、決められた揺動幅修正OW
+DOW(またはOW−DOW)と揺動幅増加(または
減少)に応じて溶接速度を遅く(または速く)修正す
る。この制御の原因がルートギャップの増加RG+DR
G(または減少RG−DRG)であれば、本来の制御で
あるビード高さBH一定となり点Qから点P(または点
Qから点R)への制御となる。
In such a case, as shown in FIG. 8, when welding is performed with the swing width OW corresponding to the root gap RG and the bead height BH, a certain arc sensing result is SL <S.
BK and SR <SBK (or SL) SBK and S
When R> SBK), the determined swing width correction OW
Correct the welding speed slower (or faster) according to + DOW (or OW-DOW) and swing width increase (or decrease). The cause of this control is the increase in route gap RG + DR
If G (or decrease RG-DRG), the original control is constant bead height BH, and control is from point Q to point P (or point Q to point R).

【0012】しかし、溶接電流の変動による制御の揺ら
ぎの場合にはルートギャップが変化していないためビー
ド高さはBH1(BH2)と変化し、点Qから点Q1
(点Qから点Q2)への制御となる。このとき、図8の
ように点Q1(または点Q2)が点QP(または点Q
R)の内側にあれば、即ちビード高さがBH〈BH1
〈BHP(またはBHR〈BH2〈BH)であれば、修
正した揺動幅OW+DOW(またはOW−DOW)は広
すぎる(または狭すぎる)ことになり、次のアークセン
シングではSL〉SBKおよびSR〉SBK(またはS
L〈SBKおよびSR〈SBK)となる確率が高くな
り、揺らぎながらも正しい位置の点Qに制御される。
However, in the case of control fluctuations due to fluctuations in the welding current, the bead height changes to BH1 (BH2) because the root gap does not change, and point Q changes to point Q1.
The control is from (point Q to point Q2). At this time, as shown in FIG. 8, the point Q1 (or the point Q2) is changed to the point QP (or the point Q).
R) inside, that is, the bead height is BH <BH1
<BHP (or BHR <BH2 <BH), the modified swing width OW + DOW (or OW-DOW) is too wide (or too narrow), and SL> SBK and SR> SBK in the next arc sensing. (Or S
The probability of L <SBK and SR <SBK) becomes high, and the point Q at the correct position is controlled while fluctuating.

【0013】しかし、点Q1(または点Q2)が点QP
(または点QR)の外側あにあれば、即ちビード高さが
BHP〈BH1(またはBH2〈BHR)であれば、修
正した揺動幅OW+DOW(またはOW−DOW)でも
まだ狭すぎる(または広すぎる)ことになり、次のアー
クセンシングではSL〈SBKおよびSR〈SBK(ま
たはSL〉SBKおよびSR〉SBK)となる確率が高
くなり、正しい位置の点Qに制御されにくくなり、除々
に揺動幅が広く(または狭く)溶接速度が遅く(または
速く)なり制御不能となることもある。
However, the point Q1 (or the point Q2) is the point QP.
If it is outside (or the point QR), that is, if the bead height is BHP <BH1 (or BH2 <BHR), the modified swing width OW + DOW (or OW-DOW) is still too narrow (or too wide). In the next arc sensing, the probability of SL <SBK and SR <SBK (or SL> SBK and SR> SBK) becomes high, it becomes difficult to control to the point Q at the correct position, and the swing width gradually increases. The welding speed may be wide (or narrow) and the welding speed may be slow (or fast), resulting in loss of control.

【0014】制御の揺らぎによって変動するビード高さ
はビードの断面形状によって異なり、図9(a)に示す
ようにビード断面形状を台形としたとき高さ/底辺が大
きい場合は、たとえば、溶接速度を遅く制御され増加し
た断面積DSAによるビード高さBH1は大きい。逆に
高さ/底辺が小さいときには図9(b)のようにBH1
は小さくなる。
The bead height that fluctuates due to control fluctuations depends on the cross-sectional shape of the bead. If the bead cross-sectional shape is trapezoidal and the height / bottom is large as shown in FIG. The bead height BH1 due to the increased cross-sectional area DSA controlled late is large. Conversely, when the height / bottom is small, BH1 is set as shown in FIG. 9 (b).
Becomes smaller.

【0015】従って、安定した制御が可能なルートギャ
ップに対するビード高さの範囲は図6に示す実験結果と
ビード断面積の幾何学的な計算で求めることができ、制
御性の良好な範囲は図1の直線ABより上の領域とな
る。すなわち、ルートギャップG(mm)とビード高さ
H(mm)との関係でG≧0.6H+0.8が成立する
範囲である。
Therefore, the range of the bead height with respect to the root gap capable of stable control can be obtained by the experimental results shown in FIG. 6 and the geometrical calculation of the bead cross-sectional area. This is an area above the straight line AB of 1. That is, it is a range in which G ≧ 0.6H + 0.8 is established in the relationship between the root gap G (mm) and the bead height H (mm).

【0016】一方、ビード高さ2mm未満では単位長さ
当たりの溶着速度を少なくするためには溶接速度が速く
なりすぎ、または、ワイヤ送給速度を遅くして溶接電流
を下げすぎることになるため、ビード形状が不揃いでと
け込みも浅くなり欠陥が発生しやすく溶接性が不良とな
る。また、ビード高さ12mmを超える領域では単位長
さ当たりの溶着速度を多くするためには溶接速度が遅く
しすぎ、または、ワイヤ送給速度を速くして溶接電流を
高くしすぎることになるため、ビード形状がオーバラッ
プになり欠陥が発生しやすく、やはり溶接性が不良とな
る。従って、アークセンシングの幅制御の制御性と溶接
性がともに良好な範囲は図1の直線ABより上でビード
高さが2から12mmの領域となる。
On the other hand, if the bead height is less than 2 mm, the welding speed becomes too fast in order to reduce the welding speed per unit length, or the wire feeding speed becomes slow and the welding current becomes too low. , The bead shape is not uniform, and the melt-in is shallow, and defects are likely to occur, resulting in poor weldability. Further, in the region where the bead height exceeds 12 mm, the welding speed becomes too slow in order to increase the welding speed per unit length, or the wire feeding speed becomes too fast and the welding current becomes too high. , The bead shape is overlapped and defects are likely to occur, and the weldability is also poor. Therefore, the range where both the controllability of the width control of the arc sensing and the weldability are good is the region where the bead height is 2 to 12 mm above the straight line AB in FIG.

【0017】累層溶接では前層のビード幅を次層のルー
トギャップとすることにより適正なビード高さを求める
ことができるが、厚板の累層溶接の上層部ではルートギ
ャップが広くなる。1層1パス溶接可能なルートギャッ
プの上限は入熱量等の影響から溶接金属の機械的性能の
要求値、溶接材料、溶接鋼板および溶接条件によって異
なるため、本発明ではルートギャップの上限は定めなか
った。従って、溶接性から1層1パス溶接可能なルート
ギャップの範囲で図1の直線ABより上すなわちG≧
0.6H+0.8で、ビード高さが2から12mmの領
域であれば制御性と溶接性がともに良好となる。なお、
ビード高さおよびビード幅の計測方法は図10に示すよ
うに斜線で示す溶着断面積をルートギャップを上底とす
る台形にあてはめて、面積が等しくなる台形の高さをビ
ード高さとし、台形の下底をビード幅とした。
In formation welding, an appropriate bead height can be obtained by using the bead width of the preceding layer as the root gap of the next layer, but the root gap becomes wide in the upper portion of the formation welding of thick plates. The upper limit of the root gap that can be welded in one layer and one pass differs depending on the required value of the mechanical performance of the weld metal, the welding material, the welded steel plate and the welding conditions due to the influence of the heat input amount, etc. Therefore, the upper limit of the root gap is not defined in the present invention. It was Therefore, in view of weldability, above the straight line AB in FIG.
When the bead height is in the range of 2 to 12 mm at 0.6H + 0.8, both controllability and weldability are good. In addition,
The measurement method of the bead height and the bead width is as shown in FIG. 10 by applying the welding cross-sectional area indicated by the diagonal lines to a trapezoid with the root gap as the upper base, and let the bead height be the height of the trapezoid with the same area. The bottom width was the bead width.

【0018】[0018]

【実施例】【Example】

実施例1 次に実施例により本発明をさらに詳細に説明する。図9
に示すビード断面形状の特性からビード高さが等しい場
合、ルートギャップが狭い方がBH1が大きいことか
ら、ルートギャップが連続的に狭くなる開先をアークセ
ンシングによる幅制御しながら1層1パス溶接し、安定
した倣い制御ができるルートギャップは何mmまでかを
実験的に確かめた。実験に用いた溶接装置と試験板を図
11および図12に示す。試験板は板厚T=50mm、
幅W=400mm、長さL=2000mm鋼板にスター
ト側ルートギャップG1=10mm、エンド側ルートギ
ャップG2=1mm、深さF=30mmの溝開先を加工
した。溶接装置は溶接トーチ5が取り付けられた揺動装
置11およびこれを搭載している走行台車10のモータ
は揺動モータ制御器21および走行モータ制御器22経
由するマイクロコンピュータ23の指令により揺動幅、
および走行台車速度を制御した。
Example 1 Next, the present invention will be described in more detail with reference to examples. Figure 9
When the bead heights are the same from the characteristics of the bead cross-section shown in Fig. 1, BH1 is larger when the root gap is narrower. Therefore, the 1-layer 1-pass welding is performed while controlling the width of the groove where the root gap is continuously narrowed by arc sensing. Then, we experimentally confirmed how many millimeters the root gap can achieve stable copying control. The welding device and test plate used in the experiment are shown in FIGS. 11 and 12. The test plate has a plate thickness T = 50 mm,
A groove groove having a width W of 400 mm and a length L of 2000 mm was machined into a starting-side root gap G1 = 10 mm, an end-side root gap G2 = 1 mm, and a depth F = 30 mm. The welding device is an oscillating device 11 to which the welding torch 5 is attached, and the motor of the traveling vehicle 10 equipped with the oscillating device is an oscillating width according to an instruction of the microcomputer 23 via the oscillating motor controller 21 and the traveling motor controller 22. ,
And the traveling carriage speed was controlled.

【0019】また、マイクロコンピュータはトーチの揺
動位置にタイミングをあわせて1/100秒間隔で、溶
接電源の出力端子に取り付けられたシャント18で検出
しローパスフィルター19を通しA/Dコンバータ20
で変換された溶接電流値を積算し、図2(a)に示すI
LG、ILC、IRGおよびIRCを求め、先に述べた
SL=ILS−ILC、SR=IRG−IRCの式を計
算しSLおよびSRを求める。このSLおよびSR値は
あらかじめ実験的に求めた幅制御しきい値SBKと比較
され、SL>SBKおよびSR>SBKなら揺動幅を狭
く溶接速度を速く、逆にSL<SBKおよびSR<SB
Kなら揺動幅を広く溶接速度を遅く、上記以外はそのま
ま、のように揺動幅および台車速度を修正する。
The microcomputer detects the shunt 18 attached to the output terminal of the welding power source at 1/100 second intervals in synchronism with the swing position of the torch, and the low-pass filter 19 is passed through the A / D converter 20.
The welding current values converted in step S1 are added up, and I shown in FIG.
LG, ILC, IRG, and IRC are obtained, and SL and SR are obtained by calculating the formulas SL = ILS-ILC and SR = IRG-IRC described above. The SL and SR values are compared with the width control threshold value SBK experimentally obtained in advance. If SL> SBK and SR> SBK, the swing width is narrowed to increase the welding speed, and conversely SL <SBK and SR <SB.
If K, the swing width is wide and the welding speed is slow, and the swing width and the carriage speed are corrected as in the above except for the above.

【0020】一回の修正量は揺動幅は0.1mmとし台
車速度が図9に示すビード断面積DSAおよびDSBの
修正に相当する溶接速度修正を揺動の1周期に1回揺動
中央で行い、ビード高さ一定制御を行なった。溶接速度
の初期値はスタートの開先角度、ルートギャップおよび
目標ビード高さから計算されるビード断面積と溶接性か
ら決めたワイヤ送給速度から計算した溶融速度から設定
した。また、揺動幅の初期値は図7を参考に目標ビード
高さに応じて設定した。揺動速度は揺動幅と溶接速度の
初期値から揺動ピッチが3mmとなる速度で一定とし
た。試験板は開先線がレールに平行になるように設置
し、表1に示す開先角度、ワイヤ径、シールドガスにて
各条件NOに対し実験のバラツキを考慮し、繰り返し5
回溶接を行なった。
The correction amount for one time is such that the swing width is 0.1 mm, and the bogie speed is the welding speed correction corresponding to the correction of the bead cross-sectional areas DSA and DSB shown in FIG. And the bead height was controlled to be constant. The initial value of the welding speed was set from the groove angle of the start, the root gap, the bead cross-sectional area calculated from the target bead height, and the melting rate calculated from the wire feed rate determined from the weldability. Further, the initial value of the swing width was set according to the target bead height with reference to FIG. The swing speed was constant at a swing pitch of 3 mm from the initial values of the swing width and the welding speed. The test plate is installed so that the groove line is parallel to the rail, and the groove angle, wire diameter, and shielding gas shown in Table 1 are taken into consideration for variations in the experiment for each condition NO, and repeated 5 times.
Welded once.

【0021】[0021]

【表1】 評価方法は制御性評価として溶接後のビード高さを表1
に示すルートギャップに相当する位置で測定し、目標ビ
ード高さとの差が1mm以下は良好、1mmを超える位
置を不良とした。また、溶接性評価として溶接ビードを
X線透過試験(JISZ3104)し、JIS1級以上
を良好、1級未満を不良と評価した。表1示す実験結果
から目標ビード高さ1mmではビード形成が不安定で溶
接性が悪く不良であった。目標ビード高さ14mmでは
溶融プールが先行し過ぎ溶け込み不良の欠陥がスタート
から発生するとともに、幅倣い制御も安定せずで溶接
性、制御性ともに不良であった。
[Table 1] As for the evaluation method, the bead height after welding was used as a controllability evaluation.
Measurement was made at a position corresponding to the root gap shown in (1), and a difference of 1 mm or less from the target bead height was judged as good, and a position exceeding 1 mm was judged as poor. Further, as a weldability evaluation, the weld bead was subjected to an X-ray transmission test (JIS Z3104), and JIS Class 1 or higher was evaluated as good and less than Class 1 was evaluated as poor. From the experimental results shown in Table 1, at the target bead height of 1 mm, the bead formation was unstable, and the weldability was poor and was poor. At the target bead height of 14 mm, the molten pool was too advanced and a defect of poor penetration occurred from the start, and the width tracking control was not stable, resulting in poor weldability and controllability.

【0022】目標ビード高さ2、4、6、8、10およ
び12mmではルートギャップが2、3、5、6、7お
よび8mmより広い範囲では幅倣い制御が安定し制御
性、溶接性ともに良好であるが、これよりルートギャッ
プが狭い範囲ではビード高さが高くなりすぎたり、低く
なりすぎ、制御が不安定で制御性が不良であった。な
お、従来条件はdのビード高さ6mm付近であるがルー
トギャップが4mm以下の狭い領域では安定した溶接が
不可能であることが再現された。
When the target bead height is 2, 4, 6, 8, 10 and 12 mm, the width gap control is stable and the controllability and weldability are good when the root gap is wider than 2, 3, 5, 6, 7 and 8 mm. However, the bead height was too high or too low in a range where the root gap was narrower than this, and control was unstable and controllability was poor. The conventional condition is that the bead height of d is around 6 mm, but it was reproduced that stable welding is impossible in a narrow region where the root gap is 4 mm or less.

【0023】[0023]

【表2】 実施例2 つぎに、実施例1の条件bからgの溶接後の鋼板に表2
に示す溶接条件と層数で累層溶接を1層1パス溶接にて
実施例1と同様の装置と手順で実施した。溶接は表1に
示された溶接性および制御性の良好だったビードの上に
溶接した。スタート位置のルートギャップは図10の方
法にて計測した。
[Table 2] Example 2 Next, the steel plates after welding under the conditions b to g of Example 1 are shown in Table 2.
Under the welding conditions and the number of layers shown in (1), formation welding was performed by one-layer one-pass welding with the same apparatus and procedure as in Example 1. The welding was performed on the beads shown in Table 1 which had good weldability and controllability. The root gap at the start position was measured by the method shown in FIG.

【0024】評価方法は制御性評価として累層溶接後の
ビード高さを測定し、目標ビード高さとの差が2mm以
下は良好、2mmを超える場合を不良とした。また、溶
接性評価として溶接ビードをX線透過試験(JISZ3
104)し、JIS1級以上を良好、1級未満を不良と
評価した。実験結果は表2に示すように制御性および溶
接性ともに良好で、累層溶接の上層部でルートギャップ
が広くなった場合でも、本発明の領域であれば良好なア
ークセンシング制御が可能であることがわかった。
As the evaluation method, the bead height after formation welding was measured as controllability evaluation, and a difference of 2 mm or less from the target bead height was good and a difference of more than 2 mm was considered bad. Further, as a weldability evaluation, a weld bead was subjected to an X-ray transmission test (JIS Z3
104), and JIS 1 or higher grade was evaluated as good and less than 1 grade was evaluated as poor. The experimental results show that the controllability and weldability are good as shown in Table 2, and good arc sensing control is possible within the range of the present invention even when the root gap is widened in the upper layer portion of the formation welding. I understood it.

【0025】[0025]

【発明の効果】以上の実施結果から明らかなように本発
明はアークセンシングの幅制御をルートギャップに対す
るビード高さを選択することにより狭いルートギャップ
でも確実な制御を、広いルートギャップでは高能率な安
定した自動溶接が可能となったため、特に、多層盛溶接
が必要な厚板溶接の溶接精度が向上し自動化、ロボット
化に大きく貢献するところ極めて大である。
As is apparent from the above-described results, the present invention makes it possible to control the width of the arc sensing by selecting the bead height with respect to the root gap to ensure reliable control even in a narrow root gap and high efficiency in a wide root gap. Since stable automatic welding is possible, the welding accuracy of thick plate welding, which requires multi-layer welding, is improved, which greatly contributes to automation and robotization.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるビード高さとルートギャップの
範囲を示すグラフ
FIG. 1 is a graph showing the range of bead height and root gap in the present invention.

【図2】溶接トーチの揺動とこれに伴う溶接電流の変化
を示すグラフ
FIG. 2 is a graph showing the fluctuation of the welding torch and the accompanying change in welding current.

【図3】溶接電流の変動を示す波形図FIG. 3 is a waveform chart showing the fluctuation of welding current.

【図4】溶接速度が変化したとき幅制御中の溶融プール
上のアーク位置が移動する様子を示した斜視図
FIG. 4 is a perspective view showing how the arc position on the molten pool moves during width control when the welding speed changes.

【図5】溶接速度が変化したとき幅制御中の溶融プール
上のアーク位置が移動する様子を示した斜視図
FIG. 5 is a perspective view showing how the arc position on the molten pool moves during width control when the welding speed changes.

【図6】溶接速度が変化したとき幅制御中の溶融プール
上のアーク位置が移動する様子を示した斜視図
FIG. 6 is a perspective view showing how the arc position on the molten pool moves during width control when the welding speed changes.

【図7】ビード高さによるトーチ揺動幅とビード幅の変
化を示すグラフ
FIG. 7 is a graph showing changes in torch swing width and bead width depending on bead height.

【図8】正しく幅制御された場合と制御の揺らぎによる
ビード高さの変動の比較図
FIG. 8 is a comparison diagram of bead height variation due to fluctuation of control when the width is correctly controlled.

【図9】ルートギャップが変化していないにもかかわら
ず溶接速度が遅く修正されたときのビード高さの変化を
示す説明図
FIG. 9 is an explanatory diagram showing a change in bead height when the welding speed is corrected to be slow while the root gap is not changed.

【図10】ビード高さおよびビード幅の計測方法の説明
FIG. 10 is an explanatory diagram of a method for measuring bead height and bead width.

【図11】実施例に用いた溶接装置の模式図FIG. 11 is a schematic diagram of a welding device used in the examples.

【図12】実施例に用いた鋼板の平面図(a)と側面図
(b)
FIG. 12 is a plan view (a) and a side view (b) of a steel sheet used in Examples.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ルートギャップGの変動に応じて溶接ト
ーチの揺動幅と溶接速度あるいはワイヤ送給速度を制御
して、ビード高さHが一定となるよう逐次制御するアー
クセンシング制御により1層1パス溶接する消耗電極式
アーク溶接方法において、前記H(mm)が2以上12
以下であり、かつ前記G(mm)との関係において、G
≧0.6H+0.8の式が成立する領域で制御すること
を特徴とする消耗電極式アーク溶接方法。
1. One layer by arc sensing control in which a swing width of a welding torch and a welding speed or a wire feeding speed are controlled according to fluctuations in a root gap G, and the bead height H is sequentially controlled to be constant. In the consumable electrode type arc welding method of 1-pass welding, the H (mm) is 2 or more 12
And in the relationship with the above G (mm), G
A consumable electrode type arc welding method, characterized in that control is performed in a region where an equation of ≧ 0.6H + 0.8 holds.
JP6523891A 1991-03-07 1991-03-07 Consumable electrode arc welding method Expired - Lifetime JP2933737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6523891A JP2933737B2 (en) 1991-03-07 1991-03-07 Consumable electrode arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6523891A JP2933737B2 (en) 1991-03-07 1991-03-07 Consumable electrode arc welding method

Publications (2)

Publication Number Publication Date
JPH05245636A true JPH05245636A (en) 1993-09-24
JP2933737B2 JP2933737B2 (en) 1999-08-16

Family

ID=13281137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6523891A Expired - Lifetime JP2933737B2 (en) 1991-03-07 1991-03-07 Consumable electrode arc welding method

Country Status (1)

Country Link
JP (1) JP2933737B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112091374A (en) * 2020-09-11 2020-12-18 中国航发贵州黎阳航空动力有限公司 Automatic argon arc welding method under dynamic change of welding gap
WO2022118574A1 (en) * 2020-12-02 2022-06-09 株式会社日立製作所 Welding system, welding condition calculation device, and welding condition calculation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112091374A (en) * 2020-09-11 2020-12-18 中国航发贵州黎阳航空动力有限公司 Automatic argon arc welding method under dynamic change of welding gap
CN112091374B (en) * 2020-09-11 2022-03-22 中国航发贵州黎阳航空动力有限公司 Automatic argon arc welding method under dynamic change of welding gap
WO2022118574A1 (en) * 2020-12-02 2022-06-09 株式会社日立製作所 Welding system, welding condition calculation device, and welding condition calculation method

Also Published As

Publication number Publication date
JP2933737B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
KR0178437B1 (en) Method for welding corrugate portions by means of welding robot on lap joint
JP4420863B2 (en) Control method of laser arc composite welding
US4816639A (en) Automatic arc-welding method
JP3361239B2 (en) Method and apparatus for welding in groove with welding arc
JPH0866771A (en) Build up welding method in narrow gap butt welding of fixed tube
JP2004025270A (en) Method for estimating arc generating position in consumable electrode type arc welding, and welding condition control method
JPH05245636A (en) Consumable electrode arc welding method
JP2003290921A (en) Multi-layer welding method, and multi-layer automatic welding equipment
EP1013370A1 (en) Method of detecting root gap and arc welding method using the former
SU1320030A1 (en) Current-conducting nozzle
JP3198816B2 (en) First layer welding method for single-sided butt welding of fixed pipes
JP2002224829A (en) Method and equipment for welding narrow groove with peak pulse tig
JPH04238680A (en) Butt welding method for strips
KR20110032753A (en) Active automatic horizontal welding method
JPS6117364A (en) Double electrode type narrow groove welding
JP3198815B2 (en) First layer welding method for single-sided butt welding of fixed pipes
JP3893738B2 (en) Defect determination method for TIG welding
JPH07328766A (en) Horizontal position automatic welding method
JPS6365426B2 (en)
JPH0839251A (en) Corrugated part welding method in welding robot for corrugated lap plate joining
KR0137686B1 (en) Control method for welding line tracking and multi-welding
JP3166511B2 (en) Narrow butt welding method for fixed pipe
JPH04309469A (en) Consumable electrode type arc welding method
JPS5950969A (en) Multi-layer build-up welding method
JP3945013B2 (en) Quality diagnostic method for TIG welding

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960123