JPH05244945A - Production of alpha-cyclodextrin - Google Patents

Production of alpha-cyclodextrin

Info

Publication number
JPH05244945A
JPH05244945A JP4082843A JP8284392A JPH05244945A JP H05244945 A JPH05244945 A JP H05244945A JP 4082843 A JP4082843 A JP 4082843A JP 8284392 A JP8284392 A JP 8284392A JP H05244945 A JPH05244945 A JP H05244945A
Authority
JP
Japan
Prior art keywords
cgtase
stearothermophilus
cgt1
amino acid
αcd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4082843A
Other languages
Japanese (ja)
Inventor
Kenji Sakaguchi
坂口  健二
Tadayuki Imanaka
忠行 今中
Shinsuke Fujiwara
伸介 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Original Assignee
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Maize Products Co Ltd, Nihon Shokuhin Kako Co Ltd filed Critical Japan Maize Products Co Ltd
Priority to JP4082843A priority Critical patent/JPH05244945A/en
Publication of JPH05244945A publication Critical patent/JPH05244945A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:To provide cyclodextrin.glucanotransferase(CGTase) having a high alpha-cyclodextrin(alpha-CD) production rate by modifying the CGTase of Bacillus.stearothermophilus by a genetic industrial method, and to provide a method for producing the alpha-CD by using the CGTase. CONSTITUTION:The CGTase of Bacillus.stearothermophilus in which the phenylalanine unit at the 222th position or the phenylalanine units at the 222th and 286th positions are replaced with tyrosine units, and a method for producing the alpha-CD includes the production of the alpha-CD by treating starch with the CGTase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、α−サイクロデキスト
リン(以下αCDと略記する)の改良された製造方法に
関する。さらに本発明は、改良された性能を有するバチ
ルス・ステアロサーモフィルス(Bacillus s
tearothermophilus)のシクロマルト
デキストリン・グルカノトランスフェラーゼに関する。
TECHNICAL FIELD The present invention relates to an improved method for producing α-cyclodextrin (hereinafter abbreviated as αCD). Furthermore, the present invention provides Bacillus s. Bacillus with improved performance.
T. thermophilus) cyclomaltodextrin glucanotransferase.

【0002】[0002]

【従来の技術】αCDの生産酵素としてはバチルス・マ
セランス(Bacillus macerans)のシ
クロマルトデキストリン・グルカノトランスフェラーゼ
(以下CGTaseと略記する)が知られている。さら
に、これとは別に、バチルス・ステアロサーモフィルス
(Bacillus stearothermophi
lus)(以下B.ステアロサーモフィルスと略記す
る)のCGTaseも知られている。B.ステアロサー
モフィルスのCGTaseはB.マセランスのCGTa
seより高い澱粉濃度で作用させることができ、反応最
初におけるαCDの生産性が高い。
2. Description of the Related Art Cyclomaltodextrin glucanotransferase of Bacillus macerans (hereinafter abbreviated as CGTase) is known as an αCD producing enzyme. Furthermore, apart from this, Bacillus stearothermophili
lus) (hereinafter abbreviated as B. stearothermophilus) is also known as CGTase. B. CGTase of Stearothermophilus is B. Macerance CGTa
It can be used at a starch concentration higher than that of se, and the αCD productivity is high at the beginning of the reaction.

【0003】[0003]

【発明が解決しようとする課題】しかし、B.ステアロ
サーモフィルスのCGTaseはβ−サイクロデキスト
リン(以下βCDと略記する)の併産量も大きく、αC
DからβCDを分離除去する負担が大きいという問題が
あった。
However, B.I. CGTase of stearothermophilus has a large amount of β-cyclodextrin (hereinafter abbreviated as βCD) co-produced, and αC
There is a problem that the burden of separating and removing βCD from D is heavy.

【0004】そこで本発明の目的は、B.ステアロサー
モフィルスのCGTaseを遺伝子工学的に改質してα
CDの生産率の高いCGTase及びこのCGTase
を用いたβCDに比べてαCDの生産率の高いαCDの
製造方法を提供することにある。
Therefore, an object of the present invention is to Α modified by modifying CGTase of stearothermophilus by genetic engineering
CGTase with high CD production rate and this CGTase
An object of the present invention is to provide a method for producing αCD, which has a higher αCD production rate than βCD using.

【0005】[0005]

【課題を解決するための手段】本発明は、222番目の
フェニルアラニン又は222番目及び286番目のフェ
ニルアラニンがチロシンに置換したバチルス・ステアロ
サーモフィルス(Bacillus stearoth
ermophilus)のシクロマルトデキストリン・
グルカノトランスフェラーゼに関する。
DISCLOSURE OF THE INVENTION The present invention provides Bacillus stearothermophilus (Bacillus stearothophilus) in which phenylalanine at the 222nd position or phenylalanine at the 222nd and 286th positions is substituted with tyrosine.
Cyclomaltodextrin from Ermophilus)
It relates to glucanotransferase.

【0006】さらに本発明は、222番目のフェニルア
ラニン又は222番目及び286番目のフェニルアラニ
ンをチロシンに置換したバチルス・ステアロサーモフィ
ルス(Bacillus stearothermop
hilus)のシクロマルトデキストリン・グルカノト
ランスフェラーゼを澱粉に作用させてα−サイクロデキ
ストリンを生成させることを含むα−サイクロデキスト
リンの製造方法に関する。
Furthermore, the present invention provides Bacillus stearothermophilus (Bacillus stearothermophilus) in which the phenylalanine at the 222nd position or the phenylalanine at the 222nd and 286th positions is substituted with tyrosine.
hilus) cyclomaltodextrin glucanotransferase on starch to produce α-cyclodextrin.

【0007】以下、本発明について説明する。B.ステ
アロサーモフィルスとしては、FERM P−2225
の寄託番号を有する公知の微生物であるTC−91株を
例示できる。
The present invention will be described below. B. As stearothermophilus, FERM P-2225
The TC-91 strain which is a known microorganism having a deposit number of

【0008】本発明において、B.ステアロサーモフィ
ルスのCGTaseとは基本的にTC−91株の生産す
るCGTaseを意味する。ただし、TC−91CGT
aseにおいてCGTase活性に影響のない一部のア
ミノ酸が別のアミノ酸で置換したCGTaseも本発明
においてはB.ステアロサーモフィルスのCGTase
に含める。例えば、TC−91株のCGTaseの10
8番目のアスパラギン酸がバリンに置換し、460番目
のアルギニンがアラニンに置換したCGTaseも本発
明においては、B.ステアロサーモフィルスのCGTa
seに含める。上記のごとき一部のアミノ酸が置換した
CGTaseは遺伝子工学的に、部位特異的変異導入法
によりえることができる。又は、例えば、B.ステアロ
サーモフィルスNo.2株のようなB.ステアロサーモ
フィルスに属する別の菌株から得ることもできる。
In the present invention, B. The CGTase of Stearothermophilus basically means the CGTase produced by the TC-91 strain. However, TC-91CGT
In the present invention, CGTase obtained by substituting a part of amino acids having no influence on CGTase activity with another amino acid is also referred to as B. Stearothermophilus CGTase
Include in. For example, 10 of CGTase of TC-91 strain
In the present invention, CGTase in which the 8th aspartic acid is replaced with valine and the 460th arginine is replaced with alanine is also described in B.I. Stearothermophilus CGTa
Include in se. CGTase in which some amino acids are substituted as described above can be obtained by genetic engineering by a site-directed mutagenesis method. Or, for example, B.I. Stearothermophilus No. 2 strains of B. It can also be obtained from another strain belonging to Stearothermophilus.

【0009】尚、B.ステアロサーモフィルスNo.2
株は、以下のような菌学的性質を有する。有胞子桿菌で
あり、径0.8μ、長さ2.5μを有する胞子楕円型で
ある。カタラーゼ+、好気性、グルコース、アラビノー
ス、キシロース、マンニトール醗酵性+、カゼイン、ゼ
ラチン、澱粉を分解する。生育適温は55〜65℃であ
る。シクロマルトデキストリン・グルカノトランスフェ
ラーゼを生産する。
B. Stearothermophilus No. Two
The strain has the following mycological properties. It is a spore bacillus, and is an spore oval type having a diameter of 0.8 μ and a length of 2.5 μ. It decomposes catalase +, aerobic, glucose, arabinose, xylose, mannitol fermentable +, casein, gelatin and starch. The optimum temperature for growth is 55 to 65 ° C. Produces cyclomaltodextrin glucanotransferase.

【0010】B.ステアロサーモフィルスNo.2株
は、工業技術院微生物工業研究所に平成4年3月3日付
けで受託番号微工研菌寄第12822号(FERM P
−12822)として寄託されている。
B. Stearothermophilus No. The two strains were transferred to the Institute of Microbial Industry, Institute of Industrial Technology, on March 3, 1992, under the contract number Micro Engineering Lab. No. 12822 (FERM P
-12822).

【0011】本発明のCGTaseは、前記B.ステア
ロサーモフィルスのCGTaseにおいて、222番目
のフェニルアラニン又は222番目及び286番目のフ
ェニルアラニンがチロシンに置換したものである。これ
らの置換によって、B.ステアロサーモフィルスのCG
Taseの高いαCD初期生産性を維持しつつ、βCD
に対するαCDの生産比率を高めることができる。
The CGTase of the present invention is the same as the above-mentioned B. In CGTase of Stearothermophilus, the phenylalanine at the 222nd position or the phenylalanine at the 222nd and 286th positions are substituted with tyrosine. With these substitutions, B. Stearothermophilus CG
While maintaining high αCD initial productivity of Tase, βCD
The production ratio of αCD can be increased.

【0012】上記フェニルアラニンのチロシンによる置
換は公知の部位特異的変異導入法により行うことができ
る。
The substitution of phenylalanine with tyrosine can be carried out by a known site-directed mutagenesis method.

【0013】図1、図2、図3及び図4にB.ステアロ
サーモフィルスTC−91株及び、No.2株のCGT
aseのアミノ酸配列並びに本発明のCGTaseのア
ミノ酸配列を示す。
In FIG. 1, FIG. 2, FIG. 3 and FIG. Stearothermophilus TC-91 strain and No. 2 shares of CGT
The amino acid sequence of as and the amino acid sequence of CGTase of the present invention are shown.

【0014】本発明のαCDの製造方法は、CGTas
eとして、本発明のチロシン置換CGTaseを用いて
行う。酵素としてチロシン置換CGTaseを用いる以
外は、B.ステアロサーモフィルスのCGTaseによ
るαCDの製造方法と同様にして行うことができる。
The method for producing αCD of the present invention is based on CGTas.
As e, the tyrosine-substituted CGTase of the present invention is used. Except that tyrosine-substituted CGTase was used as the enzyme. It can be carried out in the same manner as the method for producing αCD by CGTase of Stearothermophilus.

【0015】例えば、8以上、好ましくは12%以上の
澱粉に60〜80℃でαCDの生成量がβCDの生成量
より多い時間内、例えば1〜10時間、本発明のCGT
aseを作用させることにより行うことができる。尚、
澱粉濃度には上限はないが、実用上は20%以下、好ま
しくは15%以下である。本方法は、バッチ式のみなら
ず、固定化酵素を用いた連続式で行うこともできる。
尚、αCDをそれ以外のβCD等との分離は、従来法に
より行うことができる。
For example, within 8 hours, preferably 12% or more of starch, at 60 to 80 ° C., the production amount of αCD is larger than the production amount of βCD, for example, 1 to 10 hours, the CGT of the present invention.
It can be carried out by applying ase. still,
There is no upper limit to the starch concentration, but in practice it is 20% or less, preferably 15% or less. This method can be performed not only in a batch system but also in a continuous system using an immobilized enzyme.
Incidentally, αCD can be separated from other βCD and the like by a conventional method.

【0016】[0016]

【発明の効果】本発明によれば、B.ステアロサーモフ
ィルスのCGTaseの高いαCD初期生産性を維持し
つつ、βCDの生産を抑制してαCDの生産比率を高め
たCGTaseを提供することができる。さらに、本発
明の製造方法によれば、高い濃度の澱粉を原料にするこ
とができ、かつαCDの含有率の高いCDを製造するこ
とができ、αCDの分離精製が容易になる。
According to the present invention, B. It is possible to provide CGTase in which the production ratio of αCD is increased by suppressing the production of βCD while maintaining the high αCD initial productivity of CGTase of Stearothermophilus. Furthermore, according to the production method of the present invention, a high concentration of starch can be used as a raw material, and CD having a high αCD content can be produced, which facilitates the separation and purification of αCD.

【0017】[0017]

【実施例】以下、本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0018】材料及び方法 (1)使用菌株、プラスミド、ファージ CGTase高生産性の好熱菌B.ステアロサーモフィ
ルスNo.2株(FERM P−12822)は、土壌
中から単離された。B.マセランスIF03490は大
阪醗酵研究所から分与された。枯草菌(Bacillu
s subtilis)NA−1(arg−15 hs
mM hsmR Amy- Npr- (Kuriki,
T.,S.Okada,and T.Imanaka.
(1988)J.Bacteriol.170,155
4−1559)及び大腸菌(Escherichia
coli)TG1(supE hsd 5 thi(l
ac−proAB)F′〔traD36 proA+
+ lacIq lacZM15〕(Gibson,
T.J.(1984)Studies on theE
pstein−Barr virus genomo.
Ph.D.thesis,Cambridge Un
iversity,UK)は組換えDNA実験を行う際
の宿主として使用した。
Materials and Methods (1) Strains, plasmids and phages used CGTase thermophilic bacterium B. Stearothermophilus No. Two strains (FERM P-12822) were isolated from soil. B. Macerance IF03490 was donated by the Osaka Fermentation Research Institute. Bacillus
s subtilis) NA-1 (arg-15 hs
mM hsmR Amy - Npr - (Kuriki ,
T. , S. Okada, and T.M. Imanaka.
(1988) J. Bacteriol. 170,155
4-1559) and Escherichia coli (Escherichia)
coli) TG1 (supE hsd 5 thi (l
ac-proAB) F '[traD36 proA + B
+ lacIq lacZM15] (Gibson,
T. J. (1984) Studies on theE
pstain-Barr virus genomo.
Ph. D. thesis, Cambridge Un
(iversity, UK) was used as a host when performing recombinant DNA experiments.

【0019】プラスミドベクターとして、大腸菌の場合
はpBR322(Bolivar,F.,R.L.Ro
driguez,P.J.Greene,M.C.Be
tlach,H.L.Heyneker,H.W.Bo
yer,J.H.Crosa,and S.Falko
w.(1977)Gene 2,95)、pUC118
(Messing,J.,and J.Vieira.
(1983)Methods Enzymol.10
1,20−78)を、枯草菌の場合はpTB523を用
いた。pTB523は枯草菌の低コピープラスミドpT
B522(Imanaka,T.,T.Himeno,
and S.Aiba.(1985)J.Gen.Mi
crobiol.131,1753−1763)のクロ
ーニング部位HindIIIをEcoRIに改変する事
で構築した。
As a plasmid vector, pBR322 (Bolivar, F., RL Ro in the case of Escherichia coli)
drivez, P.D. J. Greene, M .; C. Be
tlac, H .; L. Heyneker, H .; W. Bo
yer, J. et al. H. Crosa, and S.C. Falko
w. (1977) Gene 2, 95), pUC118.
(Messing, J., and J. Vieira.
(1983) Methods Enzymol. 10
1, 20-78) and pTB523 for Bacillus subtilis. pTB523 is a low copy plasmid of Bacillus subtilis pT
B522 (Imanaka, T., T. Himeno,
and S. Aiba. (1985) J. Gen. Mi
crobiol. 131, 1753-1763) cloning site HindIII was changed to EcoRI.

【0020】ファージベクターとしてM13mp18及
びmp19(Messing,J.,and J.Vi
eira.(1983)Methods Enzymo
l.101,20−78)を使用した。
M13mp18 and mp19 as phage vectors (Messing, J., and J. Vi)
eira. (1983) Methods Enzymo
l. 101, 20-78).

【0021】(2)培地 大腸菌の培養には2xYT培地、枯草菌にはL培地、C
S1培地を使用し、固形培地として用いる場合には、寒
天を1.5%(wt/V)添加した。抗生物質は次の終
濃度で添加した。大腸菌の培養ではテトラサイクリン
(Tc)の場合、20ug/ml、アンピシリン(A
p)では100μg/ml加えた。枯草菌の培養にTc
を添加する際は15μg/ml加えた。なお、各培地の
組成は以下に示すとおりである。
(2) Medium For culture of E. coli, 2xYT medium, for Bacillus subtilis L medium, C
When the S1 medium was used as a solid medium, 1.5% (wt / V) of agar was added. Antibiotics were added at the following final concentrations. In the culture of E. coli, in the case of tetracycline (Tc), 20 ug / ml, ampicillin (A
In p), 100 μg / ml was added. Tc for culture of Bacillus subtilis
Was added at 15 μg / ml. The composition of each medium is as shown below.

【0022】 ─────────────────────────────────── 2 × YT ( /1) ─────────────────────────────────── バクトトリプトン 16g イーストエクストラクト 10g NaCL 5g ─────────────────────────────────── L−ブロス ( /1) ─────────────────────────────────── バクトトリプトン 10g イーストエクストラクト 5g NaCL 5g ─────────────────────────────────── SC1 ( /1) ─────────────────────────────────── 可溶性澱粉 10g ポリペプトン 5g イーストエクストクト 5g K2 HPO4 0.5g MgSO4 ・7H2 O 0.1g ─────────────────────────────────── 寒天培地では可溶性澱粉のかわりに澱粉アズールを用い
た。
─────────────────────────────────── 2 × YT (/ 1) ───── ─────────────────────────────── Bactrypton 16g Yeast Extract 10g NaCL 5g ─────────── ───────────────────────── L-broth (/ 1) ─────────────────── ────────────────── Bactrypton 10g Yeast Extract 5g NaCL 5g ─────────────────────── ──────────── SC1 (/ 1) ────────────────────────────────── ── Soluble starch 10g Polypeptone 5g Yeast Sutokuto 5g K 2 HPO 4 0.5g MgSO 4 · 7H 2 O 0.1g ──────────────────────────────── In the agar medium, starch azul was used instead of soluble starch.

【0023】(3)CGTaseの精製 CGTaseは分泌酵素として菌体外に分泌されるた
め、精製は菌体を除いた培養液から行った。CS1培地
(11)で37℃、17時間培養し、遠心により菌体を
除去し(8.000×g,15分)、粗酵素液を得た。
これを硫安塩析により30%から70%で飽和される画
分を分取し、0.05Mリン酸緩衝液(pH6.0)に
溶かした。さらにイオン交換カラム(Sephadex
DE52、φ4cm×15cm)に吸着後、0Mから
0.6MノNaCl濃度勾配をかけることで溶出した。
限外ろ過により濃縮後、ゲル濾過カラム(Sephad
exG−100、φ1cm×50cm)で分画し、SD
S−PAGE分析で単一になるまで精製した。
(3) Purification of CGTase Since CGTase is secreted outside the cells as a secretory enzyme, purification was carried out from the culture medium without the cells. The cells were cultured in CS1 medium (11) at 37 ° C. for 17 hours, and the cells were removed by centrifugation (8,000 × g, 15 minutes) to obtain a crude enzyme solution.
Fractions saturated with 30% to 70% were collected by ammonium sulfate salting out and dissolved in 0.05M phosphate buffer (pH 6.0). Ion exchange column (Sephadex
After adsorption to DE52, φ4 cm × 15 cm), elution was performed by applying a 0 M to 0.6 M NaCl concentration gradient.
After concentration by ultrafiltration, a gel filtration column (Sephad
ExG-100, φ1 cm x 50 cm) fractionated and SD
Purified to unity by S-PAGE analysis.

【0024】(4)CGTaseの酵素活性 CGTaseの活性はルジューヌ(Lejeune)ら
の方法(Lejeune,A.,K.Sakaguch
i,and T.Imanaka.(1989)Ana
l.Biochem.181,6−11)に従い、メチ
ルオレンジ(MeOr)を用いたαCD定量で行った。
5%可溶性澱粉0.6ml、0.05Mリン酸緩衝液
(50mM、pH6.0)0.105ml、酵素液0.
05mlに1mM MeOr溶液を0.105ml加え
て10分反応させた後、6N HClを0.15ml加
えて反応を停止させ、16℃で30分間放置する。50
5nmの吸光を測定してαCD合成を調べた。
(4) Enzymatic activity of CGTase The activity of CGTase is determined by the method of Lejeune et al. (Lejeune, A., K. Sakaguch).
i, and T.I. Imanaka. (1989) Ana
l. Biochem. 181, 6-11), and performed αCD quantification using methyl orange (MeOr).
0.6 ml of 5% soluble starch, 0.105 ml of 0.05M phosphate buffer (50 mM, pH 6.0), enzyme solution 0.1.
After adding 0.105 ml of 1 mM MeOr solution to 05 ml and reacting for 10 minutes, 0.15 ml of 6N HCl is added to stop the reaction, and the mixture is left at 16 ° C. for 30 minutes. Fifty
Absorption at 5 nm was measured to examine αCD synthesis.

【0025】HPLCによる産物の検討は金子らの方法
(Kanaeko,T.,T.Kudo,and K.
Horikoshi.(1990)Agri.Bio
l.chem.54,197−201)に従った。
The examination of the product by HPLC was carried out by the method of Kaneko et al. (Kanaeko, T., T. Kudo, and K.
Horikoshi. (1990) Agri. Bio
l. chem. 54, 197-201).

【0026】(5)アミラーゼの酵素活性 ベルンフェルド(Bernfeld)のジニトロサリチ
ル酸(DNS)法(Bernfeld,P.(195
5)Methods Enzymol.1,149−1
58)あるいは不破法(Fuwa,H.(1954)
J.Biochem.41,538−603)に従っ
た。
(5) Enzymatic activity of amylase Bernfeld's dinitrosalicylic acid (DNS) method (Bernfeld, P. (195)
5) Methods Enzymol. 1,149-1
58) or the immutable method (Fuwa, H. (1954)
J. Biochem. 41, 538-603).

【0027】(6)蛋白質濃度測定法 BCAタンパク分析試薬(PIERCE社)を用いた。(6) Protein concentration measuring method BCA protein analysis reagent (PIERCE) was used.

【0028】(7)塩基配列の決定 制限酵素地図に基づき適当な大きさのDNA断片を大腸
菌ファージM13にクローン化しssDNAを調整した
後、ジデオキシ法により行った(Sanger,F.,
and S.Nichlen,and A.R.Cou
lson.(1977)Proc.Ntil.Aca
l.Sci.USA 74,5463─5467)。
(7) Determination of nucleotide sequence A DNA fragment having an appropriate size was cloned into Escherichia coli phage M13 based on the restriction enzyme map to prepare ssDNA, and then the dideoxy method was used (Sanger, F.,
and S. Nichlen, and A .; R. Cou
lson. (1977) Proc. Ntil. Aca
l. Sci. USA 74, 5463-5467).

【0029】(8)遺伝子の変異導入 遺伝子の変異導入はアマーシャム(Amersham)
社の部位特異的変異導入キットに従い行った。プラスミ
ドpKB1のcgt1遺伝子のKpnI−SacI断片
(図5)をM13ファージmp18に導入し、塩基置換
を行った。F222Y、F286Y構築に使用した合成
オリゴヌクレオチドの配列はそれぞれ、5′─AAAT
CTGTATGACTTGGCG−3′、5′─GGG
GAGTGGTATTTGTCAGAA−3′である。
変異の導入は塩基配列を決定することで確認した。変異
導入がなされたファージのRF(replicatio
nform)DNAより、KpnI−SacI断片を抽
出し、pKB1のこの領域と置換することでpKB1─
F222Y、pKB1─F222Y─F286Yを構築
した。
(8) Gene mutation introduction Gene mutation introduction is carried out by Amersham.
This was carried out according to the site-specific mutagenesis kit of the same company. The KpnI-SacI fragment of the cgt1 gene of plasmid pKB1 (FIG. 5) was introduced into M13 phage mp18, and base substitution was performed. The sequences of the synthetic oligonucleotides used for the construction of F222Y and F286Y are 5'-AAAT, respectively.
CTGTATGACTTGGGCG-3 ', 5'-GGG
GAGTGGTATTTTGTCAGAA-3 '.
The introduction of the mutation was confirmed by determining the nucleotide sequence. RF (replicatio) of the mutagenized phage
nform) DNA, a KpnI-SacI fragment was extracted and replaced with this region of pKB1 to obtain pKB1-
F222Y and pKB1-F222Y-F286Y were constructed.

【0030】(9)その他 組換えDNA実験はすべて文献(Sambrook,
J.,E.F.Fritsch,and T.Mani
atis.(1989)Molecular Clon
ing,a laboratry manual,2n
d edition.Cold Spring Har
bor Laboratory,NewYork)に従
って行った。
(9) Others All recombinant DNA experiments were conducted in the literature (Sambrook,
J. , E. F. Fritsch, and T.S. Mani
atis. (1989) Molecular Clon
ing, a laboratory manual, 2n
d edition. Cold Spring Har
Bor Laboratory, New York).

【0031】結果 (1)B.ステアロサーモフィルスNo.2、及びB.
マセランスIF03490 CGTase遺伝子のクロ
ーニング 遺伝子のクローニングはショットガン法にで行った。
B.ステアロサーモフィルスNo.2、及びB.マセラ
ンスIF03490株を培養後、染色体DNAを抽出
し、制限酵素EcoRIで切断後、枯草菌プラスミドp
TB523のEcoRI部位に挿入した。枯草菌NA─
1株をコンピテント法(Imanaka,T.,T.T
anaka,H.Tsunekawa,and S.A
iba.(1981)J.Bacteriol.14
7,776−786d)で形質転換し、CS1アズーレ
寒天培地(Tc15μg/ml)でTc耐性、アミラー
ゼのハロー陽性で候補株を選択した。
Results (1) B. Stearothermophilus No. 2, and B.
Cloning of macerance IF03490 CGTase gene Cloning of the gene was performed by the shotgun method.
B. Stearothermophilus No. 2, and B. After culturing the Macerans IF03490 strain, the chromosomal DNA was extracted and cleaved with the restriction enzyme EcoRI, and then Bacillus subtilis plasmid p
It was inserted into the EcoRI site of TB523. Bacillus subtilis NA
One strain was subjected to the competent method (Imanaka, T., TT
anaka, H .; Tsunekawa, and S.M. A
iba. (1981) J. Bacteriol. 14
7, 776-786d) and transformed with CS1 Azure agar medium (Tc 15 μg / ml) to select Tc resistant and amylase halo positive candidate strains.

【0031】B.ステアロサーモフィルスNo.2から
は3種類の異なるDNA断片が獲られた。図5に示すよ
うに、それぞれのCGTase遺伝子をcgt1、cg
t5、cgt232と命名し、組換えプラスミドをpK
B1、pKB5、pKB232とした。B.マセランス
IFO3490からは1種類のDNA断片がクローン化
された。獲られたDNA断片を制限酵素Sau3AIを
用いてpUC118にサブクローニングしたところ、
3.6kbのDNA断片としてクローン化された。pU
C118上に存在するPstI、EcoRIを用いてC
GTase遺伝子を単離し、pTB523のPstI,
EcoRI部位に挿入することでpKBM1を得た。
B.マセランスIFO3490のCGTase遺伝子を
cgtMと命名した。
B. Stearothermophilus No. Two different DNA fragments were harvested from 2. As shown in FIG. 5, the respective CGTase genes were designated as cgt1 and cg.
t5 and cgt232 were named, and the recombinant plasmid was designated as pK.
They were B1, pKB5, and pKB232. B. One type of DNA fragment was cloned from Macerans IFO3490. When the obtained DNA fragment was subcloned into pUC118 using the restriction enzyme Sau3AI,
It was cloned as a 3.6 kb DNA fragment. pU
C using PstI and EcoRI existing on C118
The GTase gene was isolated, PstI of pTB523,
PKBM1 was obtained by inserting it into the EcoRI site.
B. The CGTase gene of macerans IFO3490 was named cgtM.

【0032】(2)クローン化されたCGTaseの性
質 クローンされた4種類のCGTase遺伝子(cgt
1、cgt5、cgt232、cgtM)より生産され
るCGTaseを枯草菌NA−1の培養液から精製しそ
の性質を調べた。
(2) Properties of cloned CGTase 4 cloned CGTase genes (cgt
1, Cgt5, cgt232, cgtM) was purified from the culture solution of Bacillus subtilis NA-1 and its properties were investigated.

【0033】B.マセランスIFO3490のCGTa
seについては、酵素の性質について既に報告されてお
り(Kitahata,S.,and S.Okad
a.(1982)J.Jpn.Soc.Starch
Sci.29,13−18)、CgtMの性質は既報の
結果と一致した。55℃が反応至適温度1℃で澱粉から
の主生産物はαCDであった。
B. Macerance IFO3490 CGTa
For se, the properties of the enzyme have already been reported (Kitahata, S., and S. Okad.
a. (1982) J. Am. Jpn. Soc. Starch
Sci. 29, 13-18), and the properties of CgtM were in agreement with the previously reported results. The main product from starch was αCD at an optimum reaction temperature of 1 ° C at 55 ° C.

【0034】一方、B.ステアロサーモフィルスNo.
2(FERM P−12822)は新たに土壌中から単
離された菌株である。cgt1、cgt5、cgt23
2をそれぞれ独立に精製し、酵素の性質を調べたとこ
ろ、いずれの酵素も反応至適温度65℃、至適pH6.
0、澱粉からの主生産物はβCDであった。
On the other hand, B. Stearothermophilus No.
2 (FERM P-12822) is a strain newly isolated from soil. cgt1, cgt5, cgt23
2 were independently purified, and the properties of the enzymes were examined. As a result, all of the enzymes had an optimum reaction temperature of 65 ° C. and an optimum pH of 6.
0, the main product from starch was βCD.

【0035】(3)CGTase遺伝子の塩基配列の決
定 各CGTase遺伝子の塩基配列をジデオキシ法により
決定した。B.ステアロサーモフィルスNo.2に由来
するcgt1、cgt5、cgt232はいずれも21
33塩基よりなるORFでコードされ711アミノ酸か
ら構成されていた。3種の遺伝子には5箇所で変異があ
り、いずれもコドンの3文字目に集中しており、同一の
アミノ酸配列を有すると考えられた。cgt1の塩基配
列を図6及び図7に示す。なお、3種のcgt遺伝子の
変異箇所は図8に示すとおりである。推定されるアミノ
酸配列からCGTase(cgt1、cgt5、cgt
232)の分子量は78.918と推定された。
(3) Determination of base sequence of CGTase gene The base sequence of each CGTase gene was determined by the dideoxy method. B. Stearothermophilus No. 21 derived from cgt1, cgt5, and cgt232 are all 21
It was encoded by the ORF consisting of 33 bases and was composed of 711 amino acids. It was considered that the three genes had mutations at 5 positions, all of which were concentrated in the third letter of the codon, and had the same amino acid sequence. The base sequence of cgt1 is shown in FIGS. 6 and 7. The mutation sites of the three cgt genes are as shown in FIG. From the deduced amino acid sequence, CGTase (cgt1, cgt5, cgt
The molecular weight of 232) was estimated to be 78.918.

【0036】これらの塩基配列はこれまでに報告されて
いるB.ステアロサーモフィルスTC−91の生産する
CGTaseのアミノ酸配列とは異なっていた(Sak
ai,S.,M.Kubota,K.Yamamot
o,T.Nakada,K.Torigoe,O.An
do,and T.Sugimoto(1987)J.
Jpn.Soc.Starch Sci.34,140
−147)。精製されたCGTaseのN末端側配列を
決定したところ、Ala−Gly−Asn−Leu−A
sn−Lys−であり、このことからN末端側の31ア
ミノ酸は分泌のシグナル配列として機能していることが
明らかとなった。
These base sequences are described in B. It differed from the amino acid sequence of CGTase produced by Stearothermophilus TC-91 (Sak
ai, S.A. , M .; Kubota, K .; Yamamot
o, T. Nakada, K .; Torigoe, O .; An
do, and T.D. Sugimoto (1987) J.
Jpn. Soc. Starch Sci. 34,140
-147). When the N-terminal side sequence of the purified CGTase was determined, Ala-Gly-Asn-Leu-A was determined.
It is sn-Lys-, and from this it was revealed that the 31 amino acids on the N-terminal side functioned as a secretory signal sequence.

【0037】(4)既知のCGTaseとのアミノ酸相
同性 これまで報告されているCGTaseのアミノ酸配列を
B.ステアロサーモフィルスNo.2株のものB.マセ
ランスIF03490のものと比較すると図1、図2、
図3及び図4のようになった。CGTaseのアミノ酸
配列は異なる起源であるにもかかわらず非常に高い相同
性を示した。
(4) Amino Acid Homology with Known CGTases The amino acid sequence of CGTases reported so far is shown in B. Stearothermophilus No. Two strains of B. Compared with those of Macerance IF03490,
It became like FIG. 3 and FIG. The amino acid sequence of CGTase showed very high homology despite being of different origin.

【0038】(5)変異CGTaseの構築 Cgt1の222番目のPheをTyrに置換したCg
t1−F222Y及び286番目のPheも併せてTy
rに置換した変異Cgt1−F222Y−F286Yを
構築した。それぞれの遺伝子をcgt1−F222Y、
cgt1−F222Y−F286Yとしプラスミドをp
KB1−F222Y、pKB1−F222Y−F286
Yとした(図9参照)。
(5) Construction of mutant CGTase Cg in which the 222nd Phe of Cgt1 is replaced with Tyr
t1-F222Y and 286th Phe are also Ty
A mutant Cgt1-F222Y-F286Y in which r was substituted was constructed. Each gene is cgt1-F222Y,
cgt1-F222Y-F286Y and plasmid p
KB1-F222Y, pKB1-F222Y-F286
It was set to Y (refer to FIG. 9).

【0039】(6)Cgt1−F222Y、Cgt1−
F222Y−F286Yの性質 Cgt1−F222Y、Cgt1−F222Y−F28
6Yは至適温度、至適pHとも野性型酵素であるCgt
1と同じ(65℃、6.0)であった。Cgt1、Cg
tM、Cgt1−F222Y、Cgt1−F222Y−
F286Yをそれぞれ独立に精製し、900Uを1%の
澱粉溶液(20ml)に対して作用させ、経時的にサン
プリングし産物をHPLCで調べた。結果を図10に示
す。Cgt1−F222Y、Cgt1−F222Y−F
286YはいずれもCgt1よりもαCDの割合が高
く、特に反応初期でこの傾向は顕著であった。CGTa
seのドメインAにある特定のアミノ酸(222─Ph
e、286−Phe)を置換することでCDの生産特性
を改変することができた。
(6) Cgt1-F222Y, Cgt1-
Properties of F222Y-F286Y Cgt1-F222Y, Cgt1-F222Y-F28
6Y is Cgt, which is a wild-type enzyme in both optimum temperature and optimum pH
It was the same as 1 (65 ° C., 6.0). Cgt1, Cg
tM, Cgt1-F222Y, Cgt1-F222Y-
F286Y was independently purified, 900 U was allowed to act on a 1% starch solution (20 ml), sampled over time, and the product was examined by HPLC. The results are shown in Fig. 10. Cgt1-F222Y, Cgt1-F222Y-F
All of 286Y had a higher αCD ratio than Cgt1, and this tendency was remarkable particularly in the early stage of the reaction. CGTa
a specific amino acid (222-Ph) in domain A of se
e, 286-Phe) could alter the CD production characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】B.ステアロサーモフィルスTC−91株(B
ST TC−91)及びNo.2株(BST NO2)
のCGTaseのアミノ酸配列、本発明のCGTase
のアミノ酸配列(F222Y、F222Y−F286
Y)並びにB.マセラスン(BMA 3490)のCG
Taseのアミノ酸配列を示す。
FIG. 1B. Stearothermophilus TC-91 strain (B
ST TC-91) and No. 2 shares (BST NO2)
Amino acid sequence of CGTase of the invention, CGTase of the present invention
Amino acid sequence of (F222Y, F222Y-F286
Y) and B. CG of Maserasun (BMA 3490)
The amino acid sequence of Tase is shown.

【図2】B.ステアロサーモフィルスTC−91株(B
ST TC−91)及びNo.2株(BST NO2)
のCGTaseのアミノ酸配列、本発明のCGTase
のアミノ酸配列(F222Y、F222Y−F286
Y)並びにB.マセラスン(BMA 3490)のCG
Taseのアミノ酸配列を示す。
FIG. 2B. Stearothermophilus TC-91 strain (B
ST TC-91) and No. 2 shares (BST NO2)
Amino acid sequence of CGTase of the present invention, CGTase of the present invention
Amino acid sequence of (F222Y, F222Y-F286
Y) and B. CG of Maserasun (BMA 3490)
The amino acid sequence of Tase is shown.

【図3】B.ステアロサーモフィルスTC−91株(B
ST TC−91)及びNo.2株(BST NO2)
のCGTaseのアミノ酸配列、本発明のCGTase
のアミノ酸配列(F222Y、F222Y−F286
Y)並びにB.マセラスン(BMA 3490)のCG
Taseのアミノ酸配列を示す。
FIG. 3B. Stearothermophilus TC-91 strain (B
ST TC-91) and No. 2 shares (BST NO2)
Amino acid sequence of CGTase of the present invention, CGTase of the present invention
Amino acid sequence of (F222Y, F222Y-F286
Y) and B. CG of Maserasun (BMA 3490)
The amino acid sequence of Tase is shown.

【図4】B.ステアロサーモフィルスTC−91株(B
ST TC−91)及びNo.2株(BST NO2)
のCGTaseのアミノ酸配列、本発明のCGTase
のアミノ酸配列(F222Y、F222Y−F286
Y)並びにB.マセラスン(BMA 3490)のCG
Taseのアミノ酸配列を示す。
FIG. 4B. Stearothermophilus TC-91 strain (B
ST TC-91) and No. 2 shares (BST NO2)
Amino acid sequence of CGTase of the invention, CGTase of the present invention
Amino acid sequence of (F222Y, F222Y-F286
Y) and B. CG of Maserasun (BMA 3490)
The amino acid sequence of Tase is shown.

【図5】組換えプラスミドをpKB1、pKB5、pK
B232の制限酵素地図。
FIG. 5: Recombinant plasmids pKB1, pKB5, pK
Restriction map of B232.

【図6】CGTase遺伝子cgt1の塩基配列を示
す。
FIG. 6 shows the nucleotide sequence of CGTase gene cgt1.

【図7】CGTase遺伝子cgt1の塩基配列を示
す。
FIG. 7 shows the nucleotide sequence of CGTase gene cgt1.

【図8】CGTase遺伝子cgt1、cgt5、cg
t232の変異箇所を示す。
FIG. 8: CGTase genes cgt1, cgt5, cg
The mutation site of t232 is shown.

【図9】プラスミドpKB1、pKB1−F222Y、
pKB1−F222Y−F286Yの構造を示す。
FIG. 9: Plasmids pKB1, pKB1-F222Y,
3 shows the structure of pKB1-F222Y-F286Y.

【図10】αCD生産性((a):CgtM、(b):
Cgt1、(c):Cgt1−F222Y、(d):C
gt1−F222Y−F286F)の経時変化を示す。
▲、●、■は、それぞれαCD、βCD、γCDを表
す。
FIG. 10: αCD productivity ((a): CgtM, (b):
Cgt1, (c): Cgt1-F222Y, (d): C
gt1-F222Y-F286F) with time.
▲, ●, and ■ represent αCD, βCD, and γCD, respectively.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 15/54 C12R 1:07) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location (C12N 15/54 C12R 1:07)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 222番目のフェニルアラニン又は22
2番目及び286番目のフェニルアラニンをチロシンに
置換したバチルス・ステアロサーモフィルス(Baci
llus stearothermophilus)の
シクロマルトデキストリン・グルカノトランスフェラー
ゼを澱粉に作用させて、α−サイクロデキストリンを生
成させることを含むα−サイクロデキストリンの製造方
法。
1. The 222nd phenylalanine or 22.
Bacillus stearothermophilus (Baci) in which phenylalanine at the 2nd and 286th positions was replaced by tyrosine
and a method for producing α-cyclodextrin, which comprises reacting the starch with cyclomaltodextrin glucanotransferase of L. stearothermophilus) to produce α-cyclodextrin.
【請求項2】 8%以上の濃度の澱粉にシクロマルトデ
キストリン・グルカノトランスフェラーゼを作用させる
請求項1記載の製造方法。
2. The method according to claim 1, wherein cyclomaltodextrin glucanotransferase is allowed to act on starch having a concentration of 8% or more.
【請求項3】 222番目のフェニルアラニン又は22
2番目及び286番目のフェニルアラニンがチロシンに
置換したバチルス・ステアロサーモフィルス(Baci
llus stearothermophilus)の
シクロマルトデキストリン・グルカノトランスフェラー
ゼ。
3. The 222nd phenylalanine or 22.
Bacillus stearothermophilus (Baci) in which phenylalanine at the 2nd and 286th positions was replaced by tyrosine
illus stearothermophilus) cyclomaltodextrin glucanotransferase.
JP4082843A 1992-03-04 1992-03-04 Production of alpha-cyclodextrin Withdrawn JPH05244945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4082843A JPH05244945A (en) 1992-03-04 1992-03-04 Production of alpha-cyclodextrin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4082843A JPH05244945A (en) 1992-03-04 1992-03-04 Production of alpha-cyclodextrin

Publications (1)

Publication Number Publication Date
JPH05244945A true JPH05244945A (en) 1993-09-24

Family

ID=13785673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4082843A Withdrawn JPH05244945A (en) 1992-03-04 1992-03-04 Production of alpha-cyclodextrin

Country Status (1)

Country Link
JP (1) JPH05244945A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630967A1 (en) * 1993-06-24 1994-12-28 Consortium für elektrochemische Industrie GmbH Cyclodextrin glycosyltransferase for the production of gamma-cyclodextrin
US6004790A (en) * 1995-04-21 1999-12-21 Novo Nordisk A/S Cyclomaltodextrin glucanotransferase variants
WO2002006508A3 (en) * 2000-07-19 2002-05-02 Novozymes As CYCLOMALTODEXTRIN GLUCANOTRANSFERASE (CGTase9, DNA SEQUENCE ENCODING IT AND USES THEREOF
JP4792534B1 (en) * 2009-09-03 2011-10-12 株式会社林原生物化学研究所 2-O-α-D-glucosyl-L-ascorbic acid anhydrous crystal-containing powder, its production method and use
US20110312064A1 (en) * 2008-12-01 2011-12-22 Danisco Us Inc. Methods of removing oily stains from fabrics
WO2012121297A1 (en) 2011-03-07 2012-09-13 株式会社林原 METHOD FOR PRODUCING 2-O-α-D-GLUCOSYL-L-ASCORBIC ACID ANHYDROUS CRYSTAL-CONTAINING POWDER

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474917A (en) * 1993-06-24 1995-12-12 Consortium Fur Elektrochemische Industrie Gmbh Modified cyclodextrin glycosyltransferases for producing γ-cyclodextrins
EP0630967A1 (en) * 1993-06-24 1994-12-28 Consortium für elektrochemische Industrie GmbH Cyclodextrin glycosyltransferase for the production of gamma-cyclodextrin
US6004790A (en) * 1995-04-21 1999-12-21 Novo Nordisk A/S Cyclomaltodextrin glucanotransferase variants
EP1632566A2 (en) * 1995-04-21 2006-03-08 Novozymes A/S Cyclomaltodextrin glucanotransferase variants
EP1632566A3 (en) * 1995-04-21 2006-08-16 Novozymes A/S Cyclomaltodextrin glucanotransferase variants
WO2002006508A3 (en) * 2000-07-19 2002-05-02 Novozymes As CYCLOMALTODEXTRIN GLUCANOTRANSFERASE (CGTase9, DNA SEQUENCE ENCODING IT AND USES THEREOF
US20110312064A1 (en) * 2008-12-01 2011-12-22 Danisco Us Inc. Methods of removing oily stains from fabrics
JP4850302B1 (en) * 2009-09-03 2012-01-11 株式会社林原生物化学研究所 2-O-α-D-glucosyl-L-ascorbic acid anhydrous crystal-containing powder, its production method and use
JP4792534B1 (en) * 2009-09-03 2011-10-12 株式会社林原生物化学研究所 2-O-α-D-glucosyl-L-ascorbic acid anhydrous crystal-containing powder, its production method and use
US8765416B2 (en) 2009-09-03 2014-07-01 Hayashibara Co., Ltd. Particulate composition containing anhydrous crystalline 2-O-alpha-D-glucosyl-L-ascorbic acid, process for producing the same, and uses thereof
US9186368B2 (en) 2009-09-03 2015-11-17 Hayashibara Co., Ltd. Process for producing a particulate composition comprising an hydrous crystalline 2-O-α-D-glucosyl-L-ascorbic acid
US9265781B2 (en) 2009-09-03 2016-02-23 Hayashibara Co., Ltd. Process for producing a particulate composition comprising anhydrous crystalline 2-O-alpha-D-glucosyl-L-ascorbic acid
US9872872B2 (en) 2009-09-03 2018-01-23 Hayashibara Co., Ltd. Process for producing a particulate composition comprising an hydrous crystalline 2-O-α-D-glucosyl-L-ascorbic acid
US10603333B2 (en) 2009-09-03 2020-03-31 Hayashibara Co., Ltd. Process for producing a particulate composition comprising an hydrous crystalline 2-o-alpha-d-glucosyl-ascorbic acid
WO2012121297A1 (en) 2011-03-07 2012-09-13 株式会社林原 METHOD FOR PRODUCING 2-O-α-D-GLUCOSYL-L-ASCORBIC ACID ANHYDROUS CRYSTAL-CONTAINING POWDER
KR20140039177A (en) 2011-03-07 2014-04-01 가부시기가이샤하야시바라 Method for producing 2-o-a-d-glucosyl-l-ascorbic acid anhydrous crystal-containing powder

Similar Documents

Publication Publication Date Title
Takano et al. Molecular cloning, DNA nucleotide sequencing, and expression in Bacillus subtilis cells of the Bacillus macerans cyclodextrin glucanotransferase gene
HU195533B (en) Process for producing microorganisms modificated with genetical engineering for producing amilase
JPH0112477B2 (en)
US5204254A (en) Maltopentaose producing amylases
JPH028714B2 (en)
JPH05244945A (en) Production of alpha-cyclodextrin
US4801541A (en) Method of increasing the yield of a product by altering a microorganism
EP0032238A2 (en) Recombinant bacteriophage for heterologous cloning of bacillus microorganisms and method for its production
Hillman et al. Cloning and expression of the gene encoding the fructose-1, 6-diphosphate-dependent L-(+)-lactate dehydrogenase of Streptococcus mutans
Lacks et al. Transfer of recombinant plasmids containing the gene for DpnII DNA methylase into strains of Streptococcus pneumoniae that produce DpnI or DpnII restriction endonucleases
JPH10309192A (en) Thermostable diaphorase gene
JPH0630575B2 (en) γ-CGase
CA1279590C (en) Recombinant dna, microorganisms containing same and their use in the production of amylases
CA1335183C (en) Polypeptide possessing cyclomaltodextrin glucanotransferase activity
JPH10174585A (en) Stable creatine amidinohydrolase
JPH0829083B2 (en) Method for producing neutral protease
JP2833793B2 (en) Plasmid encoding heparinase, heparinase-producing strain carrying this plasmid, and method for producing heparinase
JP2590462B2 (en) Method for producing thermostable protease
JPS6253150B2 (en)
US4886754A (en) Recombinant bateriophage for heterologous cloning of bacillus microorganisms and method for its production
JP2681634B2 (en) New bacterial strain with enhanced thermostable liquefied amylase production capacity
JP3399685B2 (en) Modified enzyme having cholesterol oxidase activity
JP2671008B2 (en) DNA encoding cyclomaltodextrin glucenotransferase, recombinant plasmid containing the same, and transformed microorganism containing the plasmid
JPH0223872A (en) Recombinant plasmid, bacillus subtilis transformed with said plasmid and production of heat-resistant pullulanase using same
JP3089287B2 (en) Manufacturing method of caries vaccine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518