JPH05244406A - Color adjustment device - Google Patents

Color adjustment device

Info

Publication number
JPH05244406A
JPH05244406A JP4175184A JP17518492A JPH05244406A JP H05244406 A JPH05244406 A JP H05244406A JP 4175184 A JP4175184 A JP 4175184A JP 17518492 A JP17518492 A JP 17518492A JP H05244406 A JPH05244406 A JP H05244406A
Authority
JP
Japan
Prior art keywords
color
signal
chromaticity
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4175184A
Other languages
Japanese (ja)
Other versions
JP3173140B2 (en
Inventor
Takashi Yumiba
隆司 弓場
Haruo Yamashita
春生 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17518492A priority Critical patent/JP3173140B2/en
Publication of JPH05244406A publication Critical patent/JPH05244406A/en
Application granted granted Critical
Publication of JP3173140B2 publication Critical patent/JP3173140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Controls And Circuits For Display Device (AREA)
  • Image Processing (AREA)
  • Processing Of Color Television Signals (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

PURPOSE:To adjust the color selectively with simple configuration by keeping the continuity of the color. CONSTITUTION:A characteristic used to convert a noted color into an object color based on a noted color chromaticity signal set by a noted color chromaticity setting means 2 and representing a center of a color region desired to be converted in a chromaticity plane representing a hue component and a saturation component and on an object color chromaticity signal set by an object color, chromaticity setting means 3 and representing a color after desired conversion is set to a 1st color conversion means 5. Then a weight coefficient decision means 6 decides the weight coefficient in response to a difference between the inputted chromaticity signal and the noted color chromaticity signal set by the noted color chromaticity setting means 2, and a color adjustment arithmetic means 7 decodes an output color signal in response to an output of the weight coefficient decision means 6 based on an output of the 1st color conversion means 5 and the inputted chromaticity signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はカラープリンタ、カラー
複写機やカラーTV等のカラー画像を取り扱う機器にお
いて画像内の他の色を保存したまま、連続性を保存して
特定の範囲の色のみを変化させることができる選択的な
色調整装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color printer, a color copying machine, a color TV, and other devices that handle color images, and saves continuity while keeping other colors in the image and only colors within a specific range. The present invention relates to a selective color adjusting device capable of changing the color.

【0002】[0002]

【従来の技術】近年、各種カラー画像機器の高画質化、
インテリジェント化に伴い、利用者の要求に十分応える
ための色調整機能が必須のものとなってきている。
2. Description of the Related Art In recent years, image quality of various color image devices has been improved,
With the progress of the intelligent system, the color adjustment function has become indispensable to fully meet the demands of users.

【0003】以下図面を参照しながら、従来の色調整装
置の一例について説明する。図18は従来の色調整装置
の概略構成を示すブロック図である。図18において、
100はRGB3色色分解値の(R,G,B)系から
(X,Y,Z)系を介して均等色空間L*** 系に変
換する色空間変換手段、101は均等色空間L***
系からL***座標系内極座標系である(H゜ab,
*,C*ab)系に変換する極座標変換手段、102は後
述する選択的色調整手段であり、103は色調整を受け
た(H゜ab,L*,C*ab)系から均等色空間L***
系及び(X,Y,Z)系を介して(R,G,B)系に変
換する逆色空間変換手段である。
An example of a conventional color adjusting device will be described below with reference to the drawings. FIG. 18 is a block diagram showing a schematic configuration of a conventional color adjusting device. In FIG.
Reference numeral 100 is a color space conversion means for converting the RGB three color separation values from the (R, G, B) system to the uniform color space L * a * b * system via the (X, Y, Z) system, and 101 is the uniform color space. L * a * b *
From the system, it is the polar coordinate system within the L * a * b * coordinate system (H ° ab,
Polar coordinate conversion means for converting to L * , C * ab) system, 102 is a selective color adjusting means described later, and 103 is a uniform color from the (H ° ab, L * , C * ab) system which has undergone color adjustment. Space L * a * b *
It is an inverse color space conversion means for converting to the (R, G, B) system via the system and the (X, Y, Z) system.

【0004】ここで選択的色調整手段102について説
明する。図19は色調整対象領域指定方法の説明図で、
図20は色調整指定方法の説明図である。
The selective color adjusting means 102 will be described below. FIG. 19 is an explanatory diagram of a color adjustment target area specifying method.
FIG. 20 is an explanatory diagram of a color adjustment designation method.

【0005】色調整は、a**平面すなわち色度平面内
だけで色相角H゜ab、彩度C*abを用いて極座標系で行な
う。色相指定は色相角の中心値HC(゜)と範囲角HA
(゜)を用いて、彩度指定は中心値CC*と広がり量CA
*を用いて両者の組合せにより図19の斜線部のように
対象色領域が決定される。色の変化方向と変化量は図2
0のようにH゜ab、C*abの座標系では色相は±方向にD
H(゜)の量の色相回転、彩度はKc倍の伸縮を行なうこ
ととし、色調整量のパラメータとしてこの2量を用い
る。
Color adjustment is performed in a polar coordinate system using the hue angle H ° ab and the saturation C * ab only in the a * b * plane, that is, in the chromaticity plane. Hue is specified by the central value of hue angle HC (°) and range angle HA
Using (o), the saturation is specified by the center value CC * and the spread amount CA.
The target color area is determined as indicated by the shaded area in FIG. 19 by combining * using * . Figure 2 shows the direction and amount of color change.
In the coordinate system of H ° ab and C * ab like 0, the hue is D in the ± direction.
The hue is rotated by the amount of H (°) and the saturation is expanded / contracted by Kc times, and these two amounts are used as parameters of the color adjustment amount.

【0006】そして、この2量を用いて一様に変化させ
ると色空間の特定の色が突然他の色に変化するため、色
相および彩度の入出力関係に不連続性が生じてしまう。
また、入力される画像は多種多様なため対象色領域の指
定に使う色分布の中心値や範囲が変動する可能性があ
り、正確には指定することが出来ない。
When the two quantities are uniformly changed, a specific color in the color space suddenly changes to another color, resulting in discontinuity in the input / output relationship of hue and saturation.
Also, since there are various kinds of input images, the center value and range of the color distribution used to specify the target color area may change, and it cannot be specified accurately.

【0007】このことから、対象色領域をメンバーシッ
プ関数を用い、多少の曖昧性を許した形で指定する方式
とする。この方式によればメンバーシップ関数の値を用
いて色調整量を重み付けすることにより色空間の連続性
も確保できる。
Therefore, the target color area is designated by using a membership function in a form that allows some ambiguity. According to this method, the continuity of the color space can be secured by weighting the color adjustment amount using the value of the membership function.

【0008】a**平面における2次元メンバーシップ
関数を(数1)で与えると、選択的色調整は(数2)で
示すように定式化できる。
If a two-dimensional membership function in the a * b * plane is given by (Equation 1), selective color adjustment can be formulated as shown by (Equation 2).

【0009】[0009]

【数1】 [Equation 1]

【0010】[0010]

【数2】 [Equation 2]

【0011】ここで、(H゜ab,C*ab)は色調整前の色
座標値、(H゜ab',C*ab')は色調整後の色座標値、ま
たDHは色相H゜abの回転角、Kcは彩度C*abの倍率で
ある。すなわち色調整はメンバーシップ関数WH(H゜a
b)、WC(C*ab)とDH、Kcにより一意的に決定する
ことになる。
Here, (H ° ab, C * ab) is the color coordinate value before color adjustment, (H ° ab ', C * ab') is the color coordinate value after color adjustment, and DH is the hue H °. The rotation angle of ab, Kc is the magnification of the saturation C * ab. That is, the color adjustment is the membership function WH (H ° a
b), WC (C * ab) and DH, Kc will be uniquely determined.

【0012】以上のように構成された色調整装置につい
て、以下その動作について説明する。
The operation of the color adjusting device having the above structure will be described below.

【0013】まず色空間変換手段100により3色色分
解値の(R,G,B)系から(X,Y,Z)系を介し
て、CIE1976均等色空間L*** 系に変換す
る。そして、L***座標系内極座標系である(H゜a
b,C*ab)系に、極座標変換手段101により変換す
る。この変換は(数3)で示される。
First, the color space conversion means 100 converts the three color separation values from the (R, G, B) system to the CIE1976 uniform color space L * a * b * system via the (X, Y, Z) system. .. Then, the polar coordinate system in the L * a * b * coordinate system (H ° a
b, C * ab) system is converted by the polar coordinate conversion means 101. This conversion is shown by (Equation 3).

【0014】[0014]

【数3】 [Equation 3]

【0015】従って、選択的色調整手段102により上
述した2次元メンバーシップ関数を用いて色調整を行な
い、その結果得られる色座標値(H゜ab',C*ab')とL
*からL***座標系、(X,Y,Z)系を介して3色
色分解値の(R,G,B)系に逆色空間変換手段により
変換すれば、選択的に色調整を施された色信号を得るこ
とが出来る(「画像電子学会誌」第18巻 第5号 3
02〜312ページ)。
Therefore, the selective color adjusting means 102 performs the color adjustment using the above-mentioned two-dimensional membership function, and the resulting color coordinate values (H ° ab ', C * ab') and L
By converting from * to L * a * b * coordinate system and (X, Y, Z) system to (R, G, B) system of three color separation values by the inverse color space conversion means, the color can be selectively It is possible to obtain adjusted color signals ("Journal of the Institute of Image Electronics Engineers," Vol. 18, No. 5, 3
02-312).

【0016】[0016]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、以下に示す課題がある。
However, the above-mentioned structure has the following problems.

【0017】ます選択的色調整を行なう際には、3原色
色信号から均等色空間L***系への変換や、さらに
***座標系内極座標系である(H゜ab,L*,C*a
b)系に変換するための極座標変換と色調整を受けた
(H゜ab,L*,C*ab)系から均等色空間L***
に変換する直交座標変換が必要になり、これらの演算は
非線形演算であるために、この演算を行なうにはリアル
タイムで行なうには困難である。
When more and more selective color adjustment is performed, conversion from the three primary color signals to the uniform color space L * a * b * system, and further the polar coordinate system within the L * a * b * coordinate system (H゜ ab, L * , C * a
b) Polar coordinate conversion for conversion to the system and Cartesian coordinate conversion for conversion from the color-adjusted (H ° ab, L * , C * ab) system to the uniform color space L * a * b * system are required. Since these operations are non-linear operations, it is difficult to perform them in real time.

【0018】また、これらの非線形演算を高速に行なう
ために、ルックアップテーブルで行なうとすれば、多く
の変換テーブルが必要になり、回路規模が大きくなり、
しかもこの変換テーブルを作成するが大変である。さら
にこのルックアップテーブルで行なえば、非線形演算の
演算精度を上げるために多くのビット数が必要になり回
路規模が大きくなってしまう。
If a lookup table is used to perform these non-linear operations at high speed, a large number of conversion tables are required and the circuit scale becomes large.
Moreover, creating this conversion table is difficult. Further, if this look-up table is used, a large number of bits are required to increase the calculation accuracy of the non-linear calculation, and the circuit scale becomes large.

【0019】そして、この色調整処理をアナログ処理で
行なうことは、非線形変換である極座標変換等のため
に、極めて難しく、例えばビデオ信号にリアルタイムで
この色調整処理を行うことには適さないという問題もあ
る。
It is extremely difficult to perform this color adjustment processing by analog processing due to polar coordinate conversion, which is a non-linear conversion, and is not suitable for performing this color adjustment processing on a video signal in real time, for example. There is also.

【0020】さらに、(数2)で示したように、極座標
系でのマトリクス演算を行なうために、演算精度を上げ
ようとすれば、極座標系に変換する前の均等色空間L*
* *系の時点で、多くのビット数が必要となる。
Further, as shown in (Equation 2), polar coordinates
Increase the calculation accuracy to perform matrix calculation in the system
If so, the uniform color space L before conversion to the polar coordinate system*
a*b *A large number of bits are required at the time of the system.

【0021】また、この色調整方法では彩度および色相
方向の調整を行うことができるが明度方向の調整を行う
ことはできない。
Also, with this color adjusting method, the saturation and hue directions can be adjusted, but the brightness direction cannot be adjusted.

【0022】本発明は上記問題点に鑑み、回路構成が簡
単で、しかも回路規模も小さく演算精度の高い色調整装
置を提供することを目的とし、また、明度方向の調整を
も簡単に行え、さらに、ビデオ信号等の映像信号に対し
てリアルタイムで処理できる選択的色調整を行える色調
整装置を提供するものである。
In view of the above problems, it is an object of the present invention to provide a color adjusting device having a simple circuit configuration, a small circuit scale, and high calculation accuracy. Further, adjustment in the lightness direction can be easily performed. Further, the present invention provides a color adjustment device capable of performing selective color adjustment which can be processed in real time with respect to a video signal such as a video signal.

【0023】[0023]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の色調整装置は、色の3属性のうち色相成分
と彩度成分を表わす平面の直交座標系の2要素を表わす
色度信号と、色調整により変換したい色領域の中心の色
度信号を設定する注目色色度信号設定手段と、この注目
色色度信号設定手段で設定される注目色の色度信号を中
心として色調整を行なう前記直交座標系上での領域を設
定する色調整領域設定手段と、前記注目色色度信号設定
手段で設定された注目色の色度信号を好みの色に変換し
た時の色度信号を設定する目標色色度信号設定手段と、
前記注目色色度信号設定手段の出力と前記目標色色度信
号設定手段の出力とから注目色の色度信号を目標色の色
度信号に変換するように前記平面全体に作用する第一の
色変換手段と、入力される色度信号に応じて色調整を行
なう度合を表わす重み係数を決定する重み係数決定手段
と、入力される色度信号とこの色度信号を前記第一の色
変換手段に入力した時の出力の色度信号との間の色度信
号を前記重み係数発生手段の出力に応じて発生する第一
の色調整演算手段とを備えたものである。
In order to solve the above-mentioned problems, a color adjusting apparatus of the present invention is a color adjusting apparatus for a color representing two elements of a plane orthogonal Cartesian coordinate system representing a hue component and a saturation component among three attributes of color. A chromaticity signal and a chromaticity signal of interest for setting the chromaticity signal at the center of the color area to be converted by color adjustment, and color adjustment centering on the chromaticity signal of the attention color set by the chromaticity signal of interest Color adjustment area setting means for setting an area on the Cartesian coordinate system, and a chromaticity signal when the chromaticity signal of the attention color set by the attention color chromaticity signal setting means is converted into a desired color. Target color chromaticity signal setting means to be set,
A first color conversion that acts on the entire plane so as to convert the chromaticity signal of the target color into the chromaticity signal of the target color from the output of the target chromaticity signal setting means and the output of the target chromaticity signal setting means. Means, a weighting coefficient determining means for determining a weighting coefficient representing the degree of color adjustment according to the input chromaticity signal, the input chromaticity signal and the chromaticity signal to the first color converting means. The present invention further comprises a first color adjustment calculation means for generating a chromaticity signal between the input chromaticity signal and the output chromaticity signal in accordance with the output of the weighting factor generation means.

【0024】また3原色色信号から色の3属性のうち色
相成分と彩度成分を表わす平面の直交座標系の2要素を
表わす色度信号に変換する色空間変換手段と、色調整に
より変換したい色領域の中心の3原色色信号を設定する
注目色色信号設定手段と、この注目色色信号設定手段で
設定される注目色色信号から求められる前記色度信号を
中心として色調整を行なう前記直交座標系上での領域を
設定する色調整領域設定手段と、前記注目色色信号設定
手段で設定された注目色の色信号を好みの色に変換した
時の3原色色信号を設定する目標色色信号設定手段と、
前記注目色色信号設定手段で設定された3原色色信号と
前記目標色色信号設定手段で設定された3原色色信号と
から注目色の3原色色信号を目標色の3原色色信号に変
換するように色空間全体に作用する第二の色変換手段
と、入力される前記色度信号に応じて色調整を行なう度
合を表わす重み係数を決定する重み係数決定手段と、こ
の重み係数決定手段の出力に応じて入力の3原色色信号
とこの3原色色信号を前記第二の色変換手段に入力した
時の出力の3原色色信号との間の3原色色信号を発生す
る第二の色調整演算手段とを備えるものである。
A color space conversion means for converting the three primary color signals into a chromaticity signal representing two elements of the orthogonal coordinate system of the plane representing the hue component and the saturation component among the three attributes of the color, and the color space conversion is desired. Attention color color signal setting means for setting the three primary color signals at the center of the color region, and the orthogonal coordinate system for performing color adjustment centering on the chromaticity signal obtained from the attention color color signal set by the attention color color signal setting means. Color adjustment area setting means for setting the above areas, and target color / color signal setting means for setting the three primary color signals when the color signal of the target color set by the target color / color signal setting means is converted into a desired color. When,
From the three primary color signals set by the target color signal setting means and the three primary color signals set by the target color signal setting means, the three primary color signals of the target color are converted into the three primary color signals of the target color. Second color converting means that operates on the entire color space, weighting factor determining means that determines a weighting factor representing the degree of color adjustment according to the input chromaticity signal, and the output of this weighting factor determining means. Second color adjustment for generating three primary color signals between the input three primary color signals and the three primary color signals output when the three primary color signals are input to the second color conversion means. And a calculation means.

【0025】さらには入力クロマ信号と、色調整を行な
いたい色領域の中心である注目色の彩度と色相を表わす
注目色クロマ信号を発生する注目色クロマ信号発生手段
と、前記入力クロマ信号から前記注目色クロマ信号発生
手段で発生された注目色クロマ信号を減算する減算手段
と、この減算手段の出力を整流平滑する整流平滑手段
と、この整流平滑手段の出力レベルを所定のレベル以下
に制限するリミット手段と、前記入力クロマ信号の位相
をシフトする位相シフト手段と、この位相シフト手段の
出力を所定のゲインで増幅または減衰する増幅手段また
は減衰手段と、前記整流平滑手段の出力に基づいて、入
力クロマ信号と前記増幅手段の出力との内分演算を行い
色調整されたクロマ信号を得る第三の色調整演算手段と
を備えるものである。
Further, the input chroma signal and color adjustment are performed.
Represents the saturation and hue of the target color, which is the center of the desired color range
Target color chroma signal generating means for generating target color chroma signal
And generating the target color chroma signal from the input chroma signal
Means for subtracting the color-of-interest chroma signal generated by the means
And rectifying and smoothing means for rectifying and smoothing the output of the subtracting means
And the output level of this rectifying and smoothing means is below a predetermined level.
Limit means to limit the phase of the input chroma signal
Of the phase shift means for shifting the
Amplifying means for amplifying or attenuating the output with a predetermined gain
Is based on the output of the attenuator and the rectifying and smoothing means.
Performs internal division calculation of the force chroma signal and the output of the amplification means
Third color adjustment calculation means for obtaining a color-adjusted chroma signal;
It is equipped with.

【0026】[0026]

【作用】本発明は上記した構成によって、色相成分と彩
度成分とを示す色度平面内で、注目色色度信号設定手段
により設定された変換したい色領域の中心を表わす注目
色色度信号と目標色色度信号設定手段により設定された
所望の変換後の色を表わす目標色色度信号とから注目色
を目標色に変換するように前記平面全体に作用するよう
な特性を第一の色変換手段に設定し、入力される色度信
号と注目色色度信号設定手段で設定される注目色色度信
号との差に応じて、重み係数決定手段により重み係数を
決定し、第一の色変換手段の出力と入力される色度信号
とから重み係数決定手段の出力に応じて出力色信号を決
定するものである。
According to the present invention having the above-described structure, the target chromaticity signal and the target representing the center of the color region to be converted set by the target chromaticity signal setting means in the chromaticity plane showing the hue component and the saturation component. The first color conversion means has a characteristic that acts on the entire plane so as to convert the target color into the target color from the target color chromaticity signal representing the desired converted color set by the color chromaticity signal setting means. The weighting factor is determined by the weighting factor determining device according to the difference between the chromaticity signal that is set and input and the chromaticity signal of interest that is set by the chromaticity signal of interest setting unit, and the output of the first color conversion unit is determined. And an input chromaticity signal, the output color signal is determined according to the output of the weighting factor determining means.

【0027】また、注目色色信号設定手段により設定さ
れた変換したい色領域の中心を示す3原色色信号から求
められる色度信号と、入力される3原色色信号から色空
間変換手段の出力の色度信号との色相成分と彩度成分と
を示す色度平面内での距離に応じて重み係数発生手段に
より重み係数を発生し、注目色の3原色色信号を目標色
色信号設定手段により設定された所望の変換後の色を表
わす目標色の3原色色信号とに変換する入出力特性を持
つ第二の色変換手段に入力し、この出力の3原色色信号
と入力される3原色色信号とから前記重み係数決定手段
の出力に応じて出力3原色色信号を決定するものであ
る。
Further, the chromaticity signal obtained from the three primary color signals indicating the center of the color region to be converted set by the target color signal setting means and the color output from the color space converting means from the input three primary color signals. The weighting factor generating means generates a weighting factor according to the distance in the chromaticity plane indicating the hue component and the saturation component with respect to the intensity signal, and the three primary color signals of the target color are set by the target color signal setting device. Further, it is inputted to the second color conversion means having an input / output characteristic for converting into a desired primary color representing the desired converted color and the three primary color signals, and the output three primary color signals and the input three primary color signals. From the above, the output three primary color signals are determined according to the output of the weighting factor determining means.

【0028】さらには、入力クロマ信号から注目色クロ
マ信号発生手段で発生した色調整を施す注目色の色相と
彩度を表わす注目色クロマ信号を減算する事により、入
力色と注目色との色相と彩度の違いを表わす正弦波を発
生し、整流平滑手段によりこの正弦波を整流平滑し、そ
の後リミット手段により色調整範囲で整流平滑手段の出
力を制限することにより重み係数を得、そして、入力ク
ロマ信号の位相をシフトし、増幅し、この増幅後の出力
と前記入力クロマ信号とから前記整流手段の出力により
出力クロマ信号を得るものである。
Further, the hue of the input color and the target color is subtracted from the input chroma signal by subtracting the hue of the target color to be subjected to color adjustment generated by the target color chroma signal generating means and the target color chroma signal indicating the saturation. And a sine wave representing the difference in saturation are generated, the rectifying and smoothing means rectifies and smoothes this sine wave, and then the limiting means limits the output of the rectifying and smoothing means in the color adjustment range to obtain a weighting factor, and The phase of the input chroma signal is shifted and amplified, and the output chroma signal is obtained from the output after the amplification and the input chroma signal by the output of the rectifying means.

【0029】[0029]

【実施例】以下本発明の第1の実施例の色調整装置につ
いて、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A color adjusting apparatus according to a first embodiment of the present invention will be described below with reference to the drawings.

【0030】動作説明を行なう前に、本発明で述べる色
の3属性のうち色相成分と彩度成分を表わす平面を直交
座標系の2要素を表わす色度信号について説明する。色
相成分と彩度成分を表わす平面の直交座標系の2要素を
表わす色度信号としては、輝度色差信号(例えばY,R
−Y,B−Y信号)の色差信号や、輝度クロマ信号(Y
C信号)のクロマ信号、CIE1964均等知覚色空間
(U***)の知覚色度指数(U**)、CIE19
76均等知覚色空間(L***)の知覚色度指数(u*
*)、CIE1976均等知覚色空間(L***)の
知覚色度指数(a**)、HLS空間の色相H、彩度S
などが挙げられる。本発明では、これらを表わす信号を
色度信号とする。
Before describing the operation, the chromaticity signal representing the two elements of the orthogonal coordinate system on the plane representing the hue component and the saturation component of the three attributes of the color described in the present invention will be described. As a chromaticity signal representing two elements of a plane orthogonal coordinate system representing a hue component and a saturation component, a luminance color difference signal (for example, Y, R
-Y, BY signals) color difference signals and luminance chroma signals (Y
C signal), CIE1964 uniform perceptual color space (U * V * W * ) perceptual chromaticity index (U * V * ), CIE19
76 Perceptual chromaticity index (u * ) of uniform perceptual color space (L * u * v * )
v *), perception chromaticity index (a * b of CIE1976 uniform perceptual color space (L * a * b *) *), hue H, saturation S of HLS space
And so on. In the present invention, signals representing these are chromaticity signals.

【0031】図1は本発明の第1の実施例における色調
整装置の概略構成を示すブロック図である。図1におい
て、1は入力された色信号(本実施例ではRGB信号と
する)を色空間(本実施例ではCIE1976均等知覚
色空間(L***)上の座標を表わす信号(L*
*,v*)に変換する色空間変換手段である。2は色調
整により変換したい色領域の中心の注目色の色度座標を
表わす色度信号(u0 *,v0 *)を設定する注目色色度信
号設定手段で、3はこの注目色に所望の色調整を施した
場合の色調整後の色度座標を表わす色度信号(u0h *
0h *)を設定する目標色色度信号設定手段で、4は注
目色を中心として色調整を行いたい色調整領域を設定す
る色調整領域設定手段である。また、5は注目色色度信
号設定手段2の出力度信号(u0 *,v0 *)と目標色色度
信号設定手段3の出力色度信号(u0h *,v0h *)に基づ
いて注目色色度信号(u0 *,v0 *)から目標色色度信号
(u0h *,v0h *)へ変換するように平面全体を変換する
特性を持つ第一の色変換手段である。6は入力される色
度信号(u*,v*)に応じて色調整領域設定手段5で設
定された色調整領域内で色の調整度合を示す重み係数ω
を決定する重み係数決定手段、7は色空間変換手段1の
出力のうちの色度信号(u*,v*)と第一の色変換手段
5の出力の色度信号(uh *,vh *)とから重み係数決定
手段6で決定された重み係数ωに基づいて入力された色
度信号に色調整処理を施す第一の色調整演算手段、8は
第一の色調整演算手段6の出力の色度信号(uc *
c *)と色空間変換手段1の出力のうちの明るさ成分を
表わす信号L*とから入力された色信号(本実施例では
RGB信号)に変換する逆色空間変換手段である。
FIG. 1 shows the color tone of the first embodiment of the present invention.
It is a block diagram showing a schematic structure of a leveling device. Figure 1 Smell
, 1 is an input color signal (in this embodiment, an RGB signal
Color space (in this embodiment, CIE 1976 uniform perception)
Color space (L*u*v*) A signal (L*
u*, V*) Is a color space conversion means. 2 is color
The chromaticity coordinates of the target color in the center of the color area
Chromaticity signal (u0 *, V0 *) Attention color setting
No. 3 is a setting means, and the desired color adjustment is performed on this noticed color.
Chromaticity signal (u0h *
v0h *) Is a target color chromaticity signal setting means, 4 is a note
Set the color adjustment area where you want to perform color adjustment centering on the eye color.
Color adjustment area setting means. Also, 5 is the color of attention
Signal of the signal setting means 2 (u0 *, V0 *) And the target color chromaticity
Output chromaticity signal (u of signal setting means 30h *, V0h *) Based on
And attention color chromaticity signal (u0 *, V0 *) From the target color chromaticity signal
(U0h *, V0h *) Transforms the entire plane like
It is the first color conversion means having characteristics. 6 is the input color
Degree signal (u*, V*) According to the color adjustment area setting means 5
Weighting coefficient ω that indicates the degree of color adjustment within the specified color adjustment area
Of the color space conversion means 1
Chromaticity signal (u*, V*) And the first color conversion means
5 output chromaticity signal (uh *, Vh *) And determine the weighting factor
Color input based on the weighting factor ω determined by the means 6
The first color adjustment calculation means for performing color adjustment processing on the degree signal, 8
The chromaticity signal (u of the output of the first color adjustment calculation means 6)c *
vc *) And the brightness component of the output of the color space conversion means 1
Signal L*Color signals input from and (in this embodiment,
It is an inverse color space conversion means for converting into an RGB signal).

【0032】また図2は、重み係数決定手段6の概略構
成のブロック図である。61は均等色知覚空間上の色度
平面を、注目色の色度座標が色度座標上の原点になるよ
うに座標変換を行なう色度座標変換手段で、具体的には
入力される色度信号(u*,v*)から注目色色度信号
(u0 *,v0 *)を減算するものである。62は色調整領
域設定手段4で設定された色調整領域(u0 *+u1 *,u
0 *−u1 *,v0 *+v1 *,v0 *−v1 *)を同様に座標変換
を施す色調整領域座標変換手段で、63は色度座標変換
手段61の出力の色度信号(u*−u0 *,v*−v0 *)と
色調整領域座標変換手段62で設定された色調整領域
(u1 *,−u1 *,v1 *,−v1 *)とから重み係数ωを発
生する重み係数発生手段である。
FIG. 2 is a block diagram of a schematic configuration of the weighting factor determining means 6. Reference numeral 61 is a chromaticity coordinate conversion means for performing coordinate conversion on the chromaticity plane in the uniform color appearance space so that the chromaticity coordinate of the target color becomes the origin on the chromaticity coordinate. The chromaticity signal of interest (u 0 * , v 0 * ) is subtracted from the signal (u * , v * ). 62 is a color adjustment area (u 0 * + u 1 * , u) set by the color adjustment area setting means 4.
0 * -u 1 *, v 0 * + v 1 *, v 0 * -v 1 *) in the color adjustment area coordinate transforming means for performing similarly coordinate transformation, 63 chromaticity of output chromaticity coordinate conversion means 61 signal (u * -u 0 *, v * -v 0 *) and set in the color adjustment area coordinate converter 62 the color adjustment area (u 1 *, -u 1 * , v 1 *, -v 1 *) It is a weighting factor generating means for generating the weighting factor ω from

【0033】さらに図3は色度座標変換手段61及び色
調整領域座標変換手段62の動作説明図で、図に示すよ
うに注目色の色度座標を表わす色度信号(u0 *,v0 *
が原点となるように座標変換を行なう。なお、図3
(a)に示す矩形の斜線部は色調整領域設定手段4で設
定される色調整領域を示すもの、図3(b)に示す矩形
の領域は色調整領域座標変換手段62で変換された色調
整領域である。
Further, FIG. 3 is an operation explanatory view of the chromaticity coordinate conversion means 61 and the color adjustment area coordinate conversion means 62. As shown in the drawing, the chromaticity signals (u 0 * , v 0) representing the chromaticity coordinates of the target color are shown. * )
Coordinate conversion is performed so that is the origin. Note that FIG.
The shaded area of the rectangle shown in (a) shows the color adjustment area set by the color adjustment area setting means 4, and the rectangular area shown in FIG. 3 (b) shows the color converted by the color adjustment area coordinate conversion means 62. This is an adjustment area.

【0034】そして、図4は重み係数発生手段63によ
り発生される重み係数ωを色度座標変換手段61で変換
される座標(図3)上での分布を示したもので、図に示
すように重み付け係数ωは変換された座標上で、色度座
標変換手段61に入力される色度信号(u*,v*)が原
点、つまり注目色を表わす色度信号(u0 *,v0 *)の時
に最大(ω=1)で、領域の境界へ離れるに従い連続的
に小さくなり、境界では重み係数ωが0になるように設
定する。
FIG. 4 shows the distribution of the weighting factor ω generated by the weighting factor generating means 63 on the coordinates (FIG. 3) converted by the chromaticity coordinate converting means 61, as shown in the figure. On the converted coordinates, the weighting coefficient ω is the origin of the chromaticity signal (u * , v * ) input to the chromaticity coordinate conversion means 61, that is, the chromaticity signal (u 0 * , v 0 ) representing the target color. In the case of * ), the maximum (ω = 1) is set, and the distance becomes smaller as the distance to the boundary of the region increases, and the weighting factor ω becomes 0 at the boundary.

【0035】そして、図5は第一の色調整演算手段7の
概略構成を示すブロック図である。図5において、71
−a、71−bは、色空間変換手段1の出力のうちの色
度信号(u*,v*)と、重み係数の内分比の1−ωとを
各々乗算する第1及び第2の乗算器、72−u、72−
bは第一の色変換手段5から出力される色度信号
(u h *,vh *)と重み係数の内分比のωとを各々乗算す
る第3及び第4の乗算器で、73−aは第1の乗算器の
出力(1−ω)×u*と第3の乗算器の出力ω×uh *
を加算する第1の加算器、73−bは第2の乗算器の出
力(1−ω)×v*と第4の乗算器の出力ω×vh *とを
加算する第2の加算器である。
FIG. 5 shows the first color adjustment calculation means 7.
It is a block diagram showing a schematic structure. In FIG. 5, 71
-A and 71-b are colors in the output of the color space conversion means 1.
Degree signal (u*, V*) And 1-ω of the internal division ratio of the weighting coefficient
First and second multipliers 72-u, 72- for multiplying each other
b is a chromaticity signal output from the first color conversion means 5.
(U h *, Vh *) And the weighting factor internal division ratio ω
In the third and fourth multipliers, 73-a is the first multiplier.
Output (1-ω) × u*And the output of the third multiplier ω × uh *When
Is added to the first adder, 73-b is the output of the second multiplier.
Force (1-ω) × v*And the output of the fourth multiplier ω × vh *And
It is a second adder for adding.

【0036】従って、第一の色調整演算手段7は色空間
変換手段1の出力のうちの色度信号(u*,v*)と第一
の色変換手段5から出力される色度信号(uh *,vh *
とを重み係数決定手段6の出力ωにより、内分を行なう
ものである。この演算を式で表わすと(数4)で示すこ
とができる。
Therefore, the first color adjustment calculation means 7 outputs the chromaticity signals (u * , v * ) of the output of the color space conversion means 1 and the chromaticity signal (u * , v * ) output from the first color conversion means 5 ( u h *, v h *)
Are internally divided by the output ω of the weighting factor determining means 6. This operation can be expressed by an equation (4).

【0037】[0037]

【数4】 [Equation 4]

【0038】以下、本発明の第1の実施例の動作につい
て、図1、図2、図3、図4及び図5を用いて説明す
る。
The operation of the first embodiment of the present invention will be described below with reference to FIGS. 1, 2, 3, 4, and 5.

【0039】まず、入力された色信号RGBは色空間変
換手段1により、CIE1976均等知覚色空間(L*
**)を表わす信号に変換される。この時の変換式を
(数5)及び(数6)に示す。
First, the input color signals RGB are converted by the color space conversion means 1 into the CIE1976 uniform perceptual color space (L *).
u * v * ). The conversion formulas at this time are shown in (Equation 5) and (Equation 6).

【0040】[0040]

【数5】 [Equation 5]

【0041】[0041]

【数6】 [Equation 6]

【0042】CIE1976均等知覚色空間(L**
*)上において、知覚色度指数(u*,v*)が色相成分
と彩度成分を表わす平面の直交座標系の2要素を表わす
ものであるので、この平面内で色調整を行なえば、明る
さを保ったまま、色相や彩度を調整することができる。
つまり明るさを保ったまま色調整を行なう場合、図6に
示すように色度平面(u*,v*)内で、原点を中心とし
て回転(θ度)することにより色相が変化し、原点から
の距離を定数倍(k倍)するすることにり、彩度が変化
することになる。よって(数7)に示す線形変換によ
り、色の調整を行なうことができる。
CIE1976 uniform perceptual color space (L * u * v
* ) In the above, the perceived chromaticity index (u * , v * ) represents two elements of the orthogonal coordinate system of the plane representing the hue component and the saturation component. Therefore, if color adjustment is performed in this plane, You can adjust the hue and saturation while maintaining the brightness.
That is, when performing color adjustment while maintaining the brightness, the hue changes by rotating (θ degrees) about the origin in the chromaticity plane (u * , v * ) as shown in FIG. By multiplying the distance from to a constant multiple (k times), the saturation changes. Therefore, the color adjustment can be performed by the linear conversion shown in (Equation 7).

【0043】[0043]

【数7】 [Equation 7]

【0044】この時、図6に示すようにkが1より大き
くなると彩度がアップし、kが1の時には彩度調整を行
なわずに、kが1より小さいときには彩度がダウンす
る。そしてkを0にすると色度平面上で注目色が原点に
なり、モノクロ画像に変換できる。
At this time, as shown in FIG. 6, the saturation is increased when k is larger than 1, the saturation is not adjusted when k is 1, and the saturation is decreased when k is smaller than 1. Then, when k is set to 0, the color of interest becomes the origin on the chromaticity plane and can be converted into a monochrome image.

【0045】また、回転角θを正に取ると色度平面が反
時計周りに回転し、例えば図6に示すように赤い色が黄
色っぽくなり、回転角θを負に取ると色度平面が時計周
りに回転し、例えば図6に示すように緑の色が黄色っぽ
くなる。また回転角θが0ならば当然のごとく、色相の
変化はない。この回転角θの範囲としてはーπ≦θ≦π
である。
When the rotation angle θ is positive, the chromaticity plane rotates counterclockwise, and the red color becomes yellowish, for example, as shown in FIG. 6, and when the rotation angle θ is negative, the chromaticity plane changes. It rotates clockwise and, for example, the green color becomes yellowish as shown in FIG. If the rotation angle θ is 0, the hue does not change as a matter of course. The range of this rotation angle θ is −π ≦ θ ≦ π
Is.

【0046】そこで、第一の色変換手段5では、注目色
色度信号設定手段2で設定される色調整を行ないたい色
領域の中心の色度信号(u0 *,v0 *)と、目標色色度信
号設定手段3で設定される注目色を色調整により変換し
たい色の色度信号(u0h *,v0h *)とから、(数7)で
示される線形変換を求めておく。この線形変換で色度平
面全体が変換されることになる。
Therefore, in the first color converting means 5, the chromaticity signal (u 0 * , v 0 * ) at the center of the color area to be subjected to the color adjustment set by the noticeable chromaticity signal setting means 2 and the target. From the chromaticity signals (u 0h * , v 0h * ) of the color to be converted by the color adjustment of the target color set by the color / chromaticity signal setting means 3, the linear conversion shown in (Equation 7) is obtained. With this linear conversion, the entire chromaticity plane is converted.

【0047】ここで、色調整領域設定手段4について説
明する。一般に、色調整を行なう領域は、従来例でも示
したように扇形で表わされるが、本来色調整を行なった
場合、色の連続性を保つためにはその領域は微少なもの
でなければならない。従って、この色調整領域は微少な
範囲であれば矩形で十分であり、また、矩形で領域を決
定することにより入力される色度信号(u*,v*)を極
座標変換する必要がなく、回路構成も簡単にすることが
できため、本実施例では、色調整領域決定手段4により
決定される領域を図4に示すように注目色の色度座標
(u0 *,v0 *)を中心とした矩形とする。
Now, the color adjustment area setting means 4 will be described. Generally, the area where color adjustment is performed is represented by a fan shape as shown in the conventional example. However, when color adjustment is originally performed, the area must be very small in order to maintain color continuity. Therefore, if the color adjustment area is a minute range, a rectangle is sufficient, and it is not necessary to polarize the chromaticity signals (u * , v * ) input by determining the area with a rectangle. Since the circuit structure can be simplified, in this embodiment, the area determined by the color adjustment area determining means 4 is represented by chromaticity coordinates (u 0 * , v 0 * ) of the target color as shown in FIG. It is the center rectangle.

【0048】そして、重み係数決定手段6では、入力さ
れる色の色度座標を表わす色度信号(u*,v*)に応じ
て、上述したように色度平面上での注目色の色度座標を
表わす色度信号(u0 *,v0 *)からの距離に応じて重み
係数ωを決定する。この重み係数決定手段3の動作につ
いて図2、図3及び図4を用いてさらに詳細に説明す
る。
Then, in the weighting factor determining means 6, in accordance with the chromaticity signal (u * , v * ) representing the chromaticity coordinates of the input color, the color of the target color on the chromaticity plane as described above. The weighting factor ω is determined according to the distance from the chromaticity signal (u 0 * , v 0 * ) representing the degree coordinate. The operation of the weighting factor determining means 3 will be described in more detail with reference to FIGS. 2, 3 and 4.

【0049】重み係数決定手段6に入力される色度信号
(u*,v*)を色度座標変換手段61により、図3に示
すように、まず注目色の色度座標を表わす色度信号(u
0 *,v0 *)が原点となるように座標変換を行なう。これ
は注目色のみを変更し、色調整領域の範囲を変更しない
場合には、重み係数発生手段63の内容を変更する必要
がなく、また回路構成が簡単になるために行なうもので
ある。
The chromaticity signal (u * , v * ) input to the weighting factor determining means 6 is first converted by the chromaticity coordinate converting means 61, as shown in FIG. (U
0 *, v 0 *) performs coordinate conversion so that the origin. This is done because it is not necessary to change the contents of the weighting factor generating means 63 when only the target color is changed and the range of the color adjustment area is not changed, and the circuit configuration is simplified.

【0050】そして色調整領域設定手段4で設定された
色調整領域(u0 *+u1 *,u0 *−u 1 *,v0 *+v1 *,v
0 *−v1 *)を色調整領域座標変換手段62で座標変換し
た色調整領域(u1 *,−u1 *,v1 *,−v1 *)(図4に
示す斜線の領域)に基づいて、重み係数発生手段63の
入出力特性を求める。この重み係数ωは、図4に示すよ
うに座標変換された平面上で原点つまり入力される色度
信号が注目色の時に最大(ω=1)で、領域の境界に近
づくにつれて、連続的に減少し、境界で最小(ω=0)
になるように設定しておく。この重み係数発生手段63
は例えばルックアップテーブルで構成すれば容易に構成
できる。
Then, it is set by the color adjustment area setting means 4.
Color adjustment area (u0 *+ U1 *, U0 *-U 1 *, V0 *+ V1 *, V
0 *-V1 *) Is converted by the color adjustment area coordinate conversion means 62.
Color adjustment area (u1 *, -U1 *, V1 *, -V1 *) (See Figure 4
Based on the hatched area)
Obtain the input / output characteristics. This weighting factor ω is shown in FIG.
Origin, that is, chromaticity to be input on the plane whose coordinates have been converted
Maximum (ω = 1) when the signal is the target color, and close to the boundary of the area.
It decreases continuously as it goes down, and it is the minimum at the boundary (ω = 0)
Set so that This weighting factor generating means 63
Can be easily configured by using a lookup table, for example
it can.

【0051】このように重み係数決定手段6により決定
された重み係数ωにより、色空間変換手段1の出力のう
ちの色度信号(u*,v*)と第一の色変換手段5の出力
の色度信号(uh *,vh *)とから、第一の色調整演算手
段7により、(数4)に示す演算、つまり内分演算によ
り色調整された色度信号(uc *,vc *)が得られる。
By the weighting factor ω determined by the weighting factor determining means 6 in this way, the chromaticity signals (u * , v * ) of the output of the color space converting means 1 and the output of the first color converting means 5 are output. From the chromaticity signal (u h * , v h * ) of the above, the chromaticity signal (u c * ) color-adjusted by the calculation shown in (Equation 4), that is, the internal division calculation, by the first color adjustment calculation means 7 . , V c * ) is obtained.

【0052】この色調整演算を行なった例を図7に示
す。この例は、彩度調整は行なわず、色相方向に+θ度
回転させ、重み係数発生手段63の入出力特性が図4で
示したものとした場合のものである。この時の(数7)
で示した線形変換は(数8)で示すことができる。
FIG. 7 shows an example in which this color adjustment calculation is performed. In this example, the saturation adjustment is not performed, the rotation is performed by + θ degrees in the hue direction, and the input / output characteristics of the weighting factor generating means 63 are those shown in FIG. At this time (Equation 7)
The linear transformation shown by can be expressed by (Equation 8).

【0053】[0053]

【数8】 [Equation 8]

【0054】この図からもわかるよう注目した色の色調
整後の色度座標は(数8)に基づいて計算された色度座
標に変化し、注目色から離れるに従い変化量は小さくな
り、色調整領域の境界部での変化量は0になっているの
がわかる。しかも、領域外の色と領域内の色が色調整を
行なうことにより、逆転することもない。
As can be seen from this figure, the chromaticity coordinates after the color adjustment of the noted color change to the chromaticity coordinates calculated based on (Equation 8), and the amount of change decreases as the distance from the noted color increases. It can be seen that the amount of change at the boundary of the adjustment area is zero. Moreover, the color outside the area and the color inside the area are not reversed by the color adjustment.

【0055】この後、逆色空間変換手段8により、色空
間変換手段1の出力のうち、明るさを表わすL*信号と
第一の色調整演算手段7から出力された色度信号
(uc *,vc *)とから、RGB色信号に変換し、色調整
された色信号を得ることができる。
Thereafter, the inverse color space conversion means 8 is used to
Of the outputs of the inter-conversion means 1, L representing the brightness*Signal and
Chromaticity signal output from the first color adjustment calculation means 7
(Uc *, Vc *), And convert it to RGB color signal and adjust the color
The color signal can be obtained.

【0056】なお、本実施例では、色空間変換手段1を
色信号からCIE1976均等知覚色空間(L*
**)に変換するものとしたが、先ほど述べたように例
えば色信号からCIE1976均等知覚色空間(L**
*)に変換するものや、輝度色差信号(例えばY,R
−Y,B−Y信号)などのような変換を行なうものでも
同様の構成で、同じ効果を得ることができる。
In the present embodiment, the color space conversion means 1 uses the color signal to convert the CIE1976 uniform perceptual color space (L * u).
* V *) it is assumed to be converted to, just mentioned as example CIE1976 uniform perceptual color space from the color signal (L * a *
b * ) and luminance / color difference signals (for example, Y, R)
The same effect can be obtained with a similar configuration even for a conversion such as (-Y, BY signal).

【0057】また、本実施例では、重み係数発生手段6
に注目色の色度信号を原点とする色度座標変換手段61
や色調整領域座標変換手段62を設けて、注目色の色度
信号を原点として、重み係数ωを発生したが、座標変換
を行なわずに色度平面上で行なっても同様の効果があ
る。
Further, in this embodiment, the weighting factor generating means 6
A chromaticity coordinate conversion means 61 whose origin is the chromaticity signal of the target color
The color adjustment area coordinate conversion means 62 is provided to generate the weighting coefficient ω with the chromaticity signal of the target color as the origin, but the same effect can be obtained by performing the conversion on the chromaticity plane without performing the coordinate conversion.

【0058】以上述べてきたように、色相成分と彩度成
分とを示す色度平面内で、注目色色度信号設定手段によ
り設定された変換したい色領域の中心を表わす注目色色
度信号と目標色色度信号設定手段により設定された所望
の変換後の色を表わす目標色色度信号とから注目色を目
標色に変換するように平面全体を変換する特性を第一の
色変換手段に設定し、入力される色度信号と注目色色度
信号設定手段で設定される注目色色度信号との差に応じ
て、重み係数決定手段により重み係数を決定し、第一の
色変換手段の出力色度信号と入力される色度信号とから
重み係数決定手段の出力に応じて出力色信号を決定する
ことにより、連続性を保存したまま、色調整領域の外と
内とで色が逆転することもなく、選択的な色調整を行な
うことができる。
As described above, in the chromaticity plane showing the hue component and the saturation component, the target color chromaticity signal and the target color color representing the center of the color region to be converted set by the target color chromaticity signal setting means. The characteristic for converting the entire plane so as to convert the target color into the target color from the target color chromaticity signal representing the desired converted color set by the color signal setting means is set in the first color converting means and input. The chromaticity signal of interest and the chromaticity signal of interest set by the chromaticity signal of interest, the weighting factor is determined by the weighting factor determining device, and the output chromaticity signal of the first color conversion device is determined. By determining the output color signal according to the output of the weighting factor determining means from the input chromaticity signal, the color is not reversed between the inside and the outside of the color adjustment region while maintaining the continuity, Selective color adjustment can be performed.

【0059】また、極座標系への複雑な非線形な変換処
理が不要なため、非常に簡単に構成でき、回路規模を小
さくできる。
Further, since complicated non-linear conversion processing to the polar coordinate system is unnecessary, the configuration can be made very simple and the circuit scale can be reduced.

【0060】しかも、本色調整処理は非線形変換が色空
間変換のみであるので、比較的少ないビット数で構成す
ることができる。そして特に色空間変換手段により変換
される色空間を輝度色差信号で表わすものとすれば、非
線形演算を行なう必要がなくなり、小型で、しかもリア
ルタイムで処理できる構成とすることができる。
Moreover, since the non-linear conversion is only the color space conversion in this color adjustment processing, it can be configured with a relatively small number of bits. In particular, if the color space converted by the color space conversion means is represented by a luminance color difference signal, it is not necessary to carry out a non-linear operation, and it is possible to realize a compact structure capable of processing in real time.

【0061】次に本発明の第2の実施例について説明す
る。第2の実施例の構成としては、図1と同じもので構
成され、第一の色調整演算手段7を図8に示す構成とす
る。本実施例において、第一の色調整演算手段7以外の
構成及びその動作は同じであるので詳細な説明は省略
し、第一の色調整演算手段7の構成及びその動作につい
てのみ説明する。
Next, a second embodiment of the present invention will be described. The configuration of the second embodiment is the same as that of FIG. 1, and the first color adjustment calculation means 7 has the configuration shown in FIG. In the present embodiment, the configuration and the operation are the same except for the first color adjustment calculation means 7, and therefore detailed description thereof will be omitted, and only the configuration and the operation of the first color adjustment calculation means 7 will be described.

【0062】図8は本実施例の第一の色調整演算手段7
の構成を示すブロック図で、74−a、74−bはそれ
ぞれ第一の色変換手段5の出力の色度信号(uh *
h *)から色空間変換手段1の出力のうちの色度信号
(u*,v*)を減算する第1及び第2の減算器、75−
a、75−bは第1及び第2の減算器の出力に重み係数
ωを乗算する第5及び第6の乗算器、76−a、76−
bは第5及び第6の乗算器の出力と色空間変換手段1の
出力のうちの色度信号(u*,v*)とを加算する第3及
び第4の加算器である。
FIG. 8 shows the first color adjustment calculation means 7 of this embodiment.
74-a and 74-b are chromaticity signals (u h * , 74) of the output of the first color conversion means 5, respectively.
v h *) from the chromaticity signal of the output color space conversion unit 1 (u *, v *) first and second subtracter for subtracting, 75-
a and 75-b are fifth and sixth multipliers 76-a and 76-, which multiply the outputs of the first and second subtractors by the weighting factor ω.
Reference numerals b are third and fourth adders for adding the outputs of the fifth and sixth multipliers and the chromaticity signals (u * , v * ) of the outputs of the color space conversion means 1.

【0063】このように構成された第一の色調整演算手
段7の動作について説明すると、色空間変換手段1の出
力のうちの色度信号(u*,v*)から第一の色変換手段
5の出力の色度信号(uh *,vh *)をそれぞれ減算し、
それらの結果に重み付け係数決定手段6により決定され
た重み付け係数ωをそれぞれ乗算し、各々の乗算結果に
入力された色度信号(u*,v*)を加算し、重み係数ω
で決定される内分比で入力された色度信号(u*,v*
との内分を行なう。この後、この出力色度信号を色信号
に逆変換し、選択的に色調整を行なうことができる。
The operation of the thus-configured first color adjustment calculation means 7 will be described. From the chromaticity signals (u * , v * ) of the output of the color space conversion means 1, the first color conversion means is obtained. 5 output chromaticity signals (u h * , v h * ) are respectively subtracted,
Each of these results is multiplied by the weighting coefficient ω determined by the weighting coefficient determining means 6, and the input chromaticity signal (u * , v * ) is added to each multiplication result to obtain the weighting coefficient ω.
Chromaticity signal (u * , v * ) input with the internal division ratio determined by
Do an internal division with. After that, the output chromaticity signal can be inversely converted into a color signal, and color adjustment can be selectively performed.

【0064】以上、本実施例で述べたように、色調整演
算手段を第一の色変換手段5の出力の色度信号(uh *
h *)から色空間変換手段1の出力のうちの色度信号
(u*,v*)を減算する第1及び第2の減算器と、これ
らの第1及び第2の減算器の出力に重み係数ωを乗算す
る第5及び第6の乗算器と、これらの第5及び第6の乗
算器の出力と色空間変換手段1の出力のうちの色度信号
(u*,v*)とを加算する第3及び第4の加算器とで構
成することにより、乗算器の数が少なくて済み、回路規
模の小型化を図ることができ、また特に演算精度の悪い
アナログ処理で構成する場合でも、演算結果に与える影
響は少なくて済み、極めて実用的な効果がある。
As described above in the present embodiment, the color adjustment calculation means is operated by the chromaticity signal (u h * ,
first and second subtracters for subtracting the chromaticity signals (u * , v * ) of the output of the color space conversion means 1 from v h * ), and the outputs of these first and second subtractors To the weighting factor ω, and chromaticity signals (u * , v * ) of the outputs of the fifth and sixth multipliers and the output of the color space conversion means 1. By using the third and fourth adders for adding and, the number of multipliers can be reduced, the circuit scale can be reduced, and particularly analog processing with poor calculation accuracy can be used. Even in such a case, the influence on the calculation result is small, and there is an extremely practical effect.

【0065】さらに、本発明の第3の実施例について述
べる。第3の実施例の構成としては、図1と同じもので
構成され、重み係数決定手段6の構成のみが異なる。本
実施例の重み係数決定手段6の構成を図9に示す。本実
施例において、重み係数決定手段6以外の構成及びその
動作は同じであるので詳細な説明は省略し、重み係数決
定手段6の構成及びその動作についてのみ説明する。
Further, a third embodiment of the present invention will be described. The configuration of the third embodiment is the same as that of FIG. 1, but only the configuration of the weighting factor determining means 6 is different. FIG. 9 shows the configuration of the weighting factor determining means 6 of this embodiment. In the present embodiment, the configuration and operation thereof other than the weighting factor determining means 6 are the same, so a detailed description is omitted, and only the configuration of the weighting factor determining means 6 and its operation will be described.

【0066】図10は本実施例の重み係数決定手段6の
動作説明図である。図9において、61は色度信号(u
*,v*)のうち注目色の色度座標を表わす色度信号(u
0 *,v0 *)が色度座標上の原点になるように座標変換を
行なう色度座標変換手段、62は色調整領域設定手段4
で設定された色調整領域(u0 *+u 1 *,u0 *−u1 *,v
0 *+v1 *,v0 *−v1 *)を同様に座標変換を施す色調整
領域座標変換手段で、63は色度座標変換手段61の出
力u*−u0 *を入力とし、色調整領域座標変換手段62
で変換された色調整領域(u1 *,−u1 *)に基づいて図
10(a)に示す重み係数ωaを出力する第1の重み係
数発生手段、64は色度座標変換手段61の出力v*
0 *を入力とし、色調整領域座標変換手段62で変換さ
れた色調整領域(v1 *,−v1 *)に基づいて図10
(b)に示す重み係数ωbを出力する第2の重み係数発
生手段、65は第1及び第2の重み係数発生手段63、
64の各々の出力する重み係数ωa、ωbから(数9)に
示したmin演算によるファジィ論理積を取り、図10
(c)に示す重み係数ωを出力するファジィ論理積手段
である。
FIG. 10 shows the weighting factor determining means 6 of this embodiment.
FIG. In FIG. 9, 61 is a chromaticity signal (u
*, V*), A chromaticity signal (u
0 *, V0 *Coordinate conversion so that) is the origin on the chromaticity coordinates.
Chromaticity coordinate conversion means to perform, 62 is color adjustment area setting means 4
Color adjustment area (u0 *+ U 1 *, U0 *-U1 *, V
0 *+ V1 *, V0 *-V1 *) Color adjustment to perform coordinate conversion in the same manner
Area coordinate conversion means 63 is an output of the chromaticity coordinate conversion means 61.
Force u*-U0 *As an input, the color adjustment area coordinate conversion means 62
The color adjustment area (u1 *, -U1 *) Based on
Weighting factor ω shown in 10 (a)aFirst weighting factor that outputs
Number generating means, 64 is an output v of the chromaticity coordinate converting means 61*
v0 *Is input and converted by the color adjustment area coordinate conversion means 62.
Color adjustment area (v1 *, -V1 *) Based on FIG.
Weighting factor ω shown in (b)bOutput the second weighting coefficient
And 65 is a first and a second weighting factor generating means 63,
64 output weighting factors ωa, ΩbFrom (Equation 9)
The fuzzy logical product is calculated by the min operation shown in FIG.
Fuzzy AND means for outputting the weighting factor ω shown in (c)
Is.

【0067】[0067]

【数9】 [Equation 9]

【0068】この様に構成された本実施例の動作につい
て説明する。第1の実施例とその動作は同じであるの
で、簡単に説明する。まず、入力された色信号RGBは
空間変換手段1により、CIE1976均等知覚色空間
(L***)を表わす信号に変換される。第一の色変
換手段5には、予め色調整を行ないたい色度平面上の色
を所望の色に調整する線形変換を求めておき、第一の色
変換手段5で、入力される色度信号(u*,v*)に対し
て線形変換を施し、この線形変換後の色度信号(uh *
h *)を求める。
The operation of this embodiment configured as described above will be described. Since the operation is the same as that of the first embodiment, it will be briefly described. First, the input color signal RGB is converted by the space conversion means 1 into a signal representing the CIE1976 uniform perceptual color space (L * u * v * ). The first color conversion unit 5 obtains a linear conversion for adjusting a color on the chromaticity plane desired to be adjusted in advance to a desired color, and the first color conversion unit 5 inputs the chromaticity. The signal (u * , v * ) is subjected to linear conversion, and the chromaticity signal (u h * ,
v h * ).

【0069】重み係数決定手段6に入力される色度信号
(u*,v*)を色度座標変換手段61により、まず注目
色の色度信号(u0 *,v0 *)が原点となるように座標変
換を行なう。色調整領域設定手段4で設定された色調整
領域(u0 *+u1 *,u0 *−u 1 *,v0 *+v1 *,v0 *−v
1 *)を色調整領域座標変換手段62で変換された色調整
領域(u1 *,−u1 *,v1 *,−v1 *)に基づいて、第1
の重み係数発生手段63では、色度座標変換手段61の
出力u*−u0 *を入力とし、例えば図10(a)に示す
ような重み係数ωaを出力する。また、第2の重み係数
発生手段64では、色度座標変換手段61の出力v*
0 *を入力とし、例えば図10(b)に示すような重み
係数ωbを出力する。そして、各々の入力信号u*
0 *、v*−v0 *に対して発生した重み係数ωa、ωb
ら、ファジィ論理積演算手段65により、min演算に
よるファジィ論理積を取り、図10(c)に示す重み係
数ωを出力する。
Chromaticity signal input to weighting factor determining means 6
(U*, V*) Is first noted by the chromaticity coordinate conversion means 61.
Chromaticity signal of color (u0 *, V0 *) Is the origin
Exchange. Color adjustment set by the color adjustment area setting means 4
Area (u0 *+ U1 *, U0 *-U 1 *, V0 *+ V1 *, V0 *-V
1 *) Is adjusted by the color adjustment area coordinate conversion means 62.
Area (u1 *, -U1 *, V1 *, -V1 *) Based on the first
In the weighting factor generating means 63,
Output u*-U0 *Is input, and is shown in FIG. 10 (a), for example.
Such a weighting factor ωaIs output. Also, the second weighting factor
In the generation means 64, the output v of the chromaticity coordinate conversion means 61*
v0 *Is input, and the weight as shown in FIG.
Coefficient ωbIs output. Then, each input signal u*
u0 *, V*-V0 *Weighting factor ω generated fora, ΩbOr
From the fuzzy logical product calculation means 65 to the min calculation.
The fuzzy logical product is taken, and the weighting factor shown in FIG.
Output the number ω.

【0070】このように重み係数決定手段6により決定
された重み係数ωにより、色空間変換手段1の色度出力
(u*,v*)と第一の色変換手段5の出力(uh *
h *)とから、第一の色調整演算手段7により、(数
4)に示す演算、つまり内分により色調整された色度信
号(uc *,vc *)が得られる。
The chromaticity output (u * , v * ) of the color space conversion means 1 and the output of the first color conversion means 5 (u h * ) are thus determined by the weighting coefficient ω determined by the weighting coefficient determining means 6 .
From v h * ), the chromaticity signal (u c * , v c * ) color-adjusted by the calculation shown in (Equation 4), that is, internal division, is obtained by the first color adjustment calculation means 7.

【0071】この後、逆色空間変換手段8により、色空
間変換手段1の明るさを表わすL*信号と第一の色調整
演算手段7の色度出力(uc *,vc *)とから、RGB色
信号を発生し、色調整された色信号を得ることができ
る。
Thereafter, the inverse color space conversion means 8 outputs the L * signal representing the brightness of the color space conversion means 1 and the chromaticity output (u c * , v c * ) of the first color adjustment calculation means 7. It is possible to generate RGB color signals and obtain color-adjusted color signals.

【0072】以上述べてきたように、重み係数発生手段
を入力される色相成分と彩度成分を表わす平面の直交座
標系の2要素で表される色度信号のそれぞれの要素軸に
関して、軸上の重み係数が1で、軸から離れるに従い連
続的に減少し、前記色調整領域決定手段で決定される色
調整領域の各軸に平行な境界で0である重み係数を発生
する2個の重み係数決定手段と、この2個の重み係数決
定手段のそれぞれの出力のファジィ論理積により重み係
数を発生するファジィ論理積演算手段とで構成すること
により、重み係数決定手段の入出力特性を1次元で構成
でき、またファジィ論理積演算手段も構成が簡単なた
め、より簡単に入出力特性を決定できる効果がある。
As described above, with respect to each element axis of the chromaticity signal represented by the two elements of the Cartesian coordinate system of the plane which represents the hue component and the saturation component, which is inputted to the weighting factor generating means, the respective axes are on-axis. The weighting coefficient of 1 is 1, and the weighting coefficient decreases continuously with distance from the axis, and the weighting coefficient of 0 is generated at the boundary parallel to each axis of the color adjustment area determined by the color adjustment area determination means. The input / output characteristic of the weighting coefficient determining means is one-dimensional by comprising the coefficient determining means and the fuzzy logical product calculating means for generating the weighting coefficient by the fuzzy logical product of the outputs of the two weighting coefficient determining means. In addition, since the fuzzy AND operation means is also simple in construction, there is an effect that the input / output characteristics can be more easily determined.

【0073】次に本発明の第4の実施例の色調整装置に
ついて、図面を参照しながら説明する。
Next, a color adjusting apparatus according to a fourth embodiment of the present invention will be described with reference to the drawings.

【0074】図11は本発明の第4の実施例における色
調整装置の概略構成を示すブロック図である。図11に
おいて、1は入力された3原色色信号(本実施例ではR
GB信号 とする)を均等色空間(本実施例ではCIE1
976均等知覚色空間(L***)とする)上の彩度成分
と色相成分を表わす平面の直交座標系の2要素を示す色
度信号(u*,v*)に変換する色空間変換手段である。
9は色調整により変換したい色領域の中心の注目色の3
原色色信号(R0,G0,B0)を設定する注目色色信号
設定手段で、10はこの注目色に所望の色調整を施した
場合の色調整後の3原色色信号(R0h,G0h,B0h)を
設定する目標色色信号設定手段、4は注目色を中心とし
て色調整を行いたい色調整領域を設定する色調整領域設
定手段であり、この色調整領域設定手段4で設定される
色調整領域は、色相成分と彩度成分を表わす前記の平面
上で設定される。また11は注目色色信号設定手段9で
設定される3原色色信号(R0,G0,B0)と目標色色
信号設定手段10で設定される3原色色信号(R0h,G
0h,B0h)に基づいて注目色色信号(R0,G0,B0
を目標色色信号(R0h,G0h,B0h)に変換するように
色空間全体を変換する第二の色変換手段で、6は入力さ
れる3原色色信号(R,G,B)から色空間変換手段1
で求められた色度信号(u*,v*)に応じて色調整領域
設定手段4で設定された色調整領域内で色の調整度合を
示す重み係数ωを決定する重み係数決定手段、12は入
力される3原色信号(R,G,B)と第二の色変換手段
11の出力色信号(Rh,Gh,Bh)とから重み係数決
定手段6で決定された重み係数ωに応じて入力された3
原色色信号に色調整処理を施し、色調整された3原色色
信号(Rc,Gc,Bc)を出力する第二の色調整演算手
段である。
FIG. 11 is a block diagram showing the schematic arrangement of a color adjusting apparatus according to the fourth embodiment of the present invention. In FIG. 11, reference numeral 1 is the input three primary color signals (R in this embodiment).
A GB signal) is used as a uniform color space (CIE1 in this embodiment).
976 Colors to be converted into chromaticity signals (u * , v * ) indicating two elements of a plane orthogonal coordinate system representing a saturation component and a hue component in a uniform perceptual color space (L * u * v * ) It is a space conversion means.
9 is the target color 3 at the center of the color area to be converted by color adjustment.
Reference color color signal setting means for setting the primary color signals (R 0 , G 0 , B 0 ) is a three-primary color signal (R 0h , R 0h , after the color adjustment when the desired color adjustment is performed on the target color. G 0h , B 0h ) target color signal setting means 4 is a color adjustment area setting means for setting a color adjustment area to be subjected to color adjustment centering on the target color, and the color adjustment area setting means 4 sets The adjusted color adjustment area is set on the plane representing the hue component and the saturation component. Reference numeral 11 denotes the three primary color signals (R 0 , G 0 , B 0 ) set by the noticeable color signal setting means 9 and the three primary color signals (R 0h , G set by the target color signal setting means 10).
0h , B 0h ) based on the target color signal (R 0 , G 0 , B 0 )
Is a second color conversion means for converting the entire color space so as to convert the target color signal (R 0h , G 0h , B 0h ), and 6 from the input three primary color signals (R, G, B) Color space conversion means 1
Weighting coefficient determining means for determining a weighting coefficient ω indicating the degree of color adjustment within the color adjustment area set by the color adjustment area setting means 4 according to the chromaticity signal (u * , v * ) obtained in step 12; Is a weighting coefficient ω determined by the weighting coefficient determining means 6 from the input three primary color signals (R, G, B) and the output color signals (R h , G h , B h ) of the second color converting means 11. Entered according to 3
It is a second color adjustment calculation means for performing color adjustment processing on the primary color signals and outputting the color-adjusted three primary color signals (R c , G c , B c ).

【0075】図11に示す重み係数決定手段6のブロッ
クの概略構成は図2と同じ構成であり、注目色の色度座
標が色度座標上の原点になるように座標変換を行う色度
座標変換手段61、色調整領域設定手段4で設定された
色調整領域(u0 *+u1 *,u 0 *−u1 *,v0 *+v1 *,v
0 *−v1 *)に同様に座標変換を施す色調整領域座標変換
手段62と、色度座標変換手段61の出力の色度信号
(u*−u0 *,v*−v0 *)と色調整領域座標変換手段6
2で設定された色調整領域(u1 *,-u1 *,v1 *,-
1 *)とから重み係数ωを発生する重み係数発生手段6
3とからなり、色度座標変換手段61および色調整領域
座標変換手段62の動作は、第一の実施例と同様であ
る。また、重み係数発生手段63により発生される重み
係数ωの色度座標変換手段61で変換される座標上での
分布も図4と同じように重み付け係数ωは変換された座
標上で、色度座標変換手段61に入力される色度信号
(u*,v*)が原点、つまり注目色を表わす色度信号
(u0 *,v0 *)の時に最大(ω=1)で、領域の境界へ
離れるに従い連続的に小さくなり、境界では重み係数ω
が0になるように設定する。
The block of the weighting factor determining means 6 shown in FIG.
The schematic configuration of the color is the same as that of Fig.
Chromaticity that performs coordinate conversion so that the mark is the origin on the chromaticity coordinates
It is set by the coordinate conversion means 61 and the color adjustment area setting means 4.
Color adjustment area (u0 *+ U1 *, U 0 *-U1 *, V0 *+ V1 *, V
0 *-V1 *Color adjustment area coordinate conversion
Chromaticity signal output from the means 62 and chromaticity coordinate conversion means 61
(U*-U0 *, V*-V0 *) And color adjustment area coordinate conversion means 6
Color adjustment area (u1 *, -U1 *, V1 *、-
v1 *) And a weighting factor generating means 6 for generating a weighting factor ω from
3 and comprises a chromaticity coordinate conversion means 61 and a color adjustment area.
The operation of the coordinate conversion means 62 is similar to that of the first embodiment.
It Further, the weight generated by the weight coefficient generating means 63
The coefficient ω on the coordinates converted by the chromaticity coordinate conversion means 61
The distribution is the same as in Fig. 4, and the weighting factor ω is the transformed coordinate.
Chromaticity signal input to chromaticity coordinate conversion means 61 on the elevation
(U*, V*) Is the origin, that is, the chromaticity signal that represents the target color
(U0 *, V0 *), The maximum (ω = 1), to the boundary of the region
It becomes smaller continuously with the distance, and the weighting factor ω at the boundary.
Is set to 0.

【0076】また、図12は第二の色調整演算手段12
の概略構成を示すブロック図である。図5において、1
21−a、121−b、121−cは入力される3原色
色信号(R,G,B)と、重み係数の内分比の1−ωと
を各々乗算する第1、第2および第3の乗算器、122
−a、122−b、122−c第二の色変換手段11の
出力3原色色信号(Rh,Gh,Bh)と重み係数の内分
比の ωとを各々乗算する第4、第5および第6の乗算
器で、123−aは第1の乗算器の出力(1−ω)×R
と第4の乗算器の出力ω×Rhとを加算する第1の加算
器、123−bは第2乗算器の出力(1−ω)×Gと第
5の乗算器の出力ω×Ghとを加算する第2の加算器、
123−cは第3の乗算器の出力(1−ω)×Bと第6
の乗算器の出力ω×Bhとを加算する第3の加算器であ
る。
Further, FIG. 12 shows the second color adjustment calculation means 12
3 is a block diagram showing a schematic configuration of FIG. In FIG. 5, 1
21-a, 121-b, and 121-c are first, second, and third which respectively multiply the input three primary color signals (R, G, B) and 1-ω of the internal division ratio of the weighting coefficient. 3 multiplier, 122
-A, 122-b, 122-c Fourth output color signal (R h , G h , B h ) of the second color conversion means 11 is multiplied by the internal division ratio ω of the weighting factor. In the fifth and sixth multipliers, 123-a is the output of the first multiplier (1-ω) × R
And an output ω × R h of the fourth multiplier, a first adder 123-b is an output (1-ω) × G of the second multiplier and an output ω × G of the fifth multiplier. a second adder for adding h and
123-c is the output of the third multiplier (1-ω) × B and the sixth
It is a third adder for adding the output ω × B h of the multiplier of.

【0077】従って、第二の色調整演算手段12は入力
される3原色色信号(R,G,B)と第二の色変換手段
11から出力される色信号(Rh,Gh,Bh)とを重み
係数決定手段6の出力ωにより、内分を行うものであ
る。この演算を式で表わすと(数10)で示すことがで
きる。
Therefore, the second color adjustment calculation means 12 inputs the three primary color signals (R, G, B) and the color signals output from the second color conversion means 11 (R h , G h , B). h ) is internally divided by the output ω of the weighting factor determining means 6. This operation can be expressed by an equation (10).

【0078】[0078]

【数10】 [Equation 10]

【0079】次に、本発明の第4の実施例の動作につい
て図11、図12を参照して説明する。
Next, the operation of the fourth embodiment of the present invention will be described with reference to FIGS.

【0080】まず、入力された3原色色信号(G,R,
B)から色空間変換手段1により、第1の実施例と同
様、CIE1976均等知覚色空間(L***)の彩度成
分と色相成分とを表わす平面の直交座標系の2要素を表
わす色度信号(u*,v*)が求められる。
First, the input three primary color signals (G, R,
From B), the color space conversion means 1 converts two elements of a plane orthogonal coordinate system representing the saturation component and the hue component of the CIE1976 uniform perceptual color space (L * u * v * ), as in the first embodiment. The chromaticity signal (u * , v * ) that it represents is determined.

【0081】また色調整により変換したい色領域の中心
の色度信号、つまり注目色色信号設定手段9により設定
される注目色の3原色色信号(R0,G0,B0)から
(数5)および(数6)により注目色の色度信号
(u0 *,v0 *)は容易に求めることができるので色調整
領域設定手段4で設定された色度平面での座標は容易に
設定できる。
From the chromaticity signal at the center of the color region to be converted by color adjustment, that is, from the three primary color signals (R 0 , G 0 , B 0 ) of the target color set by the target color color signal setting means 9, (Equation 5) ) And (Equation 6), the chromaticity signal (u 0 * , v 0 * ) of the target color can be easily obtained, so that the coordinates on the chromaticity plane set by the color adjustment area setting means 4 can be easily set. it can.

【0082】さらに第二の色変換手段11では、注目色
色信号設定手段9で設定される色調整を行いたい色領域
の中心の注目色色信号(R0,G0,B0)と、目標色色
信号設定手段3で設定される注目色を色調整により変換
したい色の色信号(R0h,G 0h,B0h)とから、(数1
1)で示される線形変換を求めておく。
Further, in the second color conversion means 11, the target color is
A color region to be subjected to color adjustment set by the color signal setting means 9.
The color of interest at the center of the color signal (R0, G0, B0) And the target color
Convert the target color set by the signal setting means 3 by color adjustment
Color signal (R0h, G 0h, B0h) And from (Equation 1
The linear transformation shown in 1) is obtained.

【0083】[0083]

【数11】 [Equation 11]

【0084】この(数11)で示される線形変換マトリ
クスは入力される3原色色信号と出力される3原色色信
号との入出力の明るさを等しくするために、各行の和は
1になるように求めておく。
In the linear conversion matrix shown in (Equation 11), the sum of each row becomes 1 in order to equalize the input and output brightness of the input three primary color signals and the output three primary color signals. To ask.

【0085】また色調整領域設定手段4で設定される色
調整領域は図3に示すように第1の実施例と同様であ
る。
The color adjustment area set by the color adjustment area setting means 4 is the same as that of the first embodiment as shown in FIG.

【0086】そして、重み係数決定手段6では、入力さ
れる3原色色信信号(R,G,B)から色空間変換手段
1により得られる色度座標を表わす色度信号(u*
*)と上述した色度平面上での注目色の色度座標を表
わす色度信号(u0 *,v0 *)との距離に応じて重み係数
ωを決定する。
In the weighting factor determining means 6, the chromaticity signal (u * , u * , which represents the chromaticity coordinates obtained by the color space converting means 1 from the input three primary color chrominance signals (R, G, B).
v *) and chroma signals representing noticeable color chromaticity coordinates on the chromaticity plane described above (u 0 *, v determines a weighting factor ω in accordance with the distance between 0 *).

【0087】さらに重み係数決定手段6の動作についも
第一の実施例と同様であるので説明を省略する。この重
み係数決定手段6により決定された重み係数ωにより、
入力される3原色色信号(R,G,B)と第二の色変換
手段11の出力の3原色色信号(Rh,Gh, Bh)とか
ら、第二の色調整演算手段12により、(数10)に示
す演算、つまり内分演算により色調整された3原色色信
号(Rc,Gc,Bc)が得られる。
Further, the operation of the weighting factor determining means 6 is similar to that of the first embodiment, and therefore its explanation is omitted. By the weighting factor ω determined by the weighting factor determining means 6,
From the input three primary color signals (R, G, B) and the three primary color signals (R h , G h , B h ) output from the second color conversion means 11, the second color adjustment calculation means 12 As a result, the three primary color signals (R c , G c , B c ) color-adjusted by the calculation shown in (Equation 10), that is, the internal division calculation, are obtained.

【0088】なお、本実施例では、色空間変換手段1を
3原色色信号(R,G,B)からCIE1976均等知覚色
空間(L***)上の色度信号(u*,v*)は変換す
るものとしたが、先ほど述べたように例えば3原色色信
号からCIE1976均等知覚色空間(L***)上の色
度信号(a*,b*)に変換するものや、色差信号(例え
ばR−Y,B−Y信号)などのような変換を行なうも
のでも同様の構成で、同じ 効果を得ることができる。
In this embodiment, the color space conversion means 1 converts the three primary color signals (R, G, B) into the chromaticity signals (u * , u * , * ) on the CIE1976 uniform perceptual color space (L * u * v * ). v * ) is converted, but as described above, for example, the three primary color signals are converted to chromaticity signals (a * , b * ) in the CIE1976 uniform perceptual color space (L * a * b * ). The same effect can be obtained with a similar configuration even for a device that performs conversion such as a color difference signal (for example, RY, BY signal).

【0089】また、本実施例でも第一の実施例同様、重
み係数決定手段6に注目色の色度信号を原点とする色座
標変換手段61や色調整領域座標変換手段62を設け
て、注目色の色度信号を原点として、重み係数ωを発生
したが、座標変換を行なわずに色度平面上で行なっても
同様の効果があるのは当然である。
Also in this embodiment, as in the first embodiment, the weighting factor determining means 6 is provided with the color coordinate converting means 61 and the color adjusting area coordinate converting means 62 having the chromaticity signal of the target color as the origin. The weighting factor ω is generated with the chromaticity signal of the color as the origin, but it is natural that the same effect can be obtained by performing the conversion on the chromaticity plane without performing the coordinate conversion.

【0090】以上述べてきたように、注目色色信号設定
手段により設定された変換したい色領域の中心を示す3
原色色信号から求められる色度信号と入力される3原色
色信号から色空間変換手段により得られる色度信号との
色相成分と彩度成分とを示す色度平面内上での距離に応
じて重み係数発生手段により重み係数を発生し、注目色
の3原色色信号を目標色色信号設定手段により設定され
た所望の変換後の色を表わす目標色の3原色色信号に変
換するような入出力特性を持つ色変換手段にした時の出
力と入力される3原色色信号とから前記重み係数決定手
段の出力に応じて出力3原色色信号を決定することによ
り、明るさを変更せずに連続性を保存したまま、色調整
領域の外と内とで色が逆転することもなく、選択的な色
調整を行うことができる。
As described above, 3 indicating the center of the color region to be converted which is set by the noticed color signal setting means 3
In accordance with the distance on the chromaticity plane indicating the hue component and the saturation component between the chromaticity signal obtained from the primary color signal and the chromaticity signal obtained from the input three primary color signals by the color space conversion means. Input / output for generating a weighting factor by the weighting factor generating means and converting the three primary color signals of the target color into the three primary color signals of the target color representing the desired converted color set by the target color signal setting means. By determining the output three primary color signals according to the output of the weighting factor determination means from the output when the color conversion means having the characteristics and the input three primary color signals, the brightness is continuously changed without changing the brightness. It is possible to perform selective color adjustment without preserving the color between the inside and the outside of the color adjustment area while preserving the property.

【0091】また、極座標系への複雑な非線形な変換処
理が不要なため、非常に簡単に構成でき、回路規模を小
さくできる。しかも、本色調整処理は非線形変換が色空
間変換のみであるので、比較的少ないビット数で構成す
ることができる。
Further, since complicated non-linear conversion processing to the polar coordinate system is unnecessary, the configuration can be made very simple and the circuit scale can be reduced. Moreover, since the non-linear conversion is only the color space conversion in the color adjustment processing, the color adjustment processing can be configured with a relatively small number of bits.

【0092】さらに、特に色空間変換手段が、3原色色
信号(R,G,B)から色差信号(R −Y,B−Y)
を出力するものとすれば、非線形演算を行なう必要がな
くなり、 小型で、しかもリアルタイムで処理できる構
成とすることができる。
Further, in particular, the color space converting means converts the three primary color signals (R, G, B) to the color difference signals (RY, BY).
If it outputs, it is not necessary to perform a non-linear operation, and it is possible to have a small-sized and real-time processing configuration.

【0093】そして、本実施例の第二の色変換手段11
を3行3列の線形演算で行なうようにし、入出力の間で
白バランスを保存するため各行の和を1に設定したが、
各行の和がk(但し0<k)となるように設定すれば、
選択的に明るさ方向についても調整を行うことができ
る。なぜなら、(数6)において明るさを表す要素であ
る明度指数L*は、(数5)から明らかなようにYのみ
で決定され、このYは色信号(R,G,B)をk倍する
ことによりYもk倍されたものとなるからである。この
ときk<1であれば明るさは減少し、k=1の時明るさ
は変化せず、k<1の時には明るさは増す。
Then, the second color conversion means 11 of the present embodiment.
Was performed by a linear operation of 3 rows and 3 columns, and the sum of each row was set to 1 in order to preserve the white balance between the input and output.
If the sum of each row is set to be k (where 0 <k),
The brightness direction can be selectively adjusted. This is because the lightness index L *, which is an element expressing brightness in (Equation 6), is determined only by Y as is clear from (Equation 5), and this Y is k times the color signals (R, G, B). By doing so, Y is also multiplied by k. At this time, if k <1, the brightness decreases, when k = 1, the brightness does not change, and when k <1, the brightness increases.

【0094】従ってこの時の第二の色変換手段11の出
力の3原色色信号を(Rkh,Gkh,Bkh)とすれば(数
10)は(数12)で示され、ω=1の時、つまり入力
の3原色色信号(R,G,B)が注目色の3原色色信号
の時には色調整後の3原色色信号は(Rkh,Gkh,B
kh)となり、明度方向にk倍された3原色色信号とな
り、ω=0の時、つまり 入力の3原色色信号(R,
G,B)が色調整領域の境界上である場合には、第二の
色調整演算手段12の出力は入力された3原色色信号
(R,G,B)になる。
[0094] Thus the three primary color signals of the output of the second color conversion unit 11 at this time (Rk h, Gk h, Bk h) if (number 10) is shown by equation (12), omega = when one, i.e. three primary color signal after color adjustment when the three primary color signals of the input (R, G, B) is noticeable color three primary color signals of (Rk h, Gk h, B
k h ), and becomes a three primary color signal multiplied by k in the lightness direction. When ω = 0, that is, the input three primary color signals (R,
G, B) is on the boundary of the color adjustment region, the output of the second color adjustment calculation means 12 becomes the input three primary color signals (R, G, B).

【0095】[0095]

【数12】 [Equation 12]

【0096】次に本発明の第5の実施例について説明す
る。第5の実施例の構成としては、図11と同じもので
構成され、第二の色調整演算手段12を図13に示す構
成とする。第2の実施例において、第二の色調整演算手
段12以外の構成およびその動作は同じものであるので
詳細な説明を省略し、第二の色調整演算手段12の構成
およびその動作についてのみ説明する。
Next, a fifth embodiment of the present invention will be described. The configuration of the fifth embodiment is the same as that of FIG. 11, and the second color adjustment calculation means 12 has the configuration shown in FIG. In the second embodiment, the configuration and operation other than the second color adjustment calculation means 12 are the same, so detailed description will be omitted, and only the configuration and operation of the second color adjustment calculation means 12 will be described. To do.

【0097】図13は第2実施例の第二の色調整演算手
段12の構成を示すブロック図で、124−a、124
−b、124−cは第二の色変換手段11の出力の3原
色色信号(Rh,Gh,Bh)から入力の3原色 色信号
(R,G,B)を減算する第1、第2および第3の減算
器、125−a、125−b、125−cは第1、第2
および第3の減算器の出力に重み係数ωを乗算する第
7、第8および第9の乗算器、126−a、126−
b、126−cは第7、第8および第9の乗算器の出力
と入力の3原色色信号(R,G,B)とを加算する第
4、第5および第6の加算器である。
FIG. 13 is a block diagram showing the arrangement of the second color adjustment calculation means 12 of the second embodiment, which is 124-a, 124.
-B, 124-c is a first subtracting the second three primary color signals of the output of the color converter 11 (R h, G h, B h) 3 primary color signals input from the (R, G, B) , The second and third subtractors 125-a, 125-b, 125-c are the first and second subtractors.
And the seventh, eighth and ninth multipliers 126-a, 126- for multiplying the output of the third subtractor by the weighting factor ω
Reference numerals b, 126-c denote fourth, fifth and sixth adders for adding the outputs of the seventh, eighth and ninth multipliers and the input three primary color signals (R, G, B). ..

【0098】このように構成された第二の色調整演算手
段12の動作について説明する。入力3原色色信号
(R,G,B)から第二の色変換手段11の出力の3原
色色信号(Rh,Gh,Bh)を それぞれ減算し、それら
の結果に重み付け係数決定手段6により決定された重み
付け係数ωをそれぞれ乗算し、各々の乗算結果に入力の
3原色色信号(R,G,B)を加算し、重み係数ωで決
定される内分比で入力の3原色色信号(R,G,B)と
の内分を行なうことにより、選択的に色調整を行なうこ
とができる。
The operation of the second color adjustment calculation means 12 thus configured will be described. The three primary color signals (R h , G h , B h ) of the output of the second color conversion means 11 are subtracted from the input three primary color signals (R, G, B), and the weighting coefficient determining means is applied to the results. 6 is multiplied by each of the weighting factors ω, the input three primary color signals (R, G, B) are added to the respective multiplication results, and the input three primary colors are obtained by the internal division ratio determined by the weighting factor ω. By performing internal division with the color signals (R, G, B), it is possible to selectively perform color adjustment.

【0099】以上、第5の実施例で述ベたように、第二
の色調整演算手段12を第二の色変換手段11の出力の
3原色色信号(Rh,Gh,Bh)から入力の3原色色信
号(R,G,B)を減算する第1、第2および第3の減
算器と、これらの第1、第2および第3の減算器の出力
に重み係数ωを乗算する第7、第8および第9の乗算器
と、これらの第7、第8および第9の乗算器の出力と入
力の3原色色信号(R,G,B)とを加算する第4、第
5および第6の加算器とで構成することにより、乗算器
の数が少なくて済み、回路規模の小型化を図ることがで
き、また特に演算精度の悪いアナログ処理で構成する場
合でも、演算結果に与える影響は少なくて済み、極めて
実用的な効果がある。
As described above in the fifth embodiment, the second color adjustment calculation means 12 outputs the three primary color signals (R h , G h , B h ) output from the second color conversion means 11. From which the input three primary color signals (R, G, B) are subtracted, and the weighting factor ω is applied to the outputs of the first, second and third subtractors. A seventh, an eighth, and a ninth multiplier for multiplication, and a fourth for adding the outputs of the seventh, eighth, and ninth multipliers and the input three primary color signals (R, G, B) , And the fifth and sixth adders, the number of multipliers can be small, the circuit scale can be reduced, and even in the case of analog processing with poor calculation accuracy, It has only a small effect on the calculation result and has an extremely practical effect.

【0100】次に本発明の第6の実施例について説明す
る。図14は、本実施例の色調整装置の概略構成を説明
するブロック図である。図14において、13は注目色
クロマ信号発生手段で、色調整を施す範囲の中心である
注目色の色相と彩度を表わす注目色クロマ信号を発生す
る。本実施例では、例えばNTSC方式の映像信号に含
まれるカラーバースト信号の位相を位相シフト手段13
1で位相シフトし、その出力を第1の増幅器132で増
幅することにより、色調整を施す注目色の色相と彩度を
表わす注目色クロマ信号を発生する。この注目色クロマ
信号を減算器14により入力クロマ信号から減算し、入
力色と注目色との色相と彩度の違いを表わす正弦波(以
降、差クロマ信号という)を発生させる。15は減算手
段14の出力を整流し、平滑化する整流平滑手段、16
は整流平滑手段11の出力レベルを所定レベル以下に制
限するリミット手段で、このリミット手段の出力は前記
の所定レベルで正規化される。17は入力クロマ信号の
位相をシフトする位相シフト手段で、18は位相シフト
された入力クロマ信号の振幅を増幅する第2の増幅器で
ある。19は入力クロマ信号と、位相シフト手段17及
び第2の増幅器18で位相シフトされ増幅されたクロマ
信号(以降、変換クロマ信号という)とから、リミット
手段16の出力に基づいて色調整されたクロマ信号を得
る第三の色調整演算手段である。
Next, a sixth embodiment of the present invention will be described. FIG. 14 is a block diagram illustrating a schematic configuration of the color adjusting apparatus of this embodiment. In FIG. 14, 13 is a color-of-interest chroma signal generating means, which generates a color-of-interest chroma signal representing the hue and saturation of the color of interest, which is the center of the range for color adjustment. In this embodiment, for example, the phase of the color burst signal included in the NTSC video signal is changed by the phase shift means 13.
The phase is shifted by 1 and its output is amplified by the first amplifier 132 to generate a target color chroma signal representing the hue and saturation of the target color to be color-adjusted. The target color chroma signal is subtracted from the input chroma signal by the subtractor 14 to generate a sine wave (hereinafter, referred to as a difference chroma signal) representing a difference in hue and saturation between the input color and the target color. A rectifying / smoothing means 15 rectifies and smoothes the output of the subtracting means 14,
Is a limiting means for limiting the output level of the rectifying / smoothing means 11 to a predetermined level or lower, and the output of the limiting means is normalized to the predetermined level. Reference numeral 17 is a phase shift means for shifting the phase of the input chroma signal, and 18 is a second amplifier for amplifying the amplitude of the phase-shifted input chroma signal. Reference numeral 19 denotes a chroma adjusted based on the output of the limiter 16 from an input chroma signal and a chroma signal phase-shifted and amplified by the phase shifter 17 and the second amplifier 18 (hereinafter referred to as a converted chroma signal). It is a third color adjustment calculation means for obtaining a signal.

【0101】この様に構成された本実施例の色調整装置
について、図14及び図15を用いてその動作を説明す
る。
The operation of the color adjusting apparatus of this embodiment having the above-described structure will be described with reference to FIGS. 14 and 15.

【0102】図15は、本実施例の図14に示した各部
の波形を示す波形図で、図16はそのベクトル表現であ
る。
FIG. 15 is a waveform diagram showing the waveform of each part shown in FIG. 14 of this embodiment, and FIG. 16 is a vector representation thereof.

【0103】まず、注目色クロマ信号発生手段13にお
いて、図15の(a)で示す基準のカラーバースト信号
が位相シフト手段131に入力され、注目色の色相を表
わす位相角に位相シフトされる。そして第2の増幅手段
132で注目色の彩度を表わす振幅にゲインGBで増幅
され、注目色クロマ信号(図15(b)で示す波形、及
び図16(b)で示すベクトル)を発生する。
First, in the target color chroma signal generation means 13, the reference color burst signal shown in FIG. 15A is input to the phase shift means 131 and phase-shifted to the phase angle representing the hue of the target color. Then, the second amplifying means 132 amplifies the chroma representing the saturation of the target color with the gain G B to generate the target color chroma signal (the waveform shown in FIG. 15B and the vector shown in FIG. 16B). To do.

【0104】そして、図15(c)で示す入力されたク
ロマ信号(図16(c))から注目色クロマ信号を減算
器14で減算を行ない、図15(d)に示す差クロマ信
号(図16(d))を発生する。この差クロマ信号は、
注目色と入力色の色の違い、つまり色相と彩度との違い
を表わしている。
Then, the subtractor 14 subtracts the target color chroma signal from the input chroma signal (FIG. 16 (c)) shown in FIG. 15 (c) to obtain the difference chroma signal (FIG. 15 (d)). 16 (d)) is generated. This difference chroma signal is
The difference between the target color and the input color, that is, the difference between the hue and the saturation is shown.

【0105】この差クロマ信号を整流平滑手段15に入
力し、整流平滑を行なう。この整流平滑した波形を図1
5(e)に示す。この整流平滑された出力信号は図16
(d)に示すように、注目色(b)と入力色(c)との
色差平面(R−Y、B−Y平面)上での距離を表わすこ
とになる。
This difference chroma signal is input to the rectifying / smoothing means 15 to perform rectifying / smoothing. This rectified and smoothed waveform is shown in Fig. 1.
5 (e). This rectified and smoothed output signal is shown in FIG.
As shown in (d), it represents the distance between the target color (b) and the input color (c) on the color difference plane (RY, BY plane).

【0106】次に、整流平滑手段15の出力(e)は、
リミット手段16に入力される。このリミット手段16
は、所定のレベル(以下しきい値という)でレベル制限
される。このしきい値は図16に示した円を示すもの
で、注目色を中心として、色調整を施す領域を設定する
ものである。そしてこのレベル制限された整流平滑手段
15の出力をしきい値で正規化を行なう。つまり、リミ
ット手段16の出力は図17に示すようになり、これは
色調整の領域の境界部及び色調整領域外では最大値とな
り、注目色では最小値になる色調整の度合を示す重み係
数ωを示している。
Next, the output (e) of the rectifying / smoothing means 15 is
It is input to the limit means 16. This limit means 16
Is level-limited at a predetermined level (hereinafter referred to as a threshold value). This threshold indicates the circle shown in FIG. 16, and sets an area to be subjected to color adjustment centering on the target color. Then, the output of the level-limited rectifying / smoothing means 15 is normalized by a threshold value. That is, the output of the limiter 16 is as shown in FIG. 17, which has a maximum value outside the boundary of the color adjustment area and outside the color adjustment area, and has a minimum value for the color of interest. indicates ω.

【0107】この様に決定された重み係数ωに基づい
て、入力クロマ信号と変換クロマ信号との内分演算を第
三の色調整演算手段19で行なうことにより、色調整さ
れたクロマ信号を得ることができる。この内分演算を数
式で示すと(数13)で表わせる。(数13)におい
て、c(c)は入力クロマ信号、c(f)は変換クロマ信
号、c(g)は色調整を施されたクロマ信号である。
On the basis of the weighting factor ω thus determined, the third color adjustment calculation means 19 performs the internal division calculation of the input chroma signal and the converted chroma signal to obtain the color-adjusted chroma signal. be able to. This internal division calculation can be expressed by a mathematical expression (Equation 13). In (Equation 13), c (c) is an input chroma signal, c (f) is a converted chroma signal, and c (g) is a color-adjusted chroma signal.

【0108】[0108]

【数13】 [Equation 13]

【0109】以上、述べてきたように本実施例では、注
目色さらに入力クロマ信号から注目色クロマ信号発生手
段6で発生した色調整を施す注目色の色相と彩度を表わ
す注目色クロマ信号を減算し、入力色と注目色との色相
と彩度の違いを表わす正弦波を発生し、整流平滑手段に
よりこの正弦波を整流平滑し、その後リミット手段によ
り色調整範囲で整流平滑手段の出力を制限することによ
り、入力色と注目色との色の違いに応じた重み係数を得
て、この重み係数に基づいて、入力クロマ信号の位相を
シフトし、増幅し、この増幅後の出力と前記入力クロマ
信号とから色調整演算手段において内分演算を行なうこ
とにより、色調整されたクロマ信号を得るものであり、
任意の領域のみを領域以外の色との連続性を保存したま
ま選択的に色調整を行なうことができる。
As described above, in this embodiment, the target color and the target color chroma signal representing the hue and saturation of the target color to be subjected to the color adjustment generated by the target color chroma signal generating means 6 from the input chroma signal are generated. A sine wave representing the difference in hue and saturation between the input color and the target color is generated by subtraction, this sine wave is rectified and smoothed by the rectifying and smoothing means, and then the output of the rectifying and smoothing means is adjusted by the limit means in the color adjustment range. By limiting, the weighting coefficient corresponding to the color difference between the input color and the target color is obtained, the phase of the input chroma signal is shifted and amplified based on this weighting coefficient, and the output after the amplification and the A color-adjusted chroma signal is obtained by performing an internal division operation in the color adjustment operation means from the input chroma signal.
It is possible to selectively perform color adjustment only on an arbitrary area while maintaining continuity with colors other than the area.

【0110】また、複雑な非線形演算が不要で、輝度ク
ロマ信号のままで処理が行えるので非常に簡単な構成で
実現することができる。
Further, since complicated non-linear calculation is unnecessary and processing can be performed with the luminance chroma signal as it is, it can be realized with a very simple structure.

【0111】さらに、全ての処理をアナログ処理で簡単
に行えるので、ビデオ信号等の映像信号に対してもリア
ルタイム処理が可能となる。
Furthermore, since all the processing can be easily performed by analog processing, real-time processing can be performed on video signals such as video signals.

【0112】[0112]

【発明の効果】以上述べてきたように、本発明は、色の
3属性のうち色相成分と彩度成分を表わす平面の直交座
標系の2要素を表わす色度信号と、色調整により変換し
たい色領域の中心の色度信号を設定する注目色色度信号
設定手段と、この注目色色度信号設定手段で設定された
注目色の色度信号を中心として色調整を行なう領域を設
定する色調整領域設定手段と、前記注目色色度信号設定
手段で設定された色度信号を変換した後の好みの色の色
度信号を設定する目標色色度信号設定手段と、前記注目
色色度信号設定手段の出力と前記目標色色度信号設定手
段の出力とから注目色の色度信号を目標色の色度信号に
変換するように前記平面全体に作用する第一の色変換手
段と、入力される色度信号に応じて色調整を行う度合を
表わす重み係数を決定する重み係数決定手段と、入力さ
れる色度信号とこの色度信号を前記第一の色変換手段に
入力した時の出力の色度信号との間の色度信号を前記重
み係数決定手段の出力に応じて発生する色調整演算手段
とを設けることにより、連続性を保存したまま、色調整
領域の外と内とで色が逆転することもなく、選択的な色
調整を行なうことができる。
As described above, according to the present invention, the chromaticity signal representing two elements of the orthogonal coordinate system of the plane representing the hue component and the saturation component among the three attributes of the color and the chromaticity signal to be converted by the color adjustment. A target color chromaticity signal setting means for setting a chromaticity signal at the center of the color area, and a color adjustment area for setting an area for performing color adjustment centering on the chromaticity signal of the target color set by the target color chromaticity signal setting means. Setting means, target chromaticity signal setting means for setting a chromaticity signal of a desired color after conversion of the chromaticity signal set by the noted chromaticity signal setting means, and output of the noted chromaticity signal setting means And the output of the target chromaticity signal setting means, the first color conversion means acting on the entire plane so as to convert the chromaticity signal of the target color into the chromaticity signal of the target color, and the input chromaticity signal. The weighting factor that indicates the degree of color adjustment according to Means for determining the chromaticity signal between the input chromaticity signal and the chromaticity signal output when the chromaticity signal is input to the first color conversion means. By providing a color adjustment calculation means that is generated in accordance with the output of the color adjustment, selective color adjustment can be performed without the colors being reversed between the inside and the outside of the color adjustment area while maintaining the continuity. it can.

【0113】また、本発明は3原色色信号から色の3属
性のうち色相成分と彩度成分を表わす平面の直交座標系
の2要素を表わす色度信号に変換する色空間変換手段
と、色調整により変換したい色領域の中心の3原色色信
号を設定する注目色色信号設定手段と、この注目色色信
号設定手段で設定される注目色色信号から求められる前
記色度信号を中心として色調整を行う前記直交座標系上
での領域を設定する色調整領域設定手段と、前記注目色
色信号設定手段で設定された注目色色信号を変換した後
の好みの色の3原色色信号を設定する目標色色信号設定
手段と、前記注目色色信号設定手段で設定された3原色
色信号と前記目標色色信号設定手段で設定された3原色
色信号とから注目色の3原色色信号を目標色の3原色色
信号に変換するように色空間全体に作用する色変換手段
と、入力される前記色度信号に応じて色調整を行う度合
を表わす重み係数を決定する重み係数決定手段と、この
重み係数決定手段の出力に応じて入力の3原色色信号と
この3原色色信号を前記色変換手段に入力した時の出力
の3原色色信号との間の3原色色信号を発生する色調整
演算手段と設けることにより、連続性を保存したまま、
色調整領域の外と内とで色が逆転することもなく、選択
的な色調整を行うことができる。
Further, according to the present invention, there is provided a color space conversion means for converting the three primary color signals into a chromaticity signal representing two elements of a plane orthogonal coordinate system representing a hue component and a saturation component among three attributes of color, and a color space converting means. Color adjustment is performed with the target color color signal setting means for setting the three primary color signals at the center of the color region to be converted by adjustment and the chromaticity signal obtained from the target color color signal set by the target color color signal setting means as the center. Color adjustment area setting means for setting an area on the Cartesian coordinate system, and target color color signals for setting the three primary color signals of the desired colors after the attention color color signals set by the attention color color signal setting means are converted. From the setting means, the three primary color signals set by the target color color signal setting means and the three primary color signals set by the target color color signal setting means, the three primary color signals of the target color are converted into the three primary color signals of the target color. To convert to A color conversion unit that operates on the entire color space, a weighting factor determination unit that determines a weighting factor representing the degree of color adjustment according to the input chromaticity signal, and an input according to the output of this weighting factor determination unit. Continuity is provided by providing color adjustment calculation means for generating the three primary color signals between the three primary color signals and the three primary color signals output when the three primary color signals are input to the color conversion means. Save it,
It is possible to perform selective color adjustment without the colors being reversed between inside and outside the color adjustment area.

【0114】従って、極座標系への複雑な非線形な変換
処理が不要なため、非常に簡単に構成でき、回路規模を
小さくできる。
Therefore, since complicated non-linear conversion processing to the polar coordinate system is unnecessary, the configuration can be made very simple and the circuit scale can be reduced.

【0115】しかも、本色調整処理は非線形変換が色空
間変換のみであるので、比較的少ないビット数で構成す
ることができる。そして特に色空間変換手段により変換
される色空間を輝度色差信号で表わすものとすれば、非
線形演算を行なう必要がなくなり、小型で、しかもリア
ルタイムで処理できる構成とすることができる。
In addition, since the non-linear conversion is only the color space conversion in this color adjustment processing, it can be configured with a relatively small number of bits. In particular, if the color space converted by the color space conversion means is represented by a luminance color difference signal, it is not necessary to carry out a non-linear operation, and it is possible to realize a compact structure capable of processing in real time.

【0116】さらに、色変換手段を3原色色信号に基づ
いて行うため、色調整を彩度および色相でなく、明度を
も簡単に調整することができる等の効果を有する。
Further, since the color conversion means is performed based on the three primary color signals, there is an effect that the lightness can be easily adjusted in addition to the saturation and the hue.

【0117】そして入力クロマ信号と、色調整を施す注
目色の彩度と色相を表わす注目色クロマ信号を発生する
注目色クロマ信号発生手段と、入力クロマ信号からこの
注目色クロマ信号を減算する減算手段と、この減算手段
の出力を整流平滑する整流平滑手段と、この整流平滑手
段の出力を制限するリミット手段と、このリミット手段
の出力を前記入力クロマ信号の位相をシフトする位相シ
フト手段と、この位相シフト手段の出力にあるゲインで
増幅する増幅手段と、前記整流平滑手段の出力に応じて
入力クロマ信号と前記増幅手段の出力とから出力クロマ
信号を得る色調整演算手段とを備えることにより、簡単
な構成で、任意の領域のみを領域以外の色との連続性を
保存したまま選択的に色調整を行なうことができる。
Then, the input chroma signal, the target color chroma signal generating means for generating the target color chroma signal representing the saturation and hue of the target color to be subjected to color adjustment, and the subtraction for subtracting the target color chroma signal from the input chroma signal. Means, rectifying and smoothing means for rectifying and smoothing the output of the subtracting means, limit means for limiting the output of the rectifying and smoothing means, and phase shift means for shifting the output of the limiting means by the phase of the input chroma signal, By providing amplification means for amplifying the gain of the output of the phase shift means, and color adjustment calculation means for obtaining an output chroma signal from the input chroma signal and the output of the amplification means according to the output of the rectifying and smoothing means. With a simple configuration, it is possible to selectively perform color adjustment only on an arbitrary area while maintaining continuity with colors other than the area.

【0118】さらに全ての処理がアナログ処理で容易に
行えることからリアルタイムで処理を行なうことができ
る。そして、輝度クロマ信号のままで全ての処理を行な
うことができる。
Further, since all the processing can be easily performed by analog processing, the processing can be performed in real time. Then, all processing can be performed with the luminance chroma signal as it is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における色調整装置の構
成を示すブロック図
FIG. 1 is a block diagram showing a configuration of a color adjusting apparatus according to a first embodiment of the present invention.

【図2】同実施例における重み係数決定手段の構成を示
すブロック図
FIG. 2 is a block diagram showing a configuration of a weighting factor determining means in the embodiment.

【図3】同実施例における色度座標変換手段の動作説明
FIG. 3 is an operation explanatory diagram of chromaticity coordinate conversion means in the embodiment.

【図4】同実施例における重み係数発生手段の入出力特
性図
FIG. 4 is an input / output characteristic diagram of the weighting factor generating means in the embodiment.

【図5】同実施例における色調整演算手段の構成を示す
ブロック図
FIG. 5 is a block diagram showing the configuration of a color adjustment calculation means in the embodiment.

【図6】同実施例における色調整装置の色調整方法の説
明図
FIG. 6 is an explanatory diagram of a color adjusting method of the color adjusting apparatus in the embodiment.

【図7】同実施例における色調整装置の動作説明図FIG. 7 is an operation explanatory view of the color adjusting apparatus in the embodiment.

【図8】本発明の第2の実施例における色調整装置の色
調整演算手段の構成を示すブロック図
FIG. 8 is a block diagram showing a configuration of a color adjustment calculation means of a color adjustment device according to a second embodiment of the present invention.

【図9】本発明の第3の実施例における色調整装置の重
み係数決定手段の構成を示すブロック図
FIG. 9 is a block diagram showing the configuration of a weighting factor determining means of the color adjusting apparatus according to the third embodiment of the present invention.

【図10】同実施例における重み係数決定手段の動作説
明図
FIG. 10 is an operation explanatory view of the weighting factor determining means in the embodiment.

【図11】本発明の第4の実施例における色調整装置の
構成を示すブロック図
FIG. 11 is a block diagram showing a configuration of a color adjusting device according to a fourth embodiment of the present invention.

【図12】同実施例における色調整装置の第二の色調整
演算手段の構成を示すブロック図
FIG. 12 is a block diagram showing a configuration of a second color adjustment calculation means of the color adjustment apparatus in the embodiment.

【図13】本発明の第5の実施例における色調整装置の
第二の色調整演算手段の構成を示すブロック図
FIG. 13 is a block diagram showing the configuration of a second color adjustment calculation means of the color adjustment apparatus in the fifth embodiment of the present invention.

【図14】本発明の第6の実施例における色調整装置の
構成を示すブロック図
FIG. 14 is a block diagram showing the arrangement of a color adjusting apparatus according to the sixth embodiment of the present invention.

【図15】同実施例における色調整装置の各部の波形を
示す波形図
FIG. 15 is a waveform diagram showing waveforms of respective parts of the color adjusting apparatus in the embodiment.

【図16】同実施例における色調整装置の動作説明図FIG. 16 is an operation explanatory diagram of the color adjusting apparatus in the embodiment.

【図17】同実施例におけるリミット手段の出力波形図FIG. 17 is an output waveform chart of the limiting means in the embodiment.

【図18】従来の色調整装置の概略構成を示すブロック
FIG. 18 is a block diagram showing a schematic configuration of a conventional color adjustment device.

【図19】従来の色調整装置における色調整対象領域指
定方法の説明図
FIG. 19 is an explanatory diagram of a color adjustment target area specifying method in a conventional color adjusting apparatus.

【図20】従来の色調整装置における色調整指定方法の
説明図
FIG. 20 is an explanatory diagram of a color adjustment designation method in a conventional color adjustment device.

【符号の説明】[Explanation of symbols]

1 色空間変換手段 2 注目色色度信号設定手段 3 目標色色度信号設定手段 4 色調整領域設定手段 5 第一の色変換手段 6 重み係数決定手段 7 第一の色調整演算手段 8 逆色空間変換手段 9 注目色色信号設定手段 10 目標色色信号設定手段 11 第二の色変換手段 12 第二の色調整演算手段 13 注目色クロマ信号発生手段 14 減算器 15 整流平滑手段 16 リミット手段 17 位相シフト手段 18 増幅器 19 第三の色調整演算手段 1 Color space conversion means 2 Target color chromaticity signal setting means 3 Target color chromaticity signal setting means 4 Color adjustment area setting means 5 First color conversion means 6 Weighting factor determination means 7 First color adjustment calculation means 8 Inverse color space conversion Means 9 Target color signal setting means 10 Target color signal setting means 11 Second color converting means 12 Second color adjustment calculating means 13 Target color chroma signal generating means 14 Subtractor 15 Rectifying and smoothing means 16 Limiting means 17 Phase shifting means 18 Amplifier 19 Third color adjustment calculation means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04N 1/46 9068−5C // G06F 9/44 330 W 9193−5B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H04N 1/46 9068-5C // G06F 9/44 330 W 9193-5B

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】色の3属性のうち色相成分と彩度成分を表
わす平面の直交座標系の2要素を表わす色度信号と、色
調整により変換したい色領域の中心の色度信号を設定す
る注目色色度信号設定手段と、この注目色色度信号設定
手段で設定される注目色の色度信号を中心として色調整
を行なう前記直交座標系上での領域を設定する色調整領
域設定手段と、前記注目色色度信号設定手段で設定され
た注目色の色度信号を好みの色に変換した時の色度信号
を設定する目標色色度信号設定手段と、前記注目色色度
信号設定手段の出力と前記目標色色度信号設定手段の出
力とから注目色の色度信号を目標色の色度信号に変換す
るように前記平面全体に作用する第一の色変換手段と、
入力される色度信号に応じて色調整を行なう度合を表わ
す重み係数を決定する重み係数決定手段と、入力される
色度信号とこの色度信号を前記第一の色変換手段に入力
した時の出力の色度信号との間の色度信号を前記重み係
数発生手段の出力に応じて発生する第一の色調整演算手
段とを備えたことを特徴とする色調整装置。
1. A chromaticity signal representing two elements of a Cartesian coordinate system of a plane representing a hue component and a saturation component among three attributes of color and a chromaticity signal at the center of a color region to be converted by color adjustment are set. Attention color chromaticity signal setting means, and color adjustment area setting means for setting an area on the Cartesian coordinate system for performing color adjustment centering on the chromaticity signal of the attention color set by the attention color chromaticity signal setting means, A target chromaticity signal setting means for setting a chromaticity signal when the chromaticity signal of the attention color set by the attention color chromaticity signal setting means is converted into a desired color; and an output of the attention color chromaticity signal setting means. First color conversion means that acts on the entire plane so as to convert the chromaticity signal of the target color from the output of the target chromaticity signal setting means into the chromaticity signal of the target color,
Weighting factor determining means for determining a weighting factor representing the degree of color adjustment in accordance with the input chromaticity signal, the input chromaticity signal, and when the chromaticity signal is input to the first color converting means. A color adjusting device for generating a chromaticity signal between the chromaticity signal and the output chromaticity signal according to the output of the weighting factor generating means.
【請求項2】色信号を均等色空間上の座標に変換する色
空間変換手段を備え、知覚色度指数を色度信号とするこ
とを特徴とする請求項1記載の色調整装置。
2. The color adjusting apparatus according to claim 1, further comprising a color space conversion means for converting the color signal into coordinates on a uniform color space, and using the perceived chromaticity index as the chromaticity signal.
【請求項3】色信号を輝度信号と色差信号に変換する色
空間変換手段を備え、色差信号を色度信号とすることを
特徴とする請求項1記載の色調整装置。
3. A color adjusting apparatus according to claim 1, further comprising a color space converting means for converting a color signal into a luminance signal and a color difference signal, and using the color difference signal as a chromaticity signal.
【請求項4】第一の色変換手段は、その入出力特性が入
力される色相成分と彩度成分の直交座標系の2要素で表
される色度信号に対して2行2列の線形変換で表され、
第一の色調整演算手段は入力色度信号と前記第一の色変
換手段の出力とを前記重み係数決定手段の出力に応じて
線形演算を行なうことを特徴とする請求項1、2または
3記載の色調整装置。
4. The first color conversion means is a linear system of 2 rows and 2 columns with respect to a chromaticity signal represented by two elements of an orthogonal coordinate system of a hue component and a saturation component to which the input / output characteristics are input. Represented by a conversion,
4. The first color adjustment calculation means performs a linear calculation on the input chromaticity signal and the output of the first color conversion means according to the output of the weighting factor determination means. The described color adjusting device.
【請求項5】第一の色調整演算手段は、入力される色度
信号から前記第一の色変換手段の出力を減算する減算手
段と、前記重み係数決定手段の出力される重み係数と前
記減算手段の出力とを乗算する乗算手段と、この乗算手
段の出力と入力される色度信号とを加算する加算手段と
からなることを特徴とする請求項1、2、3または4記
載の色調整装置。
5. A first color adjustment calculation means, subtraction means for subtracting an output of the first color conversion means from an input chromaticity signal, a weight coefficient output by the weight coefficient determination means, and the 5. A color according to claim 1, 2, 3 or 4, characterized in that it comprises multiplication means for multiplying the output of the subtraction means and addition means for adding the output of the multiplication means and the input chromaticity signal. Adjustment device.
【請求項6】3原色色信号から色の3属性のうち色相成
分と彩度成分を表わす平面の直交座標系の2要素を表わ
す色度信号に変換する色空間変換手段と、色調整により
変換したい色領域の中心の3原色色信号を設定する注目
色色信号設定手段と、この注目色色信号設定手段で設定
される注目色色信号から求められる前記色度信号を中心
として色調整を行なう前記直交座標系上での領域を設定
する色調整領域設定手段と、前記注目色色信号設定手段
で設定された注目色の色信号を好みの色に変換した時の
3原色色信号を設定する目標色色信号設定手段と、前記
注目色色信号設定手段で設定された3原色色信号と前記
目標色色信号設定手段で設定された3原色色信号とから
注目色の3原色色信号を目標色の3原色色信号に変換す
るように色空間全体に作用する第二の色変換手段と、入
力される前記色度信号に応じて色調整を行なう度合を表
わす重み係数を決定する重み係数決定手段と、この重み
係数決定手段の出力に応じて入力の3原色色信号とこの
3原色色信号を前記色変換手段に入力した時の出力の3
原色色信号との間の3原色色信号を発生する第二の色調
整演算手段とを備えたことを特徴とする色調整装置。
6. A color space conversion means for converting a three primary color signal into a chromaticity signal representing two elements of a rectangular coordinate system of a plane representing a hue component and a saturation component among three attributes of color, and a color space converting means. A target color color signal setting means for setting the three primary color signals at the center of the desired color area, and the orthogonal coordinates for performing color adjustment centering on the chromaticity signal obtained from the target color color signal set by the target color color signal setting means. Color adjustment area setting means for setting areas on the system, and target color / color signal setting for setting the three primary color signals when the color signal of the target color set by the target color / color signal setting means is converted into a desired color. Means and the three primary color signals set by the target color signal setting means and the three primary color signals set by the target color signal setting means, the three primary color signals of the target color are converted into the three primary color signals of the target color. Color space to convert A second color converting means, a weighting factor determining means for determining a weighting factor representing the degree of color adjustment according to the input chromaticity signal, and an input according to the output of the weighting factor determining means. 3 primary color signals and 3 of the outputs when these 3 primary color signals are input to the color conversion means.
A color adjusting apparatus comprising: a second color adjusting arithmetic means for generating three primary color signals between the primary color signals.
【請求項7】色空間変換手段は3原色色信号から均等色
空間内での知覚色度指数を色度信号として発生すること
を特徴とする請求項6記載の色調整装置。
7. The color adjusting apparatus according to claim 6, wherein the color space converting means generates a perceived chromaticity index in the uniform color space from the three primary color signals as a chromaticity signal.
【請求項8】色空間変換手段は3原色色信号から色差信
号を色度信号として発生することを特徴とする請求項6
記載の色調整装置。
8. The color space conversion means generates a color difference signal as a chromaticity signal from the three primary color signals.
The described color adjusting device.
【請求項9】第二の色変換手段は、その入出力特性が入
力される3原色色信号に対して3行3列の線形変換で表
わされ、第二の色調整演算手段は入力される3原色色信
号と前記第二の色変換手段の出力の3原色色信号とを前
記重み係数決定手段の出力に応じて線形演算を行なうこ
とを特徴とする請求項6、7または8記載の色調整装
置。
9. The second color conversion means represents the input / output characteristics of the inputted three primary color signals by linear conversion of three rows and three columns, and the second color adjustment calculation means receives the input. 9. The linear operation of the three primary color signals and the three primary color signals of the output of the second color conversion means is performed in accordance with the output of the weighting factor determination means. Color adjustment device.
【請求項10】第二の色調整演算手段は、入力される3
原色色信号から前記第二の色変換手段の出力の3原色色
信号を減算する減算手段と、前記重み係数決定手段の出
力される重み係数と前記減算手段の出力とを乗算する乗
算手段と、この乗算手段の出力と入力される3原色色信
号とを加算する加算手段とからなることを特徴とする請
求項6、7、8または9記載の色調整装置。
10. The second color adjustment calculation means receives the input 3
Subtraction means for subtracting the three primary color signals output from the second color conversion means from the primary color signals, and multiplication means for multiplying the weight coefficient output by the weight coefficient determination means by the output of the subtraction means, 10. The color adjusting apparatus according to claim 6, further comprising an adding unit that adds the output of the multiplying unit and the input three primary color signals.
【請求項11】重み係数決定手段は、色相成分と彩度成
分を表わす平面の直交座標系の2要素で表わされる色度
平面において、入力される色度信号を前記注目色色度信
号設定手段で設定される色度信号、あるいは前記注目色
色信号設定手段で設定される3原色色信号から求められ
る色度信号を原点とする座標系に変換する色度座標変換
手段と、前記色調整領域設定手段で設定された色調整領
域を前記色度座標変換手段と同様に座標変換する色調整
領域座標変換手段と、この色調整領域座標変換手段によ
り決定された領域内で前記色度座標変換手段で変換され
た色度座標の原点で1で、原点からの距離に応じて連続
的に減少し、色調整領域の境界部で0になる重み係数を
発生する重み係数発生手段とを備えたことを特徴とする
請求項1、4、5、6、9または10記載の色調整装
置。
11. A weighting factor determining means sets an input chromaticity signal by the noted chromaticity signal setting means on a chromaticity plane represented by two elements of an orthogonal coordinate system of a plane representing a hue component and a saturation component. Chromaticity coordinate conversion means for converting a chromaticity signal to be set or a chromaticity signal obtained from the three primary color signals set by the noted color signal setting means into a coordinate system having an origin, and the color adjustment area setting means. The color adjustment area coordinate conversion means for performing the coordinate conversion of the color adjustment area set by the same as the chromaticity coordinate conversion means, and the chromaticity coordinate conversion means within the area determined by the color adjustment area coordinate conversion means. And a weighting factor generating means for generating a weighting factor which is 1 at the origin of the chromaticity coordinates that are continuously reduced according to the distance from the origin and becomes 0 at the boundary of the color adjustment region. Claims 1, 4, 5 6,9 or 10 color adjusting apparatus according.
【請求項12】重み係数決定手段は、色相成分と彩度成
分を表わす平面の直交座標系の2要素で表わされる色度
平面において、入力される色度信号を前記注目色色度信
号設定手段で設定される色度信号、あるいは前記注目色
色信号設定手段で設定される3原色色信号から求められ
る色度信号を原点とする座標系に変換する色度座標変換
手段と、前記色調整領域設定手段で設定された色調整領
域を前記色度座標変換手段と同様に座標変換する色調整
領域座標変換手段と、前記色度座標変換手段で座標変換
された平面の直交座標系の2要素で表される色度信号の
それぞれの要素軸に関して、軸上の重み係数が1で、軸
から離れるに従い連続的に減少し、前記色調整領域決定
手段で決定される色調整領域の各軸に垂直な境界で0で
ある重み係数を発生する2個の重み係数発生手段と、こ
の2個の重み係数決定手段のそれぞれの出力のファジィ
論理積により重み係数を発生するファジィ論理積演算手
段とを備えたことを特徴とする請求項1、4、5、6、
9または10記載の色調整装置。
12. The weighting factor determining means sets an input chromaticity signal by the target chromaticity signal setting means on a chromaticity plane represented by two elements of an orthogonal coordinate system of a plane representing a hue component and a saturation component. Chromaticity coordinate conversion means for converting a chromaticity signal to be set or a chromaticity signal obtained from the three primary color signals set by the noted color signal setting means into a coordinate system having an origin, and the color adjustment area setting means. It is represented by two elements of a color adjustment area coordinate conversion means for performing the coordinate conversion of the color adjustment area set in the same manner as the chromaticity coordinate conversion means, and a plane orthogonal coordinate system coordinate-converted by the chromaticity coordinate conversion means. With respect to each element axis of the chromaticity signal, the boundary has a weighting factor of 1 on the axis, decreases continuously with distance from the axis, and is perpendicular to each axis of the color adjustment area determined by the color adjustment area determination means. Emits a weighting factor that is 0 at And a fuzzy logical product calculating means for generating a weighting coefficient by fuzzy logical product of outputs of the two weighting coefficient determining means. 4, 5, 6,
9. The color adjusting device according to 9 or 10.
【請求項13】入力クロマ信号と、色調整を行ないたい
色領域の中心である注目色の彩度と色相を表わす注目色
クロマ信号を発生する注目色クロマ信号発生手段と、前
記入力クロマ信号から前記注目色クロマ信号発生手段で
発生された注目色クロマ信号を減算する減算手段と、こ
の減算手段の出力を整流平滑する整流平滑手段と、この
整流平滑手段の出力レベルを所定のレベル以下に制限す
るリミット手段と、前記入力クロマ信号の位相をシフト
する位相シフト手段と、この位相シフト手段の出力を所
定のゲインで増幅または減衰する増幅手段または減衰手
段と、前記整流平滑手段の出力に基づいて、入力クロマ
信号と前記増幅手段の出力との内分演算を行い色調整さ
れたクロマ信号を得る第三の色調整演算手段とを備えた
ことを特徴とする色調整装置。
13. An input chroma signal, a target color chroma signal generating means for generating a target color chroma signal representing the saturation and hue of the target color which is the center of a color region to be subjected to color adjustment, and from the input chroma signal. Subtracting means for subtracting the target color chroma signal generated by the target color chroma signal generating means, rectifying and smoothing means for rectifying and smoothing the output of the subtracting means, and limiting the output level of the rectifying and smoothing means to a predetermined level or less. Based on the output of the rectifying / smoothing means, the limiting means, the phase shifting means for shifting the phase of the input chroma signal, the amplifying means or the attenuating means for amplifying or attenuating the output of the phase shifting means with a predetermined gain. A third color adjustment calculation means for obtaining a color-adjusted chroma signal by performing an internal division calculation of the input chroma signal and the output of the amplifying means. Adjusting device.
【請求項14】色調整領域設定手段で設定される色調整
領域は、色度平面において矩形であることを特徴とする
請求項1、6、11、12または13記載の色調整装
置。
14. The color adjusting apparatus according to claim 1, wherein the color adjusting area set by the color adjusting area setting means is rectangular in the chromaticity plane.
JP17518492A 1991-07-04 1992-07-02 Color adjustment device Expired - Fee Related JP3173140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17518492A JP3173140B2 (en) 1991-07-04 1992-07-02 Color adjustment device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP16431991 1991-07-04
JP32892091 1991-12-12
JP3-328920 1991-12-12
JP3-164319 1991-12-12
JP17518492A JP3173140B2 (en) 1991-07-04 1992-07-02 Color adjustment device

Publications (2)

Publication Number Publication Date
JPH05244406A true JPH05244406A (en) 1993-09-21
JP3173140B2 JP3173140B2 (en) 2001-06-04

Family

ID=27322313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17518492A Expired - Fee Related JP3173140B2 (en) 1991-07-04 1992-07-02 Color adjustment device

Country Status (1)

Country Link
JP (1) JP3173140B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274785A (en) * 2004-04-19 2004-09-30 Sanyo Electric Co Ltd Digital camera
KR100657898B1 (en) * 2003-09-01 2006-12-14 삼성전자주식회사 Method and apparatus for adjusting color of image
JP2007194805A (en) * 2006-01-18 2007-08-02 Sony Corp Color transformation device and method, recording medium, and program
KR100791375B1 (en) * 2005-12-19 2008-01-07 삼성전자주식회사 Apparatus and method for color correction
KR100816327B1 (en) * 2001-01-03 2008-03-24 삼성전자주식회사 Color calibrator for image display and method thereof
WO2008139532A1 (en) * 2007-04-27 2008-11-20 Nippon Computer System Co., Ltd Color conversion program, computer-readable recording medium with color conversion program recorded thereon, and color conversion device
JP2009171402A (en) * 2008-01-18 2009-07-30 Ricoh Co Ltd Image processing apparatus, image processing method, and program
US7646393B2 (en) 2004-05-06 2010-01-12 Samsung Electronics Co., Ltd. Apparatus and method for adjusting primary color component of image, and computer-readable recording media for storing computer program
JP2010187330A (en) * 2009-02-13 2010-08-26 Riso Kagaku Corp Color converting apparatus and color conversion processing method
US8009902B2 (en) 2007-03-26 2011-08-30 Murata Machinery, Ltd. Image processing apparatus and method for detecting a background color based on data chrominance distribution
WO2018142658A1 (en) * 2017-02-01 2018-08-09 オリンパス株式会社 Image processing device, operating method for image processing device, and operating program for image processing device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816327B1 (en) * 2001-01-03 2008-03-24 삼성전자주식회사 Color calibrator for image display and method thereof
KR100657898B1 (en) * 2003-09-01 2006-12-14 삼성전자주식회사 Method and apparatus for adjusting color of image
JP2004274785A (en) * 2004-04-19 2004-09-30 Sanyo Electric Co Ltd Digital camera
US7646393B2 (en) 2004-05-06 2010-01-12 Samsung Electronics Co., Ltd. Apparatus and method for adjusting primary color component of image, and computer-readable recording media for storing computer program
KR100791375B1 (en) * 2005-12-19 2008-01-07 삼성전자주식회사 Apparatus and method for color correction
US7720280B2 (en) 2005-12-19 2010-05-18 Samsung Electronics Co., Ltd. Color correction apparatus and method
JP2007194805A (en) * 2006-01-18 2007-08-02 Sony Corp Color transformation device and method, recording medium, and program
US8009902B2 (en) 2007-03-26 2011-08-30 Murata Machinery, Ltd. Image processing apparatus and method for detecting a background color based on data chrominance distribution
WO2008139532A1 (en) * 2007-04-27 2008-11-20 Nippon Computer System Co., Ltd Color conversion program, computer-readable recording medium with color conversion program recorded thereon, and color conversion device
JP4811750B2 (en) * 2007-04-27 2011-11-09 日本コンピューター・システム株式会社 COLOR CONVERSION PROGRAM, COMPUTER-READABLE RECORDING MEDIUM CONTAINING THE SAME, AND COLOR CONVERSION DEVICE
JP2009171402A (en) * 2008-01-18 2009-07-30 Ricoh Co Ltd Image processing apparatus, image processing method, and program
JP2010187330A (en) * 2009-02-13 2010-08-26 Riso Kagaku Corp Color converting apparatus and color conversion processing method
WO2018142658A1 (en) * 2017-02-01 2018-08-09 オリンパス株式会社 Image processing device, operating method for image processing device, and operating program for image processing device
JP6392486B1 (en) * 2017-02-01 2018-09-19 オリンパス株式会社 Endoscope system
US11882995B2 (en) 2017-02-01 2024-01-30 Olympus Corporation Endoscope system

Also Published As

Publication number Publication date
JP3173140B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
US5289295A (en) Color adjustment apparatus
JP4304623B2 (en) Imaging apparatus and method of processing imaging result in imaging apparatus
US7599551B2 (en) Color correction device and color correction method
US7116441B1 (en) Signal processing apparatus image processing apparatus and their methods
JP3830747B2 (en) Color reproduction range compression method and color reproduction range compression apparatus
JPH11341296A (en) Color area conversion method and color area converter
KR100509494B1 (en) Method for color saturation adjustment in an RGB color system
EP3961551B1 (en) Gamut conversion method and apparatus, and medium
JP3173140B2 (en) Color adjustment device
US5726682A (en) Programmable color space conversion unit
JP2000261824A (en) Method for storing space detail and color contents for adjustment of tone scale of digital color picture
US5442717A (en) Sharpness processing apparatus
JPH0296477A (en) Color regulating method
JP2000207548A (en) Method for controlling tone scale of digital image
KR20050049008A (en) Method and apparatus for compensating brightness of color signal
JPH09214792A (en) Color converting device
JP2001014454A (en) Picture processor
JP2876853B2 (en) Color converter
JP3654327B2 (en) Color conversion device
JPH04335771A (en) Color correcting device
US5657068A (en) Color image processing apparatus and conversion method
US7227552B1 (en) Image processing apparatus and method and storage medium
JPH04304775A (en) Color correction method for color picture signal
JP2774879B2 (en) Color correction circuit
JP3641402B2 (en) Color correction circuit and color correction method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees