JPH0524426A - Suspension device for vehicle - Google Patents

Suspension device for vehicle

Info

Publication number
JPH0524426A
JPH0524426A JP2884591A JP2884591A JPH0524426A JP H0524426 A JPH0524426 A JP H0524426A JP 2884591 A JP2884591 A JP 2884591A JP 2884591 A JP2884591 A JP 2884591A JP H0524426 A JPH0524426 A JP H0524426A
Authority
JP
Japan
Prior art keywords
sprung
damping coefficient
damping
control
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2884591A
Other languages
Japanese (ja)
Other versions
JP2902134B2 (en
Inventor
Satoru Takahashi
哲 高橋
Hiroyuki Shimizu
浩行 清水
Makoto Kimura
誠 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Atsugi Unisia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsugi Unisia Corp filed Critical Atsugi Unisia Corp
Priority to JP3028845A priority Critical patent/JP2902134B2/en
Priority to US07/836,707 priority patent/US5430646A/en
Priority to DE4205223A priority patent/DE4205223C2/en
Priority to DE4244871A priority patent/DE4244871C2/en
Priority to GB9203751A priority patent/GB2254122B/en
Publication of JPH0524426A publication Critical patent/JPH0524426A/en
Application granted granted Critical
Publication of JP2902134B2 publication Critical patent/JP2902134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/206Body oscillation speed; Body vibration frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • B60G2400/91Frequency

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To reduce deteriorated transmission characteristics of a sprung component due to delayed control for improved riding comfortability by carrying out high damping avoidance control which does not increase damping coefficient to a prescribed high value when the oscillation frequency of a sprung component is higher than a prescribed dead frequency. CONSTITUTION:A shock absorber 1 is formed so that damping coefficient may change. A controller 2 performs low damping control which takes the damping coefficient as a prescribed low one when the speed of a sprung component which an acceleration sensor 4 detects exceeds zero and becomes a different symbol from the relative speed between the sprung component and an unsprung component which a load sensor 4 detects, and high damping control which takes the damping coefficient as a prescribed high one when the relative speed exceeds zero and becomes the same symbol as the speed of the sprung component. When the oscillation frequency of the sprung component is higher than a prescribed fixed frequency even if the conditions for carrying out high damping control are satisfied, the controller performs high damping avoidance control which takes the damping coefficient as medium damping coefficient. It is thus possible to reduce deteriorated transmission characteristics of the sprung component due to delayed control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両の懸架装置に関
し、特に、減衰係数を可変のショックアブソーバを有し
たものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a suspension system for a vehicle, and more particularly to a suspension system having a variable damping coefficient.

【0002】[0002]

【従来の技術】従来、減衰係数可変のショックアブソー
バを有した車両懸架装置として、例えば、特開昭61−
163011号公報に記載されているものが知られてい
る。
2. Description of the Related Art Conventionally, as a vehicle suspension system having a shock absorber with a variable damping coefficient, for example, Japanese Patent Laid-Open Publication No. 61-
The one described in Japanese Patent No. 163011 is known.

【0003】この従来装置は、ばね上速度及びばね上−
ばね下間の相対速度を求め、ばね上速度の符号と相対速
度の符号とが一致した時にはショックアブソーバを高減
衰係数に制御し、一致しない時には低減衰係数に制御し
ていた。
This conventional device has a sprung mass velocity and a sprung mass-
The relative velocity between unsprung parts was obtained, and when the sign of the sprung velocity and the sign of the relative velocity were in agreement, the shock absorber was controlled to a high damping coefficient, and when they were not in agreement, it was controlled to a low damping coefficient.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
従来装置では、ばね上振動周波数がばね上共振周波数付
近の低い周波数で振動している場合は問題ないが、ばね
上伝達率特性上のばね上共振周波数よりも高く、さら
に、減衰係数に影響のない所定の不動周波数を越えた連
続的な路面入力がある場合、制御の電気的遅れや液圧の
応答遅れの影響等より制御タイミングがずれて乗り心地
が悪化するという問題があった。
However, in the above-mentioned conventional device, there is no problem when the sprung mass vibration frequency is vibrating at a low frequency near the sprung mass resonance frequency, but the sprung mass ratio on the sprung mass ratio characteristic is large. When there is a continuous road surface input that is higher than the resonance frequency and exceeds the predetermined immovable frequency that does not affect the damping coefficient, the control timing may be deviated due to the influence of electrical delay of control or response delay of hydraulic pressure. There was a problem that the riding comfort deteriorates.

【0005】本発明は上記のような問題に着目してなさ
れてもので、制御遅れによるばね上伝達特性の悪化を低
減して乗り心地を向上させることができる車両懸架装置
を提供することを目的とする。
The present invention has been made in view of the above problems, and therefore an object of the present invention is to provide a vehicle suspension system capable of reducing deterioration of sprung transmission characteristics due to control delay and improving riding comfort. And

【0006】[0006]

【課題を解決するための手段】本発明では、減衰係数制
御手段が高減衰係数制御を行う条件であっても、ばね上
振動周波数が、ばね上共振周波数よりも高周波数域に存
在して高減衰係数でも低減衰係数でもばね上伝達率が変
化することのない所定の不動周波数よりも高い際には、
減衰係数を所定の高い値まで高めない高減衰回避制御を
行うようにして上述の目的を達成することとした。
According to the present invention, even if the damping coefficient control means performs the high damping coefficient control, the sprung vibration frequency is higher and higher than the sprung resonance frequency. When the sprung mass transfer coefficient is higher than the predetermined immovable frequency at which the sprung mass coefficient does not change, whether it is a damping coefficient or a low damping coefficient,
It was decided to achieve the above object by performing high damping avoidance control that does not increase the damping coefficient to a predetermined high value.

【0007】すなわち、本発明の車両懸架装置は、車両
のばね上とばね下との間に設けられて減衰係数を変更可
能に形成されたショックアブソーバと、ばね上速度を検
出するばね上速度検出手段と、ばね上−ばね下間の相対
速度を検出する相対速度検出手段と、両検出手段からの
入力信号に基づき、ばね上速度が0を越えて相対速度と
異符号となった時に減衰係数を所定の低い値とする低減
衰制御を行い、相対速度が0を越えてばね上速度と同符
号となった時に減衰係数を所定の高い値とする高減衰制
御を行う減衰係数制御手段とを備えた車両懸架装置にお
いて、車両のばね上振動周波数を検出する周波数検出手
段を設け、前記減衰係数制御手段が、前記高減衰係数制
御を行う条件が成立しても、前記周波数検出手段で得ら
れるばね上振動周波数が、ばね上共振周波数よりも高周
波数域に存在して高減衰係数でも低減衰係数でもばね上
伝達率が変化することのない所定の不動周波数よりも高
い際には、減衰係数を所定の高い値まで高めない高減衰
回避制御を行うよう手段とした。
That is, the vehicle suspension system of the present invention comprises a shock absorber which is provided between the sprung portion and the unsprung portion of the vehicle so that the damping coefficient can be changed, and the sprung portion speed detecting portion for detecting the sprung portion speed. Means, a relative speed detecting means for detecting the relative speed between the sprung part and the unsprung part, and a damping coefficient when the sprung speed exceeds 0 and has a different sign from the relative speed, based on input signals from both detecting means. To a predetermined low value, and when the relative speed exceeds 0 and has the same sign as the sprung speed, the high-damping coefficient control means sets the high damping value to a predetermined high value. In the vehicle suspension device provided with, frequency detection means for detecting the sprung vibration frequency of the vehicle is provided, and the damping coefficient control means obtains the frequency detection means even if the condition for performing the high damping coefficient control is satisfied. Spiral vibration circumference If the number is higher than a predetermined immovable frequency that exists in a frequency range higher than the sprung resonance frequency and does not change the sprung transmissibility at a high damping coefficient or a low damping coefficient, the damping coefficient is set to a predetermined value. A means for performing high damping avoidance control that does not increase to a high value is adopted.

【0008】尚、請求項2記載の発明は、前記周波数検
出手段が、ばね上速度が0を越えた時点で、時間計測を
開始すると共に、その時点でのばね上加速度を求め、次
に、相対速度が0を越えてばね上速度と同符号となった
時点で、時間計測を終了すると共に、その時点でのばね
上加速度を求め、前記計測した時間及び両時点でのばね
上加速度からばね上振動周波数を求める手段とした。
According to the second aspect of the invention, when the frequency detecting means starts time measurement when the sprung speed exceeds 0, the sprung acceleration at that time is calculated, and then, When the relative speed exceeds 0 and has the same sign as the sprung speed, the time measurement is ended, the sprung acceleration at that time is obtained, and the spring is calculated from the measured time and the sprung acceleration at both times. It was used as a means for obtaining the upper vibration frequency.

【0009】[0009]

【作用】車両の走行に伴ない連続的な路面入力がある場
合、ばね上速度及び相対速度が高減衰制御を行うのが最
適である値を示してもばね上振動周波数が不動周波数よ
りも高い時には、高減衰回避制御を行って、減衰係数が
所定の高い値とならないようにする。すなわち、低減衰
係数に保持したり、高減衰制御を行った場合の減衰係数
よりも低い所定の減衰係数に制御する。
When the road surface is continuously input as the vehicle travels, the sprung mass vibration frequency is higher than the immovable frequency even if the sprung mass velocity and the relative velocity show the optimum values for high damping control. At times, high damping avoidance control is performed so that the damping coefficient does not reach a predetermined high value. That is, the damping coefficient is maintained at a low damping coefficient, or is controlled to a predetermined damping coefficient lower than the damping coefficient when high damping control is performed.

【0010】従って、電気的な応答遅れや液圧伝達の応
答遅れ等による制御遅れがあったとしても、減衰係数が
高くないため、このようなタイミングのずれを原因とす
る乗り心地の悪化を抑制できる。
Therefore, even if there is a control delay due to an electrical response delay or a hydraulic pressure transmission response delay, since the damping coefficient is not high, deterioration of the riding comfort due to such timing deviation is suppressed. it can.

【0011】[0011]

【実施例】本発明実施例を図面に基づいて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0012】まず、構成を説明する。First, the structure will be described.

【0013】図1は本発明実施例の車両懸架装置1を示
す全体図であって、図中1はショックアブソーバを示し
ている。このショックアブソーバ1は、ピストンロッド
1aの上端を車体に支持され、外筒1bの下端を車輪側
に連結されている。そして、このショックアブソーバ1
の内部には、コントローラ2から出力される電圧に応じ
て減衰係数を3段階に変更可能に構成されている。尚、
この減衰係数を変更するための構成としては、例えば、
従来技術で提示した公報に記載されているものを適用し
て構成することができるので説明は省略する。ちなみ
に、この公報のものは、プランジャを上下に変位させる
ことでバイパス路を開閉してすることにより減衰係数を
高・低2段階に変更可能に構成されているもので、この
プランジャを上・中・下の3段階に変位させることで減
衰力特性を3段階に変更させることができる。
FIG. 1 is an overall view showing a vehicle suspension system 1 according to an embodiment of the present invention, in which 1 denotes a shock absorber. In this shock absorber 1, an upper end of a piston rod 1a is supported by a vehicle body, and a lower end of an outer cylinder 1b is connected to a wheel side. And this shock absorber 1
The inside of is configured such that the attenuation coefficient can be changed in three stages in accordance with the voltage output from the controller 2. still,
As a configuration for changing this damping coefficient, for example,
Since the structure described in the official gazette presented in the related art can be applied and configured, the description thereof will be omitted. By the way, according to this publication, the damping coefficient can be changed between high and low by opening and closing the bypass path by displacing the plunger up and down.・ The displacement characteristics can be changed in 3 steps by displacing in 3 steps below.

【0014】前記コントローラ2には、加速度センサ3
と荷重センサ4が接続されている。この加速度センサ3
は、ばね上である車体の上下加速度Gを検出するもの
で、ばね上速度の状態を検出するために設けられてい
る。また、荷重センサ4は、ピストンロッド1aの車体
への取付部分に設けられて荷重を検出するものである
が、この荷重は、ばね上−ばね下間の相対速度VR 及び
ショックアブソーバ1の発生減衰力に相当しているもの
で、以後、本実施例では荷重センサ4で検出される荷重
を相対速度VR と称することにする。
The controller 2 includes an acceleration sensor 3
And the load sensor 4 are connected. This acceleration sensor 3
Is for detecting the vertical acceleration G of the vehicle body on the spring, and is provided for detecting the state of the sprung speed. The load sensor 4 is provided at the mounting portion of the piston rod 1a on the vehicle body to detect the load. The load is generated by the relative speed V R between the sprung part and the unsprung part and the generation of the shock absorber 1. The load is equivalent to the damping force, and hereinafter, the load detected by the load sensor 4 will be referred to as a relative velocity V R in this embodiment.

【0015】次に、コントローラ2の制御内容を図2の
フローチャートにより説明する。
Next, the control contents of the controller 2 will be described with reference to the flowchart of FIG.

【0016】ステップ201は、加速度センサ3で得ら
れる上下加速度G及び荷重センサ4で得られる相対速度
R を読み込むステップである。
Step 201 is a step of reading the vertical acceleration G obtained by the acceleration sensor 3 and the relative velocity V R obtained by the load sensor 4.

【0017】ステップ202は、加速度センサ3で得ら
れる上下加速度Gを積分してばね上速度VU を演算する
ステップである。
In step 202, the vertical acceleration G obtained by the acceleration sensor 3 is integrated to calculate the sprung speed V U.

【0018】ステップ203は、ばね上速度VU が0か
どうかを判定するステップであり、NOの場合には0と
判定するまでこのステップ203を繰り返し、YESで
あればステップ204に進む。
Step 203 is a step for judging whether or not the sprung speed V U is 0. If NO, this step 203 is repeated until it is judged 0, and if YES, the routine proceeds to step 204.

【0019】ステップ204は、ばね上速度VU が0と
判定された時に、その時の上下加速度G1 を記憶すると
共に、内蔵する時間計測を開始するステップである。
In step 204, when the sprung speed V U is determined to be 0, the vertical acceleration G 1 at that time is stored and the built-in time measurement is started.

【0020】ステップ205は、相対速度VR が0かど
うかを判定するステップであって、NOであればステッ
プ206に進んで減衰係数を低減衰係数(図3において
Sで示す係数)とする低減衰制御を行ってステップ20
5に戻り、0かどうかの判定するまで繰り返す。一方、
ステップ205でYESと判定した場合にはステップ2
07に進む。
[0020] Step 205 is a step of determining whether the relative speed V R is 0, the damping coefficient proceeds to step 206, if NO low and low attenuation coefficient (coefficient indicated by S in FIG. 3) Step 20 after performing damping control
It returns to 5 and repeats until it is judged whether it is 0 or not. on the other hand,
If YES in step 205, step 2
Proceed to 07.

【0021】ステップ207は、相対速度VR が0と判
定された時に、その時の上下加速度G2 を記憶すると共
に、ステップ204で開始した時間計測を停止して、ば
ね上速度VU が0となってから次に相対速度VR が0と
なるまでの時間T0 を求めるステップである。
In step 207, when the relative velocity V R is determined to be 0, the vertical acceleration G 2 at that time is stored, and the time measurement started in step 204 is stopped to set the sprung velocity V U to 0. This is the step of obtaining the time T 0 from when the relative speed V R becomes 0 next time.

【0022】ステップ208は、記憶した上下加速度G
1 ,G2 及び時間T0 に基づきばね上振動周波数Hz
演算するステップである。
In step 208, the stored vertical acceleration G is stored.
This is a step of calculating the sprung vibration frequency H z based on 1 , G 2 and time T 0 .

【0023】すなわち、図3の特性図にも示すように、
ばね上速度VU は、以下の式で表すことができる。従
って、上下加速度Gは、式で表すことができる。そこ
で、ばね上速度が0である時の上下加速度G1 及び相対
速度VR が0である時の上下加速度G2 は、,式で
表せる。よって、ωは式で得られ、さらに、ばね上振
動周波数Hz は、式で得られる。
That is, as shown in the characteristic diagram of FIG.
The sprung speed V U can be expressed by the following equation. Therefore, the vertical acceleration G can be expressed by an equation. Therefore, the vertical acceleration G 1 when the sprung speed is 0 and the vertical acceleration G 2 when the relative speed V R is 0 can be expressed by the following equation. Therefore, ω is obtained by the equation, and the sprung vibration frequency H z is obtained by the equation.

【0024】[0024]

【数1】 [Equation 1]

【0025】ステップ209は、得られたばね上振動周
波数HZ が不動周波数fn 以上かどうかを判定するステ
ップであって、NOの場合にはステップ210に進み、
YESの場合にはステップ211に進む。尚、前記不動
周波数fn とは、ばね上共振周波数fu よりも高周波数
において、高減衰係数の時の特性と低減衰係数である時
の特性とが同じ特性となって、ばね上伝達率が減衰係数
の影響を受けない状態となる周波数のことをいうもので
ある。尚、図4は、ばね上伝達率特性図であって、fu
はばね上共振周波数,fs はばね下共振周波数を示して
いる。そして、Aの領域は低減衰係数(一点鎖線)より
も高減衰係数(実線)の方がばね上伝達率が低く、コン
トローラ遅れが発生しても問題がない領域であるのに対
し、Bの領域は、逆に高減衰係数(点線)の方がそれよ
りも低い減衰係数(実線:尚、この実線は、図3におい
てMで示す中間の減衰係数に対応している。)よりもば
ね上伝達率が低くなっている。
Step 209 is a step of judging whether or not the obtained sprung mass vibration frequency H Z is higher than or equal to the immovable frequency f n , and in the case of NO, the routine proceeds to step 210,
If YES, the process proceeds to step 211. The immovable frequency f n is the same as the characteristic when the damping coefficient is high and the characteristic when the damping coefficient is low at a frequency higher than the sprung resonance frequency f u. Is the frequency at which is not affected by the damping coefficient. Incidentally, FIG. 4 is a on transmissibility characteristic diagram spring, f u
Represents the sprung resonance frequency and f s represents the unsprung resonance frequency. In the area A, the high damping coefficient (solid line) has a lower sprung transmissibility than the low damping coefficient (dashed line), and there is no problem even if a controller delay occurs. On the contrary, in the region, the higher damping coefficient (dotted line) is sprung than the lower damping coefficient (solid line: the solid line corresponds to the intermediate damping coefficient indicated by M in FIG. 3). The transmission rate is low.

【0026】そして、ステップ210は、減衰係数を所
定の高い値(図3においてHで示す係数)に制御する高
減衰制御を行うステップである。
Then, step 210 is a step of performing high damping control for controlling the damping coefficient to a predetermined high value (coefficient indicated by H in FIG. 3).

【0027】ステップ212は、ばね上速度VU と相対
速度VR とが同じ符号かどうかを判定するステップであ
って、YESであれはステップ210の処理を繰り返
し、NOであれば、スタートに戻る。
Step 212 is a step for judging whether the sprung speed V U and the relative speed V R have the same sign. If YES, the processing of step 210 is repeated, and if NO, return to the start. .

【0028】一方、ステップ211は、減衰係数を中減
衰係数(M)に制御する高減衰回避制御を行うステップ
である。即ち、ステップ207でYESと判定した場合
は、ばね上速度VU と相対速度VR とが同符号であるこ
とを示し、従来では、高減衰係数(H)に制御していた
が、本実施例では、この場合でも、このステップ211
で分るように、高減衰係数とせずに中減衰係数(M)と
する場合がある。
On the other hand, step 211 is a step of performing high damping avoidance control for controlling the damping coefficient to the medium damping coefficient (M). That is, if YES is determined in step 207, it indicates that the sprung speed V U and the relative speed V R have the same sign, and in the past, the high damping coefficient (H) was controlled. In the example, even in this case, this step 211
In some cases, the medium damping coefficient (M) may be used instead of the high damping coefficient, as can be seen from.

【0029】ステップ213は、ばね上速度VU と相対
速度VR とが同じ符号かどうかを判定するステップであ
って、YESであればステップ211の処理を繰り返
し、NOであればスタートに戻る。
Step 213 is a step of determining whether the sprung speed V U and the relative speed V R have the same sign. If YES, the processing of step 211 is repeated, and if NO, the process returns to the start.

【0030】次に、作用について説明する。Next, the operation will be described.

【0031】本実施例では、ばね上速度VU と相対速度
R とが同符号であっても、ばね上振動周波数Hz が不
動周波数fn 以上である場合には、高減衰係数Hに制御
することなく中減衰係数Mに制御する。
In this embodiment, even if the sprung speed V U and the relative speed V R have the same sign, when the sprung vibration frequency H z is the immovable frequency f n or higher, the high damping coefficient H is set. The medium damping coefficient M is controlled without control.

【0032】従って、不動周波数fn 以上の振動周波数
域において、電気的遅れや液圧伝達遅れが生じて制御タ
イミングがずれるようなことがあっても、それにより乗
り心地に与える影響が生じ難くなる。また、図4は、本
実施例のばね上伝達率(実線で示す)と従来のばね上伝
達特性(点線で示す)とを比較した特性図であって、不
動周波数fn よりも上の領域でばね上伝達率が低下して
いるのが分る。このように、本実施例は、ばね上伝達率
を低下させて乗り心地を向上させることができるという
特徴を有している。
Therefore, even if the control timing is deviated due to electrical delay or hydraulic pressure transmission delay in the vibration frequency range of the immovable frequency f n or higher, the influence on the riding comfort is less likely to occur. . Further, FIG. 4 is a characteristic diagram comparing the sprung transmission rate of the present embodiment (shown by the solid line) and the conventional sprung transmission characteristic (shown by the dotted line), which is a region above the immovable frequency f n. It can be seen that the sprung transmissibility has decreased. As described above, the present embodiment is characterized in that the sprung transmission rate can be reduced and the riding comfort can be improved.

【0033】加えて、本実施例では、ばね上振動周波数
z を、ばね上速度が0となってから相対速度が0とな
るまでの間に検出するようにしているため、ばね上振動
周波数Hz の検出が短時間に行え、制御応答性の向上を
図ることができる。
In addition, in the present embodiment, the sprung vibration frequency H z is detected from when the sprung speed becomes 0 to when the relative speed becomes 0. It is possible to detect H z in a short time and improve the control response.

【0034】以上、実施例について説明してきたが具体
的な構成はこの実施例に限られるものではなく、例え
ば、実施例では、高減衰係数制御の際に、高低の中間の
中減衰係数に制御する手段としたが、低減衰制御時と同
様に低減衰係数に制御するようにしてもよい。この場
合、ステップ211において、低周波数に制御するよう
にする。また、ショックアブソーバの減衰係数を変更す
るための手段は、実施例で提示した構成に限られるもの
ではなく、要は減衰係数を変更できる構造であればどの
うような構造を適用してもよい。また、実施例では、ば
ね上振動周波数を、ばね上速度が0を越えた時点と相対
速度が0を越えた時点とのばね上加速度及びそれに要し
た時間を元に求めるようにしたが、例えば、ばね上の振
動ストロークを電圧に変換して検出するような、他の周
知のものを用いてもよい。
Although the embodiment has been described above, the specific configuration is not limited to this embodiment. For example, in the embodiment, when the high damping coefficient is controlled, the intermediate damping coefficient of high and low is controlled. However, it is also possible to control to a low damping coefficient as in the case of low damping control. In this case, in step 211, the frequency is controlled to be low. Further, the means for changing the damping coefficient of the shock absorber is not limited to the configuration presented in the embodiment, and any structure may be applied as long as the damping coefficient can be changed. . In the embodiment, the sprung vibration frequency is calculated based on the sprung acceleration at the time when the sprung speed exceeds 0 and the time when the relative speed exceeds 0, and the time required for that. Other well-known ones such as converting a vibration stroke on the spring into a voltage and detecting the voltage may be used.

【0035】[0035]

【発明の効果】以上説明してきたように本発明の車両懸
架装置にあっては、減衰係数制御手段が高減衰係数制御
を行う条件であっても、ばね上振動周波数が、不動周波
数よりも高い際には、減衰係数制御手段が減衰係数を所
定の高い値まで高めない高減衰回避制御を行う手段とし
たため、車両の走行に伴ない連続的な路面入力がある場
合に、ばね上が不動周波数よりも高い周波数で振動して
いる時には、減衰係数が所定の高い値となることはな
く、これにより、電気的な応答遅れや液圧伝達の応答遅
れ等による制御遅れがあったとしても、乗り心地の悪化
を抑制できるという効果が得られる。
As described above, in the vehicle suspension system of the present invention, the sprung vibration frequency is higher than the immovable frequency even under the condition that the damping coefficient control means performs the high damping coefficient control. In this case, the damping coefficient control means is a means for performing high damping avoidance control that does not increase the damping coefficient to a predetermined high value.Therefore, when there is continuous road surface input accompanying the traveling of the vehicle, the sprung mass has a fixed frequency. When vibrating at a higher frequency, the damping coefficient does not reach a predetermined high value, and even if there is a control delay due to electrical response delay or hydraulic pressure transmission response delay, etc. The effect of suppressing the deterioration of comfort can be obtained.

【0036】加えて、請求項2記載の発明にあっては、
周波数検出手段が、ばね上速度が0を越えた時点と相対
速度が0を越えた時点とのばね上加速度及びそれに要し
た時間を元にばね上振動周波数を求める手段としたた
め、ばね上振動が1行程成される前にばね上振動周波数
を検出でき、短時間でばね上振動周波数を検出して制御
応答性を高めることができるという効果が得られる。
In addition, according to the invention of claim 2,
Since the frequency detecting means is a means for obtaining the sprung vibration frequency based on the sprung acceleration at the time when the sprung speed exceeds 0 and the time when the relative speed exceeds 0 and the time required for that, the sprung vibration is generated. The sprung vibration frequency can be detected before one stroke is completed, and the sprung vibration frequency can be detected in a short time to enhance the control response.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の車両懸架装置を示す全体図であ
る。
FIG. 1 is an overall view showing a vehicle suspension device according to an embodiment of the present invention.

【図2】実施例装置のコントローラの作動流れを示すフ
ローチャートである。
FIG. 2 is a flowchart showing an operation flow of a controller of the embodiment apparatus.

【図3】実施例装置のばね上速度,相対速度,減衰係数
の特性図である。
FIG. 3 is a characteristic diagram of a sprung speed, a relative speed, and a damping coefficient of the embodiment apparatus.

【図4】実施例装置のばね上伝達率特性図である。FIG. 4 is a sprung transmissivity characteristic diagram of the embodiment apparatus.

【符号の説明】[Explanation of symbols]

1 ショックアブソーバ 2 コントローラ(周波数検出手段,減衰係数制御手
段) 3 加速度センサ(ばね上速度検出手段,周波数検出手
段) 4 荷重センサ(相対速度検出手段)
1 Shock absorber 2 Controller (frequency detection means, damping coefficient control means) 3 Acceleration sensor (spring speed detection means, frequency detection means) 4 Load sensor (relative speed detection means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 車両のばね上とばね下との間に設けら
れ、減衰係数を変更可能に形成されたショックアブソー
バと、ばね上速度を検出するばね上速度検出手段と、ば
ね上−ばね下間の相対速度を検出する相対速度検出手段
と、両検出手段からの入力信号に基づき、ばね上速度が
0を越えて相対速度と異符号となった時に減衰係数を所
定の低い値とする低減衰制御を行い、相対速度が0を越
えてばね上速度と同符号となった時に減衰係数を所定の
高い値とする高減衰制御を行う減衰係数制御手段とを備
えた車両懸架装置において、 車両のばね上振動周波数を検出する周波数検出手段を設
け、 前記減衰係数制御手段が、前記高減衰係数制御を行う条
件が成立しても、前記周波数検出手段で得られるばね上
振動周波数が、ばね上共振周波数よりも高周波数域に存
在して高減衰係数でも低減衰係数でもばね上伝達率が変
化することのない所定の不動周波数よりも高い際には、
減衰係数を所定の高い値まで高めない高減衰回避制御を
行うようにしたことを特徴とする車両懸架装置。
1. A shock absorber, which is provided between a sprung portion and an unsprung portion of a vehicle and has a variable damping coefficient, sprung speed detecting means for detecting sprung speed, and sprung-unsprung portion. Based on the input signals from the relative speed detecting means and the relative speed detecting means for detecting the relative speed between the two, the damping coefficient is set to a predetermined low value when the sprung speed exceeds 0 and has a different sign from the relative speed. A vehicle suspension system comprising: a damping coefficient control means for performing damping control, and performing high damping control for increasing a damping coefficient to a predetermined high value when the relative speed exceeds 0 and has the same sign as the sprung speed, Frequency detection means for detecting the sprung vibration frequency is provided, and even if the condition for the damping coefficient control means to perform the high damping coefficient control is satisfied, the sprung vibration frequency obtained by the frequency detection means is Higher than the resonance frequency When higher than a predetermined stationary frequency never present in the wavenumber range sprung transfer rate in even lower attenuation coefficient at a high damping coefficient is changed,
A vehicle suspension system characterized by performing high damping avoidance control that does not increase the damping coefficient to a predetermined high value.
【請求項2】 前記周波数検出手段が、ばね上速度が0
を越えた時点で、時間計測を開始すると共に、その時点
でのばね上加速度を求め、次に、相対速度が0を越えて
ばね上速度と同符号となった時点で、時間計測を終了す
ると共に、その時点でのばね上加速度を求め、前記計測
した時間及び両時点でのばね上加速度からばね上振動周
波数を求める手段であることを特徴とする請求項1記載
の車両懸架装置。
2. The sprung speed of the frequency detecting means is 0.
When the time exceeds, the time measurement is started, and the sprung acceleration at that time is obtained. Then, when the relative speed exceeds 0 and has the same sign as the sprung speed, the time measurement is ended. The vehicle suspension device according to claim 1, further comprising means for obtaining a sprung acceleration at that time and obtaining a sprung vibration frequency from the measured time and the sprung acceleration at both times.
JP3028845A 1991-02-22 1991-02-22 Vehicle suspension system Expired - Lifetime JP2902134B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3028845A JP2902134B2 (en) 1991-02-22 1991-02-22 Vehicle suspension system
US07/836,707 US5430646A (en) 1991-02-22 1992-02-18 System and method for controlling damping force coefficient of shock absorber applicable to automotive supension
DE4205223A DE4205223C2 (en) 1991-02-22 1992-02-20 Damping force control system for the suspension of a vehicle
DE4244871A DE4244871C2 (en) 1991-02-22 1992-02-20 Control system for vehicular hydraulic suspension damping coefft.
GB9203751A GB2254122B (en) 1991-02-22 1992-02-21 Automotive shock absorber damping force coefficient control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3028845A JP2902134B2 (en) 1991-02-22 1991-02-22 Vehicle suspension system

Publications (2)

Publication Number Publication Date
JPH0524426A true JPH0524426A (en) 1993-02-02
JP2902134B2 JP2902134B2 (en) 1999-06-07

Family

ID=12259707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3028845A Expired - Lifetime JP2902134B2 (en) 1991-02-22 1991-02-22 Vehicle suspension system

Country Status (1)

Country Link
JP (1) JP2902134B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997455A (en) * 1997-07-23 1999-12-07 Brother Kogyo Kabushiki Kaisha Tool clamp mechanism with shortened spindle
US8914193B2 (en) 2009-02-23 2014-12-16 Toyota Jidosha Kabushiki Kaisha Damping force control apparatus
CN105818636A (en) * 2015-01-28 2016-08-03 通用汽车环球科技运作有限责任公司 Method for operating a motor vehicle, computer software product, chassis arrangement and motor vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997455A (en) * 1997-07-23 1999-12-07 Brother Kogyo Kabushiki Kaisha Tool clamp mechanism with shortened spindle
US8914193B2 (en) 2009-02-23 2014-12-16 Toyota Jidosha Kabushiki Kaisha Damping force control apparatus
CN105818636A (en) * 2015-01-28 2016-08-03 通用汽车环球科技运作有限责任公司 Method for operating a motor vehicle, computer software product, chassis arrangement and motor vehicle

Also Published As

Publication number Publication date
JP2902134B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
US5377107A (en) System and method for controlling damping force characteristic of shock absorber applicable to automotive suspension
JP2616141B2 (en) Suspension or stabilizer control
KR0177352B1 (en) Automotive vehicle suspension control system
US5521821A (en) Suspension control system for automotive vehicle
US4821189A (en) Method for the damping force adjustment of motor vehicles as a function of output signals of a transmitter arranged at the vehicle body
US5430646A (en) System and method for controlling damping force coefficient of shock absorber applicable to automotive supension
JPH0524426A (en) Suspension device for vehicle
JP2954411B2 (en) Vehicle suspension system
JP3070623B2 (en) Damping force control device
JP2953675B2 (en) Vehicle suspension system
JP3396117B2 (en) Vehicle suspension system
JPH05112114A (en) Signal generating device in vehicle
JP3083116B2 (en) Vehicle suspension system
JPH0524425A (en) Suspension device for vehicle
JP3220490B2 (en) Vehicle suspension system
JP3075494B2 (en) Vehicle suspension system
WO2021255557A1 (en) Control device, vehicle, and control method
JP2550998Y2 (en) Damping force control device
JP3379742B2 (en) Vehicle suspension system
JP3358117B2 (en) Vehicle suspension system
JP3533914B2 (en) Control device for vehicle suspension system
JPH08216642A (en) Vehicle suspension device
JPH0550829A (en) Suspension deivce for vehicle
JP3019461B2 (en) Damping force control device
JPH04191113A (en) Damping force control device