JPH0524208B2 - - Google Patents

Info

Publication number
JPH0524208B2
JPH0524208B2 JP58127483A JP12748383A JPH0524208B2 JP H0524208 B2 JPH0524208 B2 JP H0524208B2 JP 58127483 A JP58127483 A JP 58127483A JP 12748383 A JP12748383 A JP 12748383A JP H0524208 B2 JPH0524208 B2 JP H0524208B2
Authority
JP
Japan
Prior art keywords
copper
groups
group
chelate resin
containing ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58127483A
Other languages
Japanese (ja)
Other versions
JPS6021342A (en
Inventor
Arinobu Kataoka
Kimiaki Matsuda
Kenji Ochi
Masahiro Aoi
Kunitake Chino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58127483A priority Critical patent/JPS6021342A/en
Publication of JPS6021342A publication Critical patent/JPS6021342A/en
Publication of JPH0524208B2 publication Critical patent/JPH0524208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、銅含有鉱石浸出液より銅を回収する
方法に関するものである。さらに詳しくは、キレ
ート樹脂を用いて、銅含有鉱石浸出液中の銅を経
済的に回収する方法に関するものである。 近年銅製錬の分野では、資源の枯渇化が進み、
従来の乾式製錬法(以下乾式法と呼ぶ)では処理
の対象とされていなかつた低品位鉱であつても、
処理する必要が生じてきている。そして、湿式製
錬法(以下湿式法と呼ぶ)の抽出工程で使用する
抽出剤として性能的に優れたものが開発されてき
たこと等が、銅製錬の乾式法から湿式法への転換
に拍車をかけている。 湿式法による銅の製錬は、銅含有鉱石に対し硫
酸又はアンモニアによる浸出処理を行い、銅成分
を銅鉱石から溶出させた浸出液を、有機抽出剤と
接触させて浸出液から銅成分を抽出し、次いでこ
の銅含有有機抽出液を約100g/濃度の硫酸水
溶液と接触させて硫酸水溶液側へ銅成分を逆抽出
せしめ、この抽出液を電解するか、あるいは薬剤
により還元処理して、銅を沈澱回収する方法が一
般に行われている。 しかしながら湿式法は、抽出工程で使用する油
出剤が液状であるため、抽出剤及び溶剤の一部が
浸出液及び逆抽出液側に溶解ロスするという問題
があり、またケロシン等の危険な有機溶剤を大量
に使用するために保安上の問題があり、経済上及
び公害対策上、必ずしも十分に満足されたもので
はない。 一方、上記不都合を解決するために、アミノカ
ルボン酸タイプのキレート樹脂を用いて、銅鉱石
硫酸浸出液中の銅を吸着回収する試みがなされて
いる〔例えばTsvet.Metal.43(10)、20〜22(1970)〕。
しかし、アミノカルボン酸基を有するキレート樹
脂は、銅イオンの吸着能力があまり大きくなく、
また銅イオンに対する選択吸着性に乏しいことか
ら、この方法は、大量のキレート樹脂を必要と
し、十分満足されたものとはいえないため、実用
化までには至つていない。 かかる事情に鑑み本発明者らは、上記不都合を
克服した湿式銅製錬法を開発すべく鋭意研究した
結果、湿式法銅含有鉱石浸出液から銅を抽出する
にあたつて、特定の官能基を有するキレート樹脂
を使用すれば上記不都合を克服することができる
ことを見出し、本発明を完成するに至つた。 すなわち本発明は、銅含有鉱石から銅金属を回
収する湿式製錬工程の銅含有鉱石浸出液を、グア
ニジノ基、アミドオキシム基、オキシム基、アミ
ジノ基、ホルマザン基、ジケトン基、及びアミノ
基とそのアミノ基のα−又はβ−位に水酸基又は
チオール基を有する基から選ばれた少なくとも一
種の官能基を有するキレート樹脂と接触させて、
銅イオンをそのキレート樹脂に吸着せしめ、この
銅吸着キレート樹脂を溶離剤と接触させて銅を溶
離せしめることを特徴とする銅含有鉱石浸出液よ
り銅を回収する方法を提供するものである。 本発明では、湿式製錬工程の銅含有鉱石浸出液
が処理の対象とされる。一般には、銅含有鉱石を
PH0.5〜3前後の硫酸水溶液又はPH8〜11のアン
モニア水溶液により溶出処理して得られる0.1〜
5g/濃度の銅を含有する浸出液が、好適に用
いられる。 本発明において用いられるキレート樹脂は、湿
式銅製錬工程の銅含有鉱石浸出液中に含まれる銅
を選択的に吸着する作用を奏する官能基として、
グアニジノ基、アミドオキシム基、オキシム基、
アミジノ基、ホルマザン基又はジケトン基を有す
るか、あるいは、アミノ基とそのアミノ基のα−
又はβ−位に水酸基又はチオール基を有するもの
である。もちろん、これらのうち二種以上の官能
基を有していてもよい。特に、グアニジノ基、ア
ミドオキシム基及びオキシム基から選ばれた少な
くとも一種の官能基を有するキレート樹脂、なか
でもグアニジノ基を有するキレート樹脂が好まし
く用いられる。 より具体的には、アミン反応性基あるいは1級
及び/又は2級のアミノ基を有する重合体に、ヒ
ドロキシルアミン、グアニジン、アミノグアニジ
ン、ジシアンジアミド、ビグアニド、ε−グアニ
ジノカプロン酸ヘキシルエステル、グアニジノ酢
酸、2,4−ジアミノフエノール、2,2′−ジヒ
ドロキシ−5−ジエチレントリアミノ−N,
N′−エタンジイリデンジアニリン、アセチルア
セトン、オキザリルクロリド、4−アミノベンズ
アミドオキシム、4−ジエチレントリアミノベン
ズアミドオキシム等、あるいはこれらの誘導体を
反応させて得られる、グアニジノ基、アミドオキ
シム基、オキシム基、アミノ基とそのα−若しく
はβ−位にある水酸基又はチオール基とからなる
基、あるいはジケトン基である官能基を一種以上
有するキレート樹脂が、好ましく用いられる。 また、このような官能基を結合する樹脂基体は
特に制限されないが、例えば、アクリロニトリル
−ジビニルベンゼン共重合体のようなニトリル基
を有する重合体、スチレン−ジビニルベンゼン共
重合体、フエノール樹脂、ポリ塩化ビニル等が挙
げられる。これらのうち、ニトリル基を有する重
合体は、そのニトリル基自身がアミン反応性基と
なりうるが、他のアミン反応性基、1級及び/又
は2級のアミノ基は、公知の方法によつて、樹脂
基体に導入することができる。 さて、銅含有鉱石浸出液中の銅を吸着捕集する
ものとして従来公知のアミノカルボン酸基を有す
るキレート樹脂の場合、銅イオン吸着性があまり
大きくなく、しかも銅に対する選択吸着性も低い
という不都合があつた。これに対し、本発明で特
定する上記官能基を有するキレート樹脂は、銅含
有鉱石中の例えばコバルト、ニツケル等に対して
はほとんど吸着性を示さないが、銅イオンに対し
ては高い吸着性を示し、特に従来公知とアミノカ
ルボン酸基を有するキレート樹脂に比較して銅イ
オン吸着性が2倍程度になるという、著しく優れ
た作用を発揮する。 本発明方法の実施にあたり、湿式製錬工程の銅
含有鉱石浸出液と上記銅イオン吸着性を有するキ
レート樹脂との接触工程は、一般に90℃以下、好
ましくは10〜60℃の温度において行えばよい。温
度が90℃以上になると加熱に要する費用が嵩むの
で好ましくない。また、上記キレート樹脂と湿式
製錬工程の銅含有鉱石浸出液との接触方法は特に
制限されるものでなく、例えば銅含有鉱石浸出液
へキレート樹脂を浸漬する方法、キレート樹脂を
充填した塔中へ銅含有鉱石浸出液を通す方法等が
一般に採用される。なかでも、処理操作上は、キ
レート樹脂を充填した塔中へ銅含有鉱石浸出液を
通液する方法が好適である。この場合、通液倍率
は、一般に1〜500容量部にて実施するのが好ま
しい。 キレート樹脂の使用量は特に制限されるもので
なく、処理対象とする銅含有鉱石浸出液中の銅濃
度、用いるキレート樹脂の種類等によつて変わる
が、これは適宜予備実験を行うことにより設定す
ることができる。また、銅含有鉱石浸出液とキレ
ート樹脂との接触時間も特に制限されないが、通
常は数秒以上、好ましくは1分〜24時間の範囲で
接触させればよい。 しかして、本発明で特定するキレート樹脂を用
いる場合には、銅を含有する鉱石浸出液中の銅イ
オンを選択的に吸着分離するという効果が達成さ
れる。 以上のようにして銅を吸着せしめたキレート樹
脂は、処理液と分離される。こうして銅を吸着捕
集したところのキレート樹脂は次いで、塩酸、硫
酸、硝酸、燐酸等の鉱酸からなる溶離剤と接触さ
せることにより、銅を溶離する。そして、溶離回
収された銅を含有する溶離液は、公知の方法、例
えば溶離液に鉄等を加え、イオン化傾向の差を利
用して金属銅を析出させる方法、二酸化硫黄等の
還元剤を加えて金属銅を析出さセる方法、電解に
より金属銅を析出させる方法等の還元処理が施さ
れ、金属銅を回収することができる。通常、処理
操作及び製品の純度の点より、溶離液を直接電解
する方法が好ましく採用される。 このように、溶離分離された銅を含有する溶離
液は、好ましくは引き続いて電解処理に付される
のであるが、この場合、電解電流効率や生産性向
上の観点から、電解処理に付される溶離液は、1
〜50g/濃度の銅を含む硫酸水溶液であること
が好ましく、より好ましくは5〜20g/濃度の
銅を含む硫酸水溶液である。そして、溶離液中の
銅濃度を高くするためには、このような電解層液
を溶離剤として再使用することにより行うのが、
より好ましい。また、電解槽の材質等の選定のう
えからも、溶離剤としては硫酸、それも0.5〜3
規定濃度の硫酸が好ましく用いられる。 以上詳述したような本発明方法によれば、公知
のアミノカルボン酸型キレート樹脂を用いる方法
に比較して、銅含有鉱石浸出液からの銅イオンの
吸着性能が著しく高く、極めて経済的な回収プロ
セスとなり、その経済的価値は極めて高いもので
ある。また、公知の湿式法抽出工程で使用されて
いる液状の抽出剤とは異なり、本発明で使用する
キレート樹脂は、水不溶性、難燃性で、かつ固体
高分子であるため、銅含有鉱石浸出液や溶離液等
への溶解ロスがないという優れた効果を有してい
る。したがつて、本発明方法の工業的価値は大な
るものである。 以下、実施例により本発明をさらに詳細に説明
するが、本発明はこれらによつて限定されるもの
ではない。 実施例 1 アクリロニトリルとジビニルベンゼンの共重合
体に、炭酸グアニジンを10重量%水酸化ナトリウ
ム水溶液溶媒下、100〜105℃において4時間反応
させて得たグアニジノ基を有するキレート樹脂の
1重量部を、Cu1020mg/、Co115mg/、
Ni921mg/濃度のCu、Co及びNiイオンを含む
PH2.1の硫酸処理銅鉱石浸出液50容量部に浸漬し、
1時間振盪処理を行つた。次いで、銅イオンを吸
着させたキレート樹脂を過分離し、10重量%硫
酸水溶液4容量部と室温で混合し、1時間ゆつく
りと撹拌して銅イオンを溶離させた。 溶離液中のCu、Co及びNi濃度は、Cu12600
mg/、Co25mg/、Ni200mg/であり、キレ
ート樹脂当たりの吸着量は、Cu50.4mg/g−樹
脂、Co0.1mg/g−樹脂、Ni0.8mg/g−樹脂であ
つた。また、液中に残存するCu、Co、Niイオ
ンの分析を行つたところ、Cu6mg/、Co111
mg/、Ni901mg/であつた。 以上より、本発明で用いるキレート樹脂は、銅
に対する選択吸着性に優れていることがわかる。 実施例 2〜11 キレート樹脂B: クロルメチル化スチレン−ジビニルベンゼン共
重合体に、炭酸グアニジンを10重量%水酸化ナト
リウム水溶液溶媒下、100〜105℃で4時間反応さ
せて得たグアニジノ基を有する樹脂。 キレート樹脂C: アクリロニトリル−ポリエチレングリコールジ
メタアクリレート共重合体に、硝酸グアニジンと
ヒドラジンを水溶媒下、95〜100℃で8時間反応
させて得たグアニジノ基とヒドラジノ基を有する
樹脂。 キレート樹脂D: アクリロニトリル−ジビニルベンゼン共重合体
に、4−ジエチレントリアミノベンズアミジンを
水溶媒、加圧下、120〜130℃で1時間反応させて
得たジエチレントリアミノ基とアミジノ基を有す
る樹脂。 キレート樹脂E: クロルメチル化スチレン−ジビニルベンゼン共
重合体に、3−フエニルホルマザンをN,N−ジ
メチルホルムアミド水溶液溶媒下、80〜100℃で
2時間反応させて得たホルマザン基を有する樹
脂。 キレート樹脂F: クロルメチル化スチレン−ジビニルベンゼン共
重合体に、ビグアニドを水溶媒下、90〜100℃で
6時間反応させて得たグアニジノ基を有する樹
脂。 キレート樹脂G: アクリロニトリル−ジビニルベンゼン共重合体
に、硫酸ヒドロキシルアミンとヒドラジンを水溶
媒下、90〜100℃で2時間反応させて得たアミド
オキシム基を有する樹脂。 キレート樹脂H: アクリロニトリル−ジビニルベンゼン共重合体
にジエチレントリアミンを水溶媒下、117〜123℃
で4時間反応させて得たアミノ化樹脂にさらに、
5−ブロム−2,2′−ジヒドロキシ−N,N′−エ
タンジイリデンジアニリンを、トルエン溶媒中、
ピリジン存在下にて、100〜105℃で6時間反応さ
せて得たシツフ塩基の−N=とそのβ−位に水酸
基を有する樹脂。 キレート樹脂I: アミノメチル化スチレン−ジビニルベンゼン共
重合体と5−ブロム−2−ヒドロキシ−2′−メル
カプト−N,N′−スクシニルジアニリンを、ト
ルエン溶媒中、ピリジン存在下にて、97〜103℃
で3時間反応させて得たシツフ塩基の−NH−と
そのβ−位に水酸基及びチオール基を有し、また
その−NH−にアミド結合しているジケトン基を
有する樹脂。 キレート樹脂J: ジエチレントリアミノ化アクリロニトリル−ジ
ビニルベンゼン共重合体に、エタノール溶媒中、
ナトリウムエトキシド存在下にて、アセト酢酸エ
チルを反応させて得たジケトン基を有する樹脂。 キレート樹脂K: キレート樹脂Jに、水溶媒中でヒドロキシルア
ミンを反応させて得たオキシム基及びアミド結合
しているケトン基を有する樹脂。 以上のキレート樹脂の各々1重量部を用い、実
施例1と同様にして、硫酸処理銅鉱石浸出液50容
量部と接触処理を行つた。その結果、液中の
Cu、Co、Ni濃度及び、Cu、Co、Niのキレート
樹脂当たりの吸着量は、第1表に示すようであつ
た。
The present invention relates to a method for recovering copper from a copper-containing ore leachate. More specifically, the present invention relates to a method for economically recovering copper in a copper-containing ore leachate using a chelate resin. In recent years, in the field of copper smelting, resources have been depleted,
Even if it is low-grade ore that cannot be processed using conventional pyrometallurgical methods (hereinafter referred to as pyrometallurgical methods),
There is a need to process it. The development of extractants with superior performance for use in the extraction process of the hydrometallurgical smelting method (hereinafter referred to as the "wet method") spurred the switch from the dry method to the wet method of copper smelting. is being applied. Copper smelting by the wet method involves leaching a copper-containing ore with sulfuric acid or ammonia, and contacting the leachate containing the copper components from the copper ore with an organic extractant to extract the copper components from the leachate. Next, this copper-containing organic extract is brought into contact with a sulfuric acid aqueous solution of approximately 100 g/concentration to back-extract the copper component to the sulfuric acid aqueous solution side, and this extract is electrolyzed or reduced with a chemical to recover the copper by precipitation. This method is commonly used. However, in the wet method, since the oil extractant used in the extraction process is liquid, there is a problem that a part of the extractant and solvent is dissolved and lost to the leachate and reverse extraction solution, and dangerous organic solvents such as kerosene are used. There are safety problems due to the use of large amounts of silica, and the results are not necessarily completely satisfactory from an economic and pollution control perspective. On the other hand, in order to solve the above-mentioned disadvantages, attempts have been made to adsorb and recover copper in copper ore sulfuric acid leachate using aminocarboxylic acid type chelate resins [for example, Tsvet.Metal. 43 (10), 20- 22 (1970)].
However, chelate resins with aminocarboxylic acid groups do not have a very large ability to adsorb copper ions,
In addition, this method requires a large amount of chelate resin due to poor selective adsorption of copper ions, and is not fully satisfactory, so it has not been put into practical use. In view of these circumstances, the present inventors conducted intensive research to develop a wet copper smelting method that overcomes the above-mentioned disadvantages, and found that when extracting copper from a wet method copper-containing ore leachate, The inventors have discovered that the above disadvantages can be overcome by using a chelate resin, and have completed the present invention. That is, the present invention uses a copper-containing ore leachate in a hydrometallurgical process for recovering copper metal from a copper-containing ore to contain guanidino groups, amidoxime groups, oxime groups, amidino groups, formazan groups, diketone groups, and amino groups and their amino groups. Contact with a chelate resin having at least one functional group selected from groups having a hydroxyl group or a thiol group at the α- or β-position of the group,
The present invention provides a method for recovering copper from a copper-containing ore leachate, which comprises adsorbing copper ions to a chelate resin, and contacting the copper-adsorbing chelate resin with an eluent to elute copper. In the present invention, a copper-containing ore leachate from a hydrometallurgical process is treated. Generally, copper-containing ores are
0.1 to 0.1 obtained by elution treatment with a sulfuric acid aqueous solution with a pH of around 0.5 to 3 or an ammonia aqueous solution with a pH of 8 to 11.
A leachate containing 5 g/concentration of copper is preferably used. The chelate resin used in the present invention has a functional group that selectively adsorbs copper contained in the copper-containing ore leachate in the hydrometallurgical copper smelting process.
guanidino group, amidoxime group, oxime group,
It has an amidino group, a formazan group, a diketone group, or an amino group and its α-
Or it has a hydroxyl group or a thiol group at the β-position. Of course, it may have two or more types of functional groups among these. In particular, a chelate resin having at least one functional group selected from a guanidino group, an amidoxime group, and an oxime group, especially a chelate resin having a guanidino group, is preferably used. More specifically, the polymer having an amine-reactive group or a primary and/or secondary amino group includes hydroxylamine, guanidine, aminoguanidine, dicyandiamide, biguanide, ε-guanidinocaproic acid hexyl ester, guanidinoacetic acid, 2,4-diaminophenol, 2,2'-dihydroxy-5-diethylenetriamino-N,
N'-ethanediylidene dianiline, acetylacetone, oxalyl chloride, 4-aminobenzamidoxime, 4-diethylenetriaminobenzamidoxime, etc., or guanidino groups, amidoxime groups, oxime groups obtained by reacting derivatives thereof, A chelate resin having one or more functional groups that are a group consisting of an amino group and a hydroxyl group or a thiol group at its α- or β-position, or a diketone group is preferably used. Further, the resin substrate to which such a functional group is bonded is not particularly limited, but includes, for example, a polymer having a nitrile group such as an acrylonitrile-divinylbenzene copolymer, a styrene-divinylbenzene copolymer, a phenolic resin, and a polychloride. Examples include vinyl. Among these, for polymers having nitrile groups, the nitrile group itself can be an amine-reactive group, but other amine-reactive groups, primary and/or secondary amino groups can be prepared by known methods. , can be introduced into the resin substrate. Now, in the case of chelate resins having aminocarboxylic acid groups, which are conventionally known for adsorbing and collecting copper in copper-containing ore leachate, they have the disadvantage that their copper ion adsorption is not very high and their selective adsorption for copper is also low. It was hot. On the other hand, the chelate resin having the above-mentioned functional groups specified in the present invention exhibits almost no adsorption to cobalt, nickel, etc. in copper-containing ores, but has high adsorption to copper ions. In particular, compared to conventionally known chelate resins having aminocarboxylic acid groups, the copper ion adsorption property is approximately twice that of conventional chelate resins having aminocarboxylic acid groups. In carrying out the method of the present invention, the step of contacting the copper-containing ore leachate in the hydrometallurgical smelting process with the chelate resin having copper ion adsorption properties may generally be carried out at a temperature of 90°C or lower, preferably 10 to 60°C. If the temperature exceeds 90°C, the cost required for heating will increase, which is not preferable. The method of contacting the chelate resin with the copper-containing ore leachate in the hydrometallurgical process is not particularly limited, and examples include a method of immersing the chelate resin in the copper-containing ore leachate, and a method of contacting the copper-containing ore with the copper-containing ore leachate in the hydrometallurgical process. A method such as passing a leachate containing ore is generally adopted. Among these, a method in which the copper-containing ore leachate is passed through a column filled with a chelate resin is preferred in terms of processing operation. In this case, the liquid flow rate is generally preferably 1 to 500 parts by volume. The amount of chelate resin used is not particularly limited and varies depending on the copper concentration in the copper-containing ore leachate to be treated, the type of chelate resin used, etc., but this should be determined by conducting preliminary experiments as appropriate. be able to. Further, the contact time between the copper-containing ore leachate and the chelate resin is not particularly limited, but the contact time is usually several seconds or more, preferably in the range of 1 minute to 24 hours. Therefore, when using the chelate resin specified in the present invention, the effect of selectively adsorbing and separating copper ions in the copper-containing ore leachate is achieved. The chelate resin on which copper has been adsorbed as described above is separated from the treatment liquid. The chelate resin that has adsorbed and collected copper in this manner is then brought into contact with an eluent consisting of a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, etc. to elute the copper. The eluate containing the recovered copper can then be extracted using a known method, such as adding iron to the eluent and precipitating metallic copper using the difference in ionization tendency, or adding a reducing agent such as sulfur dioxide. Metallic copper can be recovered by performing a reduction treatment such as a method of precipitating metallic copper using a method of depositing metallic copper or a method of depositing metallic copper by electrolysis. Usually, from the viewpoint of processing operations and product purity, a method in which the eluent is directly electrolyzed is preferably employed. In this way, the eluent containing eluted and separated copper is preferably subsequently subjected to electrolytic treatment, but in this case, from the viewpoint of improving electrolysis current efficiency and productivity, electrolytic treatment is not performed. The eluent was 1
An aqueous sulfuric acid solution containing ~50 g/concentration of copper is preferred, more preferably an aqueous sulfuric acid solution containing 5 to 20 g/concentration of copper. In order to increase the copper concentration in the eluent, reusing such an electrolyte solution as an eluent is as follows.
More preferred. In addition, considering the selection of the material of the electrolytic cell, etc., the eluent should be sulfuric acid, which is also 0.5 to 3
Sulfuric acid at a defined concentration is preferably used. According to the method of the present invention as detailed above, the adsorption performance of copper ions from a copper-containing ore leachate is significantly higher than that of a method using a known aminocarboxylic acid type chelate resin, resulting in an extremely economical recovery process. Therefore, its economic value is extremely high. In addition, unlike the liquid extractant used in known wet extraction processes, the chelate resin used in the present invention is water-insoluble, flame retardant, and a solid polymer, so it can be used in copper-containing ore leachate. It has an excellent effect in that there is no dissolution loss to eluent or eluent. Therefore, the industrial value of the method of the present invention is great. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 1 part by weight of a chelate resin having a guanidino group obtained by reacting a copolymer of acrylonitrile and divinylbenzene with guanidine carbonate in a 10% by weight aqueous sodium hydroxide solution at 100 to 105°C for 4 hours, Cu1020mg/, Co115mg/,
Contains Cu, Co and Ni ions at Ni921mg/concentration
Immerse in 50 parts by volume of sulfuric acid-treated copper ore leachate with a pH of 2.1,
A shaking treatment was performed for 1 hour. Next, the chelate resin adsorbed with copper ions was over-separated, mixed with 4 parts by volume of a 10% by weight aqueous sulfuric acid solution at room temperature, and gently stirred for 1 hour to elute the copper ions. Cu, Co and Ni concentrations in the eluent are Cu12600
mg/, Co 25 mg/, and Ni 200 mg/, and the adsorption amount per chelate resin was 50.4 mg Cu/g resin, 0.1 mg Co/g resin, and 0.8 mg Ni/g resin. In addition, analysis of Cu, Co, and Ni ions remaining in the liquid revealed that Cu6mg/, Co111
mg/, and 901 mg/Ni. From the above, it can be seen that the chelate resin used in the present invention has excellent selective adsorption to copper. Examples 2 to 11 Chelate resin B: A resin having a guanidino group obtained by reacting a chloromethylated styrene-divinylbenzene copolymer with guanidine carbonate in a 10% by weight aqueous sodium hydroxide solution at 100 to 105°C for 4 hours. . Chelate resin C: A resin having guanidino groups and hydrazino groups obtained by reacting an acrylonitrile-polyethylene glycol dimethacrylate copolymer with guanidine nitrate and hydrazine in an aqueous solvent at 95 to 100°C for 8 hours. Chelate resin D: A resin having diethylenetriamino groups and amidino groups obtained by reacting an acrylonitrile-divinylbenzene copolymer with 4-diethylenetriaminobenzamidine in a water solvent under pressure at 120 to 130°C for 1 hour. Chelate resin E: A resin having a formazan group obtained by reacting a chloromethylated styrene-divinylbenzene copolymer with 3-phenylformazan in an aqueous N,N-dimethylformamide solution at 80 to 100°C for 2 hours. Chelate resin F: A resin having a guanidino group obtained by reacting a chloromethylated styrene-divinylbenzene copolymer with biguanide in an aqueous solvent at 90 to 100°C for 6 hours. Chelate resin G: A resin having an amidoxime group obtained by reacting an acrylonitrile-divinylbenzene copolymer with hydroxylamine sulfate and hydrazine in an aqueous solvent at 90 to 100°C for 2 hours. Chelate resin H: Diethylenetriamine was added to acrylonitrile-divinylbenzene copolymer in an aqueous solvent at 117-123°C.
Furthermore, to the aminated resin obtained by reacting for 4 hours with
5-bromo-2,2'-dihydroxy-N,N'-ethanediylidene dianiline in toluene solvent,
A resin having -N= of Schiff's base and a hydroxyl group at its β-position, obtained by reacting at 100 to 105°C for 6 hours in the presence of pyridine. Chelate Resin I: Aminomethylated styrene-divinylbenzene copolymer and 5-bromo-2-hydroxy-2'-mercapto-N,N'-succinyldianiline were mixed in a toluene solvent in the presence of pyridine to 97 to 103℃
A resin having -NH- of a Schiff base obtained by reacting for 3 hours with a hydroxyl group and a thiol group at its β-position, and a diketone group bonded to the -NH- by an amide bond. Chelate resin J: diethylenetriaminated acrylonitrile-divinylbenzene copolymer in ethanol solvent,
A resin containing diketone groups obtained by reacting ethyl acetoacetate in the presence of sodium ethoxide. Chelate resin K: A resin having an oxime group and an amide-bonded ketone group obtained by reacting chelate resin J with hydroxylamine in an aqueous solvent. Using 1 part by weight of each of the above chelate resins, contact treatment with 50 parts by volume of sulfuric acid-treated copper ore leachate was carried out in the same manner as in Example 1. As a result, in the liquid
The concentrations of Cu, Co, and Ni and the amounts of adsorption of Cu, Co, and Ni per chelate resin were as shown in Table 1.

【表】 比較例 1 実施例1のキレート樹脂の代わりに、市販のア
ミノカルボン酸型キレート樹脂1重量部を用いた
以外は、実施例1と同様にして、硫酸処理銅鉱石
浸出液50容量部と接触処理を行つた。その結果、
液中のCu、Co、Ni濃度及びCu、Co、Niのキ
レート樹脂当たりの吸着量は、第2表に示すよう
であつた。
[Table] Comparative Example 1 In the same manner as in Example 1, except that 1 part by weight of a commercially available aminocarboxylic acid type chelate resin was used instead of the chelate resin in Example 1, 50 parts by volume of sulfuric acid-treated copper ore leachate and Contact treatment was performed. the result,
The concentrations of Cu, Co, and Ni in the liquid and the adsorption amounts of Cu, Co, and Ni per chelate resin were as shown in Table 2.

【表】 実施例 12 実施例1で用いたのと同一のグアニジノ基を有
するキレート樹脂20mlをカラムに充填し、塔頂よ
り、Cu1020mg/、Co115mg/、Ni921mg/
含むPH2.1の銅鉱石浸出液240mlを、空間速度
SV10hr-1で通液したところ、流出液中の金属濃
度は第3表の「銅鉱石浸出液のキレート塔流出
液」の欄に示すように結果となつた。 次いで、Cu20g/を含む2.1規定硫酸濃度の
銅電解層液を主成分とする溶離剤40mlを
SV2.5hr-1で流し、10mlずつ分取して、各々の溶
離液分取液中に含まれるCu、Co及びNiの濃度を
分析したところ、第3表に示すような結果が得ら
れた。
[Table] Example 12 A column was filled with 20 ml of the chelate resin having the same guanidino group as used in Example 1, and from the top of the column, Cu1020mg/, Co115mg/, Ni921mg/
240ml of copper ore leachate with PH2.1, space velocity
When the solution was passed through the solution at SV10hr -1 , the metal concentration in the effluent was as shown in the column of "Chelate tower effluent of copper ore leachate" in Table 3. Next, 40 ml of an eluent mainly composed of a copper electrolyte solution with a concentration of 2.1N sulfuric acid containing 20 g of Cu was added.
When the eluent was run at SV2.5hr -1 , 10ml aliquots were collected, and the concentrations of Cu, Co, and Ni contained in each eluent fraction were analyzed, the results shown in Table 3 were obtained. .

【表】 以上の結果より、本発明において用いるキレー
ト樹脂は、銅に対して優れた選択吸着性を示すこ
とが明らかである。
[Table] From the above results, it is clear that the chelate resin used in the present invention exhibits excellent selective adsorption for copper.

Claims (1)

【特許請求の範囲】 1 銅含有鉱石から銅金属を回収する湿式製錬工
程の銅含有鉱石浸出液を、グアニジノ基、アミド
オキシム基、オキシム基、アミジノ基、ホルマザ
ン基、ジケトン基、及びアミノ基とアミノ基のα
−又はβ−位に水酸基又はチオール基を有する基
から選ばれた少なくとも一種の官能基を有するキ
レート樹脂と接触させて、銅を該キレート樹脂に
吸着せしめ、次いで該銅吸着キレート樹脂を溶離
剤と接触させて銅を溶離せしめることを特徴とす
る銅含有鉱石浸出液より銅を回収する方法。 2 溶離剤が5〜20g/濃度の銅を含有する
0.5〜3規定の硫酸水溶液であることを特徴とす
る特許請求の範囲第1項記載の銅含有鉱石浸出液
より銅を回収する方法。 3 キレート樹脂がグアニジノ基、アミドオキシ
ム基及びオキシム基から選ばれた少なくとも一種
の官能基を有するものであることを特徴とする特
許請求の範囲第1又は2項記載の銅含有鉱石浸出
液より銅を回収する方法。
[Scope of Claims] 1. Copper-containing ore leachate in a hydrometallurgical process for recovering copper metal from copper-containing ore is treated with guanidino groups, amidoxime groups, oxime groups, amidino groups, formazan groups, diketone groups, and amino groups. α of amino group
Copper is brought into contact with a chelate resin having at least one functional group selected from groups having a hydroxyl group or a thiol group at the - or β-position to adsorb copper onto the chelate resin, and then the copper-adsorbing chelate resin is treated with an eluent. A method for recovering copper from a copper-containing ore leachate, which comprises contacting the solution to elute the copper. 2. Eluent contains 5-20g/concentration of copper
A method for recovering copper from a copper-containing ore leachate according to claim 1, characterized in that the sulfuric acid aqueous solution has a concentration of 0.5 to 3N. 3. Copper is extracted from a copper-containing ore leachate according to claim 1 or 2, wherein the chelate resin has at least one functional group selected from a guanidino group, an amidoxime group, and an oxime group. How to collect.
JP58127483A 1983-07-12 1983-07-12 Method for recovering copper from solution containing copper leached from ore Granted JPS6021342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58127483A JPS6021342A (en) 1983-07-12 1983-07-12 Method for recovering copper from solution containing copper leached from ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127483A JPS6021342A (en) 1983-07-12 1983-07-12 Method for recovering copper from solution containing copper leached from ore

Publications (2)

Publication Number Publication Date
JPS6021342A JPS6021342A (en) 1985-02-02
JPH0524208B2 true JPH0524208B2 (en) 1993-04-07

Family

ID=14961054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127483A Granted JPS6021342A (en) 1983-07-12 1983-07-12 Method for recovering copper from solution containing copper leached from ore

Country Status (1)

Country Link
JP (1) JPS6021342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502027A (en) * 1999-12-15 2004-01-22 ブラッコ イメージング エッセ ピ ア Method for recovering copper from aqueous solutions containing iodinated organic compounds

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5154622B2 (en) * 2010-03-02 2013-02-27 Jx日鉱日石金属株式会社 Method for recovering cobalt contained in copper-containing aqueous solution
JP5666196B2 (en) * 2010-08-11 2015-02-12 オルガノ株式会社 Copper sulfate recovery method and copper sulfate recovery device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339602A (en) * 1976-09-22 1978-04-11 Takenaka Komuten Co Excavator
JPS5344421A (en) * 1976-10-05 1978-04-21 Unitika Ltd Recovering method for copper in plating effluent water containing copper pyrophosphate
JPS5617415A (en) * 1979-07-24 1981-02-19 Casio Comput Co Ltd Electric power supply system of electronic apparatus
JPS5719344A (en) * 1980-07-08 1982-02-01 Unitika Ltd Removing method for copper from solution containing nickel and/or cobalt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339602A (en) * 1976-09-22 1978-04-11 Takenaka Komuten Co Excavator
JPS5344421A (en) * 1976-10-05 1978-04-21 Unitika Ltd Recovering method for copper in plating effluent water containing copper pyrophosphate
JPS5617415A (en) * 1979-07-24 1981-02-19 Casio Comput Co Ltd Electric power supply system of electronic apparatus
JPS5719344A (en) * 1980-07-08 1982-02-01 Unitika Ltd Removing method for copper from solution containing nickel and/or cobalt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502027A (en) * 1999-12-15 2004-01-22 ブラッコ イメージング エッセ ピ ア Method for recovering copper from aqueous solutions containing iodinated organic compounds

Also Published As

Publication number Publication date
JPS6021342A (en) 1985-02-02

Similar Documents

Publication Publication Date Title
Ashiq et al. Hydrometallurgical recovery of metals from e-waste
RU2149910C1 (en) METHOD OF NICKEL RECOVERY FROM Ni-Fe-Mg LATERINE ORE WITH HIGH CONTENT OF MAGNESIUM
CA1086963A (en) Process for the recovery of non-ferrous metals from acidic hydrometallurgical leach liquors with a chelate exchange resin
CA2023025C (en) Process of extracting anions with quaternary amines
Laatikainen et al. Copper removal by chelating adsorption in solution purification of hydrometallurgical zinc production
AU699127B2 (en) Recovery of nickel and cobalt from laterite ores
JP6728905B2 (en) Purification method of cobalt chloride aqueous solution
US20040213715A1 (en) Selective recovery of precious metal(s)
JPH07187618A (en) Refining of concentrated sulfuric acid solution
Mohebbi et al. Ion exchange resin technology in recovery of precious and noble metals
Azizitorghabeh et al. Selective gold recovery from pregnant thiocyanate leach solution using ion exchange resins
Wan et al. Research and development activities for the recovery of gold from alkaline cyanide solutions
JP3062448B2 (en) Separation and recovery method of uranium and impurities using chelating resin
JPH0524208B2 (en)
RU2602213C2 (en) Direct purification of a nickel laterite leaching effluent
US8500847B2 (en) Method for aqueous gold thiosulfate extraction using copper-cyanide pretreated carbon adsorption
US2848322A (en) Separation of cobalt from nickel
US8491700B2 (en) Methods and systems for recovering rhenium from a copper leach
Riveros et al. Ion exchange recovery of gold and silver from cyanide solutions
JPH0549729B2 (en)
EP1628767A1 (en) A resin and process for extracting non-ferrous metals
JPH0339013B2 (en)
van Deventer et al. Cadmium removal from cobalt electrolyte
Tang et al. Ni-Cu Ion-Exchange in Anolyte: An Efficacious Approach of Nickel Extraction
JPH0521846B2 (en)