JPH0524142B2 - - Google Patents

Info

Publication number
JPH0524142B2
JPH0524142B2 JP13829884A JP13829884A JPH0524142B2 JP H0524142 B2 JPH0524142 B2 JP H0524142B2 JP 13829884 A JP13829884 A JP 13829884A JP 13829884 A JP13829884 A JP 13829884A JP H0524142 B2 JPH0524142 B2 JP H0524142B2
Authority
JP
Japan
Prior art keywords
formula
group
isocyanate
reaction
hydroxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13829884A
Other languages
Japanese (ja)
Other versions
JPS6117554A (en
Inventor
Satoru Urano
Ryuzo Mizuguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP59138298A priority Critical patent/JPS6117554A/en
Priority to KR1019850004779A priority patent/KR930006196B1/en
Priority to EP85304739A priority patent/EP0177122B1/en
Priority to CA000486249A priority patent/CA1310958C/en
Priority to ES544849A priority patent/ES8703831A1/en
Priority to AT85304739T priority patent/ATE74349T1/en
Priority to DE8585304739T priority patent/DE3585763D1/en
Publication of JPS6117554A publication Critical patent/JPS6117554A/en
Priority to ES552694A priority patent/ES8704451A1/en
Priority to US07/058,782 priority patent/US4935413A/en
Priority to US07/486,864 priority patent/US5354495A/en
Publication of JPH0524142B2 publication Critical patent/JPH0524142B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明はカルバミン酞゚ステルずその補法、特
にその優れた反応性の故に有機合成や高分子ポリ
マヌ補造の分野における原料物質ずしお広汎な甚
途を有する、匏 匏䞭、は䜎玚アルキル基たずえばメチル、
゚チル、プロピルを瀺し、は䞉玚アミノ基を
持぀た有機基たずえばゞ䜎玚アルキルアミ
ノ䜎玚アルキル、ゞ䜎玚アルキルアミノ
プニル、䜎玚アルキル−プニルアミノ䜎
玚アルキル、䜎玚アルキル−プニル䜎玚
アルキルアミノ䜎玚アルキル、ピロリゞノ、
ピペリゞノ、モルホリノ、ピロリゞノ䜎玚ア
ルキル、ピペリゞノ䜎玚アルキル、モルホリ
ノ䜎玚アルキル、ゞ䜎玚アルキルアミノ
䜎玚アルコキシ䜎玚アルキルなどを瀺
す。 で衚わされる新芏なカルバミン酞゚ステルずその
補造方法に関する。 埓来技術 む゜シアネヌト基を有する化合物は、その優れ
た反応性の故に、高分子化孊の領域で広く甚いら
れおいる。特に重合性の炭玠−炭玠䞍飜和基ずむ
゜シアネヌト基の䞡者を同䞀分子内に有する化合
物は、それら䞡官胜基がそれぞれ異なる反応機構
で皮々の反応に参䞎するため、広汎な工業技術分
野で䜿甚するこずが出来る。このような有甚性に
着目し、本発明者らは先に次匏で衚わされるむ゜
シアネヌト化合物を提䟛した特願昭58−225226
号 匏䞭、は前蚘ず同意矩。。 䞊蚘む゜シアネヌト蚘号物は、䞀般に垞
枩で安定な液䜓であ぀お、取り扱いが容易である
䞀方、その分子䞭に重合性の炭玠−炭玠䞍飜和基
ずむ゜シアネヌト基を有するのみならず、これら
䞡官胜基間にそれらに隣接しおカルボニル基が存
圚するため、炭玠−炭玠䞍飜和基の掻性が高めら
れおいるず共にむ゜シアネヌト基の掻性も高めら
れおおり、か぀倚様な付加反応を営みうる状態に
ある。すなわち、む゜シアネヌト化合物は
次匏の郚分共圹二重結合構造ず郚分ア
シルむ゜シアネヌト構造のそれぞれに基づく
皮々の反応たずえばラゞカル重合、アニオン重
合、二量化、䞉量化、極性付加、掻性氎玠付加な
どを営むこずが出来る 埓぀お、む゜シアネヌト化合物は工業甚
補造原料ずしお広汎な甚途が期埅されるものであ
る。 たずえば、む゜シアネヌト化合物は、こ
れを 匏 R′OH ′ 匏䞭、R′はヒドロキシル化合物からヒドロキ
シル基を陀倖した残基を瀺す。 で衚わされるヒドロキシル化合物ず反応させた堎
合、前者のむ゜シアネヌト基ず埌者のヒドロキシ
ル基の間で優先的に付加反応が進行し、 匏 匏䞭、およびR′は前蚘ず同意矩。 で衚わされるカルバミン酞゚ステルが埗られる。
埓぀お、む゜シアネヌト化合物は、䞀般に
ヒドロキシル化合物に察する重合性共圹二重結合
導入詊剀ずしお有甚なものである特願昭59−
87606号以䞋、「甲出願」ず蚀う。。 前蚘したように、む゜シアネヌト化合物
は皮々の反応を営む可胜性を有するものであるか
ら、これにヒドロキシル化合物′を䜜甚さ
せた堎合、む゜シアネヌト化合物ずヒドロ
キシル化合物′の間の付加反応に加えおよ
びたたは代わり、む゜シアネヌト化合物
自䜓の二量化、䞉量化、倚量化重合などや、
生成したカルバミン酞゚ステ′の重合、生
成したカルバミン酞゚ステル′のアミド態
NH基ずむ゜シアネヌト化合物の反応など
皮々の副反応の進行が予枬されたのであるが、珟
実には少なくずも100℃を超えない枩床では実質
䞊䞊蚘付加反応のみが優先的に進行するこずが確
認されたのである。 発明の目的 ずころで、䞊蚘甲出願発明によるむ゜シアネヌ
ト化合物を䜿甚した重合性共圹二重結合の
導入はヒドロキシル基を有する化合物に察しお䞀
般的に適甚し埗るものであるが、該ヒドロキシル
基を有する化合物に曎に䜕等かの官胜基が存圚す
る堎合、この官胜基に由来する䜕等かの副反応が
進行する可胜性を吊定出来ない。そこで、甲出願
発明に基づきながら曎にこれを展開しお、そのよ
うな官胜基が存圚するヒドロキシル化合物に぀い
お副反応が進行するか吊か、進行するずしおもこ
れを回避する条件の遞択が可胜か吊かに぀いお研
究を進めた。 すなわち、官胜基が存圚するヒドロキシル化合
物ずしお䞉玚アミノ基を有するヒドロキシル化合
物を遞択し、これに぀いおむ゜シアネヌト化合物
ずの反応がどのように進行するかを明らか
にするため、研究を行な぀た。 その結果、甲出願発明ず同様の条件䞋100℃
を越えない枩床では、䞉玚アミノ基に由来する
䜕等かの圱響を受けるこずなく、ヒドロキシル基
ずむ゜シアネヌト基ずの間の付加反応が優先的に
進行す事実を芋出した。 発明の構成 本発明の芁旚は、匏で衚わされるカルバ
ミン酞゚ステルおよび匏で衚わされるむ゜
シアネヌト化合物ず 匏 −OH  〔匏䞭、は前蚘ず同意矩。〕 で衚わされるヒドロキシル化合物を反応させお匏
で衚わされるカルバミン酞゚ステルを埗る
こずを特城ずするカルバミン酞゚ステルの補法に
存する。 む゜シアネヌト化合物ずヒドロキシル化
合物は共に皮々の官胜基を有し、倚くの反
応を営む可胜性を有する。埓぀お、む゜シアネヌ
ト化合物にヒドロキシル化合物を䜜
甚させた堎合、む゜シアネヌト化合物ずヒ
ドロキシル化合物の間の付加反応のみなら
ず、これに加えおよびたたは代わり、む゜シア
ネヌト化合物の二量化、䞉量化、倚量化
重合などや、生成したカルバミン酞゚ステル
の重合、生成したカルバミン酞゚ステル
のアミド態NH基ずむ゜シアネヌト化合物
の反応など皮々の副反応の進行が予枬され
たのであるが、珟実には少なくずも100℃を超え
ない枩床範囲においおは実質䞊む゜シアネヌト化
合物のむ゜シアネヌト基ずヒドロキシル化
合物のヒドロキシル基の間の付加反応が優
先的に進行するこずが確認された。すなわち、
100℃を越えない比范的䜎枩䞋では、圓該所望反
応のみが進行し、予枬された皮々の副反応は実質
䞊これを回避するこずが出来るのである。 本発明によれば、カルバミン酞゚ステル
はむ゜シアネヌト化合物ずヒドロキシル化
合物を反応させるこずによ぀おこれを補造
するこずが出来る。 ヒドロキシル化合物の兞型的な具䜓䟋ず
しおは、ゞ䜎玚アルキルアミノ䜎玚アル
カノヌルたずえばゞメチルアミノメタノヌル、
ゞメチルアミノ゚タノヌル、ゞメチルアミノプロ
パノヌル、ゞ゚チルアミノ゚タノヌル、ゞ゚チル
アミノプロパノヌル、−メチル−−゚チルア
ミノプロパノヌル、ゞ䜎玚アルキルアミノ
プノヌルたずえば−ゞメチルアミノプノ
ヌル、−ゞメチルアミノプノヌル、−ゞメ
チルアミノプノヌル、−ゞ゚チルアミノプ
ノヌル、䜎玚アルキル−プニルアミノ䜎玚
アルカノヌルたずえば−メチル−−プニ
ルアミノ゚タノヌル、−メチル−−プニル
アミノプロパノヌル、䜎玚アルキル−プニル
䜎玚アルキルアミノ䜎玚アルカノヌル
たずえば−メチル−−ベンゞルアミノ゚タ
ノヌル、−゚チル−−ベンゞルアミノ゚タノ
ヌル、−゚チル−−プネチルアミノプロパ
ノヌル、−ヒドロキシピロリゞン、−ヒド
ロキシピペリゞン、−ヒドロキシモルホリン、
ピロリゞノ䜎玚アルカノヌルたずえばピロ
リゞノ゚タノヌル、ピロリゞノプロパノヌル、
ピペリゞノ䜎玚アルカノヌルたずえばピペ
リゞノ゚タノヌル、ピペリゞノプロパノヌル、
モルホリノ䜎玚アルカノヌルたずえばモル
ホリノ゚タノヌル、モルホリノプロパノヌル、
ゞ䜎玚アルキルアミノ䜎玚アルコキシ
䜎玚アルカノヌルたずえばゞメチルアミノ
゚トキシ゚タノヌル、ゞメチルアミノ゚トキシプ
ロパノヌル、ゞ゚チルアミノ゚トキシプロパノヌ
ル、アトロピンなどを挙げるこずが出来る。 ヒドロキシル化合物が垞枩で液䜓である
堎合にはそれ自䜓反応媒質ずしお圹立ちうるが、
ヒドロキシル化合物が液䜓であるず固䜓で
あるずを問わず䞍掻性溶媒を䜿甚するのが普通で
ある。䞍掻性溶媒ずしおは反応に悪圱響を及がさ
ない限り特に制限はなく、皮々のものを䜿甚する
こずが出来、たずえば、ペンタン、ヘキサン、ヘ
プタンなどの脂肪族炭化氎玠、ベンれン、トル゚
ン、キシレンなどの芳銙族炭化氎玠、シクロヘキ
サン、メチルシクロヘキサン、デカリンなどの脂
環匏炭化氎玠、石油゚ヌテル、石油ベンゞンなど
の炭化氎玠系溶媒、四塩化炭玠、クロロホルム、
−ゞクロロ゚タンなどのハロゲン化炭化氎
玠系溶媒、゚チル゚ヌテル、む゜プロピル゚ヌテ
ル、アニ゜ヌル、ゞオキサン、テトラヒドロフラ
ンなどの゚ヌテル系溶媒、アセトン、メチル゚チ
ルケトン、メチルむ゜ブチルケトン、シクロヘキ
サノン、アセトプノン、む゜ホロンなどのケト
ン類、酢酞゚チル、酢酞ブチルなどの゚ステル
類、アセトニトリル、ゞメチルホルムアミド、ゞ
メチルスルホキシドなどから適宜に遞択すればよ
い。これらは単独たたは混合物のいずれで䜿甚さ
れおもよい。 反応は䞀般に100℃を越えない枩床で行なわれ
およいが、宀枩〜30℃付近か氷冷䞋で行な
うのが特に有利である。100℃を越えるず副反応
を起こす可胜性があり、他方䜙り䜎枩になるず反
応速床が小ずな぀お䞍利である。反応に際し、ス
ズ系の觊媒の䜿甚が考慮されおもよいが、通垞は
觊媒䜿甚の必芁性を認めない。 なお、反応を行なうに際し、ヒドロキシル化合
物をむ゜シアネヌト化合物に添加し
おも、む゜シアネヌト化合物をヒドロキシ
ル化合物に添加しおもどちらでもよいが、
副反応の進行を防止する芳点から、ヒドロキシル
化合物を䞍掻性溶媒に溶かしおおき、氷冷
䞋、これにむ゜シアネヌト化合物の䞍掻性
溶媒溶液を少量づ぀滎加しおいくのが奜たしい。 䜜甚ず効果 以䞊の説明からも明らかなように、む゜シアネ
ヌト化合物のむ゜シアネヌト基は容易か぀
遞択的にヒドロキシル化合物のヒドロキシ
ル基ず反応しお、カルバミン酞゚ステルを
䞎える。 ここに埗られたカルバミン酞゚ステル
は、䞀般に溶解性が倧であり、普通の有機溶媒の
殆どのものに可溶である。たた、このものはたず
えばがゞメチルアミノ゚チル基である堎合、䞋
匏に瀺すずおり、皮々の掻性構造ないし掻性基を
有するから、反応性に富んでおり、埓぀お、これ
を貯蔵するには重合防止剀を添加したり、冷暗所
に保存するのが奜たしい 䞊匏においお、共圹二重結合構造A′は、重合
反応性を有しおおり、埓぀おカルバミン酞゚ステ
ルはホモポリマヌやコポリマヌの補造に䜿
甚するこずが出来る。たずえば、グラフト重合さ
せお合成繊維、合成暹脂、倩然高分子などの改質
に利甚したり、それ自䜓たたは他の重合性モノマ
ヌたずえばスチレン、アルキルアクリレヌト、
アルキルメタクリレヌトず重合させおワニス、
塗料、接着剀、プラスチツク、゚ラストマヌなど
の補造に利甚する。なお、重合に際しおは、アゟ
ビスむ゜ブチロニトリルの劂きラゞカル重合觊媒
の䜿甚が有利である。 アシルりレタン構造B′は分子間凝集力や分子
間氎玠結合圢成胜が高いから、カルバミン酞゚ス
テルを䜿甚しお埗られたポリマヌが匷靭
性、接着性、分散性などの点で優れた性質を発揮
廃棄するのに貢献する。 䞉玚アミノ基含有構造C′は、塩基性であ぀お反
応性に富み、たたは四玚化するこずにより匷い陜
むオン性を瀺す。埓぀お、カルバミン酞゚ステル
を䜿甚しお埗られた反応成瞟䜓は氎溶性な
いし芪氎性に富み、酞性染料による染色性が良奜
であり、陰むオンに察する反応性ないし吞着性を
有する。たた、䞋氎汚泥やセルロヌスのような負
コロむドに察する凝集性を瀺し、垯電性や導電性
のような電気特性に優れ、接着性、分散性なども
良奜である。 このように、カルバミン酞゚ステルは、
工業甚補造原料ずしお広汎な甚途を有するもので
ある。 なお、原料物質たるむ゜シアネヌト化合物
は、α−アルキルアクリルアミドずオキザ
リルハラむドの反応によ぀お補造するこずが出来
る。反応は、通垞、ハロゲン化炭化氎玠のような
䞍掻性溶媒の存圚䞋、〜80℃の枩床で行なわれ
る。なお、末端二重結合の䞍必芁な重合を避ける
ために、反応系に重合犁止剀を存圚せしめおもよ
い。 ここに䜿甚したり、前蚘カルバミン酞゚ステル
の貯蔵時に䜿甚する重合犁止剀の具䜓䟋ず
しおはハむドロキノン、−メトキシプノヌ
ル、−ゞ−−ブチル−−メチルプノ
ヌル、−−ブチルカテコヌル、ビスゞヒドロ
キシベンゞルベンれン、2′−メチレンビス
−−ブチル−−メチルプノヌル、
4′−ブチルデンビス−−ブチル−−メチ
ルプノヌル、4′−チオビス−−ブ
チル−−メチルプノヌル、−ニトロ゜フ
゚ノヌル、ゞむ゜プロピルキサントゲンスルフむ
ド、−ニトロ゜プニルヒドロキシルアミン・
アンモニりム塩、−ゞプニル−−ピク
リルヒドラゞル、−トリプニルプ
ルダゞル、−ゞ−−ブチル−α−
−ゞ−−ブチル−−オキ゜−−シク
ロヘキサゞ゚ン−−むリデン−−トリオキ
シ、−テトラメチル−−ピペリ
ドン−−オキシル、ゞチオベンゟむルスルフむ
ド、p′−ゞトリルトリスルフむド、p′−
ゞトリルテトラスルフむド、ゞベンゞルテトラス
ルフむド、テトラ゚チルチりラムゞスルフむドな
どが挙げられる。 実斜䟋 以䞋に実斜䟋を挙げ、カルバミン酞゚ステル
の補造法を具䜓的に説明する。 実斜䟋  −メタクリロむルカルバミン酞ゞメチルアミ
ノ゚チル゚ステル ゞメチルアミノ゚チル゚タノヌル0.89
10mmolを也燥クロロホルム20mlに溶かし、
氷冷した。この溶液に窒玠気流䞭メタクリロむル
む゜シアネヌト1.1110mmolの−ゞ
クロロ゚タンml溶液を滎䞋した。滎䞋埌、クロ
ロホルムおよび−ゞクロロ゚タンを枛圧䞋
に留去し、−メタクリロむルカルバミン酞ゞメ
チルアミノ゚チル゚ステル2.00を埗た。ベンれ
ン−ヘキサンより再結晶しお融点71〜73℃の無色
針状を埗る。 実斜䟋 〜 実斜䟋ず本質的に同様な方法で第衚に瀺す
化合物を埗た。なお、粘床は東京蚈噚(æ ª)補型粘
床蚈のEHD高粘床甚を䜿甚し、25℃で枬定し
た倀である。
[Industrial Application Fields] The present invention relates to carbamate esters and their production methods, which have a wide range of uses as raw materials in the fields of organic synthesis and polymer production, particularly due to their excellent reactivity. [wherein R is a lower alkyl group (e.g. methyl,
A represents an organic group having a tertiary amino group (e.g., di(lower)alkylamino(lower)alkyl, di(lower)alkylaminophenyl, lower alkyl-phenylamino(lower)alkyl, lower Alkyl-phenyl (lower)
Alkylamino (lower) alkyl, pyrrolidino,
piperidino, morpholino, pyrrolidino(lower)alkyl, piperidino(lower)alkyl, morpholino(lower)alkyl, di(lower)alkylamino(lower)alkoxy(lower)alkyl, etc.). ] The present invention relates to a novel carbamate ester represented by the following and a method for producing the same. [Prior Art] Compounds having isocyanate groups are widely used in the field of polymer chemistry because of their excellent reactivity. In particular, compounds that have both a polymerizable carbon-carbon unsaturated group and an isocyanate group in the same molecule are used in a wide range of industrial technology fields because both of these functional groups participate in various reactions with different reaction mechanisms. I can do it. Focusing on such usefulness, the present inventors previously provided an isocyanate compound represented by the following formula [Patent Application No. 58-225226]
issue]: [In the formula, R has the same meaning as above. ]. The isocyanate symbol () is generally a stable liquid at room temperature and easy to handle. However, it not only has a polymerizable carbon-carbon unsaturated group and an isocyanate group in its molecule, but also has both of these functional groups. Since a carbonyl group exists between the groups adjacent to them, the activity of the carbon-carbon unsaturated group is increased, and the activity of the isocyanate group is also increased, and it is in a state where it can carry out various addition reactions. . That is, the isocyanate compound () can be used for various reactions based on the A part (conjugated double bond structure) and B part (acyl isocyanate structure) of the following formula, such as radical polymerization, anionic polymerization, dimerization, trimerization, polar addition, Active hydrogen addition, etc. can be carried out: Therefore, isocyanate compounds () are expected to have a wide range of uses as raw materials for industrial production. For example, the isocyanate compound () has the formula: R′OH (′) [wherein R′ represents a residue obtained by excluding the hydroxyl group from a hydroxyl compound. ] When reacted with a hydroxyl compound represented by the formula, the addition reaction proceeds preferentially between the isocyanate group of the former and the hydroxyl group of the latter, and the formula: [In the formula, R and R' have the same meanings as above. ] A carbamate ester represented by the following is obtained.
Therefore, isocyanate compounds () are generally useful as reagents for introducing polymerizable conjugated double bonds into hydroxyl compounds [Patent Application No.
No. 87606 (hereinafter referred to as "Application A")]. As mentioned above, isocyanate compounds ()
has the potential to carry out various reactions, so when the hydroxyl compound (') is reacted with it, in addition to and/or in place of the addition reaction between the isocyanate compound () and the hydroxyl compound ('), Isocyanate compounds ()
Dimerization, trimerization, multimerization (polymerization), etc.
Polymerization of the produced carbamate ester ('), amide form of the produced carbamate ester (')
It was predicted that various side reactions would proceed, such as the reaction between the NH group and the isocyanate compound (), but in reality, it was confirmed that essentially only the above addition reactions proceed preferentially at temperatures not exceeding 100°C. It was done. [Purpose of the Invention] By the way, the introduction of a polymerizable conjugated double bond using the isocyanate compound () according to the invention of Application A above is generally applicable to compounds having a hydroxyl group. When some kind of functional group is further present in the compound having the above, the possibility that some kind of side reaction originating from this functional group will proceed cannot be denied. Therefore, based on the invention of Application A, we will further develop this to determine whether side reactions will proceed with hydroxyl compounds in which such functional groups exist, and even if they do, whether it is possible to select conditions to avoid this. We conducted research on this topic. That is, a hydroxyl compound having a tertiary amino group was selected as a hydroxyl compound having a functional group, and research was conducted to clarify how the reaction with an isocyanate compound () proceeds. As a result, under the same conditions as the invention of Application A (100℃
It has been found that the addition reaction between the hydroxyl group and the isocyanate group proceeds preferentially at a temperature not exceeding 100% (temperature not exceeding 100%) without being affected by any effects derived from the tertiary amino group. [Structure of the Invention] The gist of the present invention is to provide a carbamate represented by the formula () and an isocyanate compound represented by the formula (), and the formula: A-OH () [wherein A has the same meaning as above]. ] A process for producing a carbamate ester, characterized by reacting a hydroxyl compound represented by the following to obtain a carbamate ester represented by the formula (). Both isocyanate compounds () and hydroxyl compounds () have various functional groups and have the potential to carry out many reactions. Therefore, when the isocyanate compound () is reacted with the hydroxyl compound (), not only is there an addition reaction between the isocyanate compound () and the hydroxyl compound (), but also an addition reaction between the isocyanate compound () and the isocyanate compound (). Progress of various side reactions such as quantification, trimerization, multimerization (polymerization), polymerization of the produced carbamate ester (), and reaction between the amide NH group of the produced carbamate ester () and the isocyanate compound (). However, in reality, the addition reaction between the isocyanate group of the isocyanate compound () and the hydroxyl group of the hydroxyl compound () actually proceeds preferentially in a temperature range that does not exceed at least 100°C. confirmed. That is,
At a relatively low temperature not exceeding 100°C, only the desired reaction proceeds, and various predicted side reactions can be substantially avoided. According to the invention, carbamate ester ()
can be produced by reacting an isocyanate compound () with a hydroxyl compound (). Typical examples of hydroxyl compounds () include di(lower) alkylamino(lower) alkanols (e.g. dimethylamino methanol,
dimethylaminoethanol, dimethylaminopropanol, diethylaminoethanol, diethylaminopropanol, N-methyl-N-ethylaminopropanol), di(lower) alkylaminophenols (e.g. o-dimethylaminophenol, m-dimethylaminophenol, p-dimethylamino Phenol, m-diethylaminophenol), lower alkyl-phenylamino (lower)
Alkanols (e.g. N-methyl-N-phenylaminoethanol, N-methyl-N-phenylaminopropanol), lower alkyl-phenyl (lower) alkylamino (lower) alkanols (e.g. N-methyl-N-benzylaminoethanol) , N-ethyl-N-benzylaminoethanol, N-ethyl-N-phenethylaminopropanol), N-hydroxypyrrolidine, N-hydroxypiperidine, N-hydroxymorpholine,
pyrrolidino (lower) alkanols (e.g. pyrrolidinoethanol, pyrrolidinopropanol),
piperidino (lower) alkanols (e.g. piperidinoethanol, piperidinopropanol),
morpholino (lower) alkanols (e.g. morpholinoethanol, morpholinopropanol),
Examples include di(lower)alkylamino(lower)alkoxy(lower)alkanols (eg, dimethylaminoethoxyethanol, dimethylaminoethoxypropanol, diethylaminoethoxypropanol), atropine, and the like. If the hydroxyl compound () is liquid at room temperature, it can itself serve as a reaction medium;
Whether the hydroxyl compound () is a liquid or a solid, it is common to use an inert solvent. There are no particular restrictions on the inert solvent as long as it does not adversely affect the reaction, and various solvents can be used, including aliphatic hydrocarbons such as pentane, hexane, and heptane, aromatic solvents such as benzene, toluene, and xylene. Hydrocarbons, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and decalin, hydrocarbon solvents such as petroleum ether and petroleum benzine, carbon tetrachloride, chloroform,
Halogenated hydrocarbon solvents such as 1,2-dichloroethane, ether solvents such as ethyl ether, isopropyl ether, anisole, dioxane, and tetrahydrofuran, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetophenone, and isophorone, acetic acid It may be appropriately selected from esters such as ethyl and butyl acetate, acetonitrile, dimethylformamide, dimethyl sulfoxide, and the like. These may be used alone or in mixtures. The reaction may generally be carried out at temperatures not exceeding 100°C, but it is particularly advantageous to carry out the reaction near room temperature (0-30°C) or under ice-cooling. If the temperature exceeds 100°C, side reactions may occur, while if the temperature is too low, the reaction rate will decrease, which is disadvantageous. Although the use of a tin-based catalyst may be considered during the reaction, the necessity of using a catalyst is usually not recognized. In addition, when carrying out the reaction, the hydroxyl compound () may be added to the isocyanate compound (), or the isocyanate compound () may be added to the hydroxyl compound ().
From the viewpoint of preventing the progress of side reactions, it is preferable to dissolve the hydroxyl compound () in an inert solvent, and then add a solution of the isocyanate compound () in an inert solvent little by little dropwise to the solution under ice cooling. [Operation and Effect] As is clear from the above explanation, the isocyanate group of the isocyanate compound () easily and selectively reacts with the hydroxyl group of the hydroxyl compound () to give the carbamate ester (). Carbamate ester obtained here ()
generally has high solubility and is soluble in most common organic solvents. In addition, when A is a dimethylaminoethyl group, for example, this product has various active structures or groups as shown in the formula below, so it is highly reactive, and therefore, it cannot be stored without polymerization. It is preferable to add inhibitors or store in a cool and dark place: In the above formula, the conjugated double bond structure A' has polymerization reactivity, and therefore the carbamate ester () can be used for producing homopolymers and copolymers. For example, it can be used to modify synthetic fibers, synthetic resins, natural polymers, etc. by graft polymerization, or it can be used by itself or with other polymerizable monomers (such as styrene, alkyl acrylates,
varnish by polymerizing with alkyl methacrylate),
Used in the production of paints, adhesives, plastics, elastomers, etc. In the polymerization, it is advantageous to use a radical polymerization catalyst such as azobisisobutyronitrile. Since the acyl urethane structure B' has high intermolecular cohesive force and intermolecular hydrogen bond forming ability, polymers obtained using carbamate ester () have excellent properties in terms of toughness, adhesion, and dispersibility. contribute to waste disposal. The tertiary amino group-containing structure C' is basic and highly reactive, or exhibits strong cationic properties when quaternized. Therefore, the reaction product obtained using carbamate ester (2) is highly water-soluble or hydrophilic, has good dyeability with acid dyes, and has reactivity or adsorption to anions. In addition, it exhibits cohesive properties against negative colloids such as sewage sludge and cellulose, has excellent electrical properties such as chargeability and conductivity, and has good adhesion and dispersibility. In this way, carbamate ester () is
It has a wide range of uses as a raw material for industrial production. In addition, the isocyanate compound () which is a raw material can be manufactured by the reaction of α-alkylacrylamide and oxalyl halide. The reaction is usually carried out in the presence of an inert solvent such as a halogenated hydrocarbon at a temperature of 0 to 80°C. In addition, in order to avoid unnecessary polymerization of terminal double bonds, a polymerization inhibitor may be present in the reaction system. Specific examples of polymerization inhibitors used here or during storage of the carbamate ester () are hydroquinone, p-methoxyphenol, 2,6-di-t-butyl-4-methylphenol, 4-t -butylcatechol, bisdihydroxybenzylbenzene, 2,2'-methylenebis(6-t-butyl-3-methylphenol), 4,
4'-Butyldenbis(6-t-butyl-3-methylphenol), 4,4'-thiobis(6-t-butyl-3-methylphenol), p-nitrosophenol, diisopropylxanthogen sulfide, N-nitro Sophenylhydroxylamine・
Ammonium salt, 1,1-diphenyl-2-picrylhydrazyl, 1,3,5-triphenylferdazyl, 2,6-di-t-butyl-α-(3,
5-di-t-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-trioxy, 2,2,6,6-tetramethyl-4-piperidone-1-oxyl, dithiobenzoylsulfur phide, p, p'-ditolyltrisulfide, p, p'-
Examples include ditolyltetrasulfide, dibenzyltetrasulfide, and tetraethylthiuram disulfide. [Example] Examples are given below to specifically explain the method for producing carbamate ester (2). Example 1 N-methacryloylcarbamic acid dimethylaminoethyl ester dimethylaminoethylethanol 0.89g
(10 mmol) was dissolved in 20 ml of dry chloroform,
Ice cold. A solution of 1.11 g (10 mmol) of methacryloyl isocyanate in 5 ml of 1,2-dichloroethane was added dropwise to this solution in a nitrogen stream. After the dropwise addition, chloroform and 1,2-dichloroethane were distilled off under reduced pressure to obtain 2.00 g of N-methacryloylcarbamic acid dimethylaminoethyl ester. Recrystallization from benzene-hexane gives colorless needles with a melting point of 71-73°C. Examples 2-7 The compounds shown in Table 1 were obtained in essentially the same manner as in Example 1. The viscosity is a value measured at 25°C using an E-type viscometer EHD (for high viscosity) manufactured by Tokyo Keiki Co., Ltd.

【衚】【table】

【衚】 䞊蚘説明から理解されるように、本発明は特定
のむ゜シアネヌト化合物を䜿甚しおヒドロ
キシル化合物に察し重合性共圹二重結合を導入す
る点においお前述した甲出願発明の技術思想を利
甚するものではあるが、その察象ずするヒドロキ
シル化合物がヒドロキシル基に加えお掻性基すな
わち䞉玚アミノ基を有する点においお甲出願発明
の技術思想を曎に拡匵したものず蚀うこずが出来
る。
[Table] As understood from the above explanation, the present invention utilizes the technical idea of the invention of Application A described above in that a specific isocyanate compound () is used to introduce a polymerizable conjugated double bond into a hydroxyl compound. However, in that the target hydroxyl compound has an active group, that is, a tertiary amino group, in addition to a hydroxyl group, it can be said that the technical idea of the invention of Application A is further expanded.

Claims (1)

【特蚱請求の範囲】  匏 匏䞭、は䜎玚アルキル基を瀺し、は䞉玚ア
ミノ基を持぀た有機基を瀺す。 で衚わされるカルバミン酞゚ステル。  匏 匏䞭、は䜎玚アルキル基を瀺す。 で衚わされるむ゜シアネヌト化合物ず 匏 −OH 匏䞭、は䞉玚アミノ基を持぀た有機基を瀺
す。 で衚わされるヒドロキシル化合物を反応させお 匏 匏䞭、およびは前蚘ず同意矩。 で衚わされるカルバミン酞゚ステルを埗るこずを
特城ずするカルバミン酞゚ステルの補法。  反応を䞍掻性溶媒䞭で実斜する特蚱請求の範
囲第項蚘茉の補法。
[Claims] 1 Formula: [In the formula, R represents a lower alkyl group, and A represents an organic group having a tertiary amino group. ] Carbamate ester represented by. 2 formula: [In the formula, R represents a lower alkyl group. ] An isocyanate compound represented by the formula: A-OH [wherein A represents an organic group having a tertiary amino group. ] By reacting a hydroxyl compound represented by the formula: [In the formula, R and A have the same meanings as above. ] A method for producing a carbamate ester, characterized by obtaining a carbamate ester represented by the following. 3. The production method according to claim 2, wherein the reaction is carried out in an inert solvent.
JP59138298A 1984-07-03 1984-07-03 Carbamic ester and its preparation Granted JPS6117554A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP59138298A JPS6117554A (en) 1984-07-03 1984-07-03 Carbamic ester and its preparation
AT85304739T ATE74349T1 (en) 1984-07-03 1985-07-03 ACRYLAMIDE DERIVATIVES.
EP85304739A EP0177122B1 (en) 1984-07-03 1985-07-03 Acrylamide derivatives
CA000486249A CA1310958C (en) 1984-07-03 1985-07-03 Physical property-improving reagent
ES544849A ES8703831A1 (en) 1984-07-03 1985-07-03 New acrylamide derivs.
KR1019850004779A KR930006196B1 (en) 1984-07-03 1985-07-03 Physical property-improving reagent
DE8585304739T DE3585763D1 (en) 1984-07-03 1985-07-03 ACRYLAMIDE DERIVATIVES.
ES552694A ES8704451A1 (en) 1984-07-03 1986-03-05 New acrylamide derivs.
US07/058,782 US4935413A (en) 1984-07-03 1987-06-05 Carbamate physical property-improving reagent
US07/486,864 US5354495A (en) 1984-07-03 1990-03-01 Alkenoylcarbamate compounds as elasticity, adhesion, and dispersibility enhancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138298A JPS6117554A (en) 1984-07-03 1984-07-03 Carbamic ester and its preparation

Publications (2)

Publication Number Publication Date
JPS6117554A JPS6117554A (en) 1986-01-25
JPH0524142B2 true JPH0524142B2 (en) 1993-04-06

Family

ID=15218608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138298A Granted JPS6117554A (en) 1984-07-03 1984-07-03 Carbamic ester and its preparation

Country Status (1)

Country Link
JP (1) JPS6117554A (en)

Also Published As

Publication number Publication date
JPS6117554A (en) 1986-01-25

Similar Documents

Publication Publication Date Title
KR100393405B1 (en) A Process for producing functional monomer via enamine of acetoacetate
US4956433A (en) Telechelic polymers from thiuram disulfide or dithiocarbamates
WO1991006535A1 (en) Control of molecular weight and end group functionality in polymers using unsaturated peroxy compounds as chain transfer agents
JPH0794587B2 (en) Novel room temperature curable resin composition and coating composition
EP0376590B1 (en) Monomer or polymer composition derived from acryloxy alkyl cyanoacetamides
KR940001715B1 (en) Instantaneously curable composition
AU666876B2 (en) Latent thiol monomers
JPH0524142B2 (en)
JP4033518B2 (en) Novel semicarbazide compound and coating composition using the same
JPH0559911B2 (en)
EP1467966B1 (en) Water-soluble dithioesters and method for polymerization thereof
JPS6131147B2 (en)
JPH0428261B2 (en)
JPH04198303A (en) Polymerization initiator and polymerization process
JP2002003533A (en) (meth)acrylic acid polymer having lactone ring in side chain, and production method of the same
JPS6117556A (en) Substituted urea compound and its preparation
JPH0217155A (en) Production of dialkylaminoalkyl (meth)acrylate
US5659064A (en) Hydrazone intermediates
JPS6117558A (en) Substituted urea compound and its preparation
JPH072703B2 (en) Carbamic acid ester and its manufacturing method
US4539159A (en) Process for reaction of mercaptophenols with vinyl compounds
KR910008278B1 (en) Emulsion polymer of funtionalized monomers from 1 - (1-isocyanato - 1 - methyl ethyl) - 3 or 4 - (1 - methyl ethyl) benzene
JPS61275270A (en) Polymerization reactive melamine compound and production thereof
JPH02311453A (en) Vinyl compound containing ketimine group and its production
JPH0557978B2 (en)