JPH05241053A - Large-diameter hermetically coated fiber - Google Patents

Large-diameter hermetically coated fiber

Info

Publication number
JPH05241053A
JPH05241053A JP4044669A JP4466992A JPH05241053A JP H05241053 A JPH05241053 A JP H05241053A JP 4044669 A JP4044669 A JP 4044669A JP 4466992 A JP4466992 A JP 4466992A JP H05241053 A JPH05241053 A JP H05241053A
Authority
JP
Japan
Prior art keywords
carbon coating
film thickness
carbon
average roughness
center line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4044669A
Other languages
Japanese (ja)
Inventor
Shigeru Nakahara
繁 中原
Toshihiro Zushi
敏博 厨子
Masaaki Morisawa
正明 森澤
Tetsuya Takeda
哲也 竹田
Hiroyuki Tanaka
紘幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP4044669A priority Critical patent/JPH05241053A/en
Publication of JPH05241053A publication Critical patent/JPH05241053A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve mechanical strength and water resistant characteristics by providing a carbon coating layer having a specific film thickness and specific center line average roughness on the surface of a clad. CONSTITUTION:This optical fiber is constituted by forming the clad 2 of quartz glass doped with, for example, fluorine F, boron B, boron trifluoride BF3, etc., on the outer side of a core 1 consisting of, for example, pure quartz glass. The carbon coating layer 3 is formed on the surface of the clad 2 and further a UV curing resin layer 4 is formed thereon. The film thickness of the carbon coating layer 3 is specified to >=300Angstrom and the center line average roughness of the carbon coating layer 3 to <=1nm. The deterioration in tensile strength is substantially eliminated as the center line average roughness of the carbon coating layer 3 is as small as 1nm in such a manner. Since the film thickness is >=300Angstrom and is sufficient for preventing the infiltration of moisture, the water resistant characteristic is good.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、クラッド外径が例えば
125μmを超える大口径ハーメチックコートファイバ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-diameter hermetically coated fiber having an outer cladding diameter of more than 125 μm, for example.

【0002】[0002]

【従来の技術】一般に、大口径光ファイバにおいては、
その用途上、高温高湿の環境条件下での使用が多いこと
から、これまでのファイバには、そのような環境下での
耐用が可能なようにクラッド表面に高分子材料からなる
シースが設けられたものがある。
2. Description of the Related Art Generally, in a large-diameter optical fiber,
Because of its many applications under high temperature and high humidity environmental conditions, conventional fibers have a sheath made of polymer material on the clad surface so that they can be used in such environments. There is one

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな高分子材料のシースでは、その膜厚を厚くするなど
すればクラッドへの水分の侵入の防止効果があるから上
記環境条件での耐用も可能であるが、必ずしも実用的な
見地から見た場合の防止効果は必ずしも完全なものでは
ない。そこで、水分の防止効果、つまり耐水性をより高
めるために、クラッド表面に炭素被覆を設けたが、単に
炭素被覆の膜厚を厚くするだけでは、耐水性は向上する
ものの、機械的強度の点で劣り、大口径のものでは、特
に機械的強度が必要であるために、実用化が困難であっ
た。
However, in such a sheath made of a polymer material, by increasing the film thickness, the effect of preventing moisture from entering the clad can be obtained, so that the sheath can be used under the above environmental conditions. However, the preventive effect is not always perfect from a practical point of view. Therefore, carbon coating was provided on the clad surface in order to further improve the moisture-preventing effect, that is, the water resistance. However, simply increasing the thickness of the carbon coating improves the water resistance, but the mechanical strength However, it was difficult to put into practical use a large-diameter one because it requires mechanical strength in particular.

【0004】本発明は、上述の技術的課題を解決するこ
とを目的とする。
The present invention aims to solve the above technical problems.

【0005】[0005]

【課題を解決するための手段】本件発明者は、鋭意研究
した結果、水分の侵入を十分完全に防止できると同時
に、大口径ファイバに炭素被覆を用いた場合の課題であ
る機械的強度を実用化可能なものとした本発明を完成し
た。
As a result of earnest research, the present inventor has been able to sufficiently prevent the invasion of water and, at the same time, realizes practical use of mechanical strength which is a problem when a carbon coating is used for a large-diameter fiber. The present invention, which has been made possible, has been completed.

【0006】本発明は、大口径ハーメチックコートファ
イバにおいて、クラッド表面に300Å以上の膜厚で、
かつ、1nm以下の中心線平均粗さの炭素被覆を設けて
あることを特徴としている。
The present invention relates to a large-diameter hermetically coated fiber with a film thickness of 300 Å or more on the cladding surface.
In addition, a carbon coating having a center line average roughness of 1 nm or less is provided.

【0007】[0007]

【作用】上記構成によれば、表面の炭素被覆の中心線平
均粗さが1nm以下と小さいので、引張強度の劣化がほ
とんどなく、また、膜厚が300Å以上と水分の侵入を
防ぐに十分であるので、耐水特性が良好なものとなる。
According to the above construction, since the center line average roughness of the carbon coating on the surface is as small as 1 nm or less, the tensile strength is hardly deteriorated, and the film thickness is 300 Å or more, which is sufficient to prevent the infiltration of water. Therefore, the water resistance property is good.

【0008】[0008]

【実施例】以下、本発明の実施例について、詳細に説明
する。
EXAMPLES Examples of the present invention will be described in detail below.

【0009】この実施例は、クラッド外径が例えば12
5μmを超える大口径の光ファイバに、炭素被覆を行う
ものであり、例えば、次のようにして製造される。
In this embodiment, the cladding outer diameter is, for example, 12
An optical fiber having a large diameter exceeding 5 μm is coated with carbon, and is manufactured, for example, as follows.

【0010】すなわち、紡糸炉において、プリフォーム
(母材)を加熱軟化し、その一端より線引きすることに
より光ファイバ素線とし、CVD反応炉において、炭化
水素系の原料ガスを供給し、これを加熱することによっ
て光ファイバ素線の表面に炭素被覆を形成し、さらに、
炭素の表面に紫外線硬化樹脂を塗布し、紫外線を照射し
て樹脂コートを形成する。
That is, in a spinning furnace, a preform (base material) is heated and softened, and drawn from one end thereof to form an optical fiber elemental wire. In a CVD reaction furnace, a hydrocarbon-based raw material gas is supplied and this is used. A carbon coating is formed on the surface of the optical fiber strand by heating, and
An ultraviolet curable resin is applied to the surface of carbon and irradiated with ultraviolet rays to form a resin coat.

【0011】このような炭素被覆を施した光ファイバの
特性は、堆積した炭素の膜質に大きく依存するので、本
件発明者は、大口径の光ファイバで重要な特性である引
張強度や耐水特性と炭素被覆との関係について、以下の
ような検討を行い、炭素を300Å以上の膜厚で、か
つ、1nm以下の中心線平均粗さで被覆することを特徴
とする本発明を完成した。
Since the characteristics of the optical fiber coated with carbon as described above greatly depend on the quality of the deposited carbon film, the inventor of the present invention has found that the tensile strength and the water resistance which are important characteristics in the large diameter optical fiber. The following study was conducted on the relationship with carbon coating, and the present invention was completed in which carbon is coated with a film thickness of 300 Å or more and a center line average roughness of 1 nm or less.

【0012】すなわち、炭素堆積時の反応温度のみをパ
ラメータとして、上述の製造方法によって、下記の表1
に示す試作No.2〜8の7本の炭素被覆光ファイバを
試作し、炭素被覆が施されていない試作No.1で示さ
れる従来例とともに、その評価を、炭素膜厚、中心線平
均粗さRa、初期強度および浸漬後強度の4項目につい
て行った。この8本の試作の内、試作No.4,5,6
が、本発明の実施例であり、他が比較例となっている。
That is, by using the above-mentioned manufacturing method, only the reaction temperature at the time of carbon deposition was set as a parameter, and
Prototype No. shown in. 7 carbon-coated optical fibers 2 to 8 were manufactured as prototypes, and the carbon-coated optical fibers were not manufactured. In addition to the conventional example shown by 1, the evaluation was carried out for four items of carbon film thickness, center line average roughness Ra, initial strength and strength after immersion. Of these eight prototypes, the prototype No. 4, 5, 6
Are examples of the present invention, and others are comparative examples.

【0013】この試作した大口径ハーメチックコートフ
ァイバの断面構造を図1に示す。この光ファイバは、例
えば純石英ガラスのコア1の外径が200μm、例えば
フッ素F、ボロンB、三フッ化ボロンBF3などをドー
プした石英ガラスのクラッド2の外径が250μmであ
り、炭素被覆層3が形成され、さらに、紫外線硬化樹脂
層4が形成されて外径が、330μmとなっている。
FIG. 1 shows the cross-sectional structure of the large-diameter hermetically-coated fiber produced as a trial. In this optical fiber, for example, the outer diameter of the core 1 of pure silica glass is 200 μm, the outer diameter of the cladding 2 of silica glass doped with fluorine F, boron B, boron trifluoride BF 3, etc. is 250 μm, and carbon coating is performed. The layer 3 is formed, and the ultraviolet curable resin layer 4 is further formed so that the outer diameter is 330 μm.

【0014】上記4項目の評価において、炭素膜厚は、
ハーメチックコートファイバの超薄切片を作成してTE
M(透過型電子顕微鏡)を用いて測定を行い、中心線平
均粗さRaは、STM(走査型トンネル顕微鏡)を用い
て測定を行った。また、初期強度は、スパン1m、歪速
度5%/minにて引張試験を行い、浸漬後強度は、8
0°c純水中300時間浸漬後に前記と同様の引張試験
を行った。
In the evaluation of the above four items, the carbon film thickness is
Create an ultrathin section of the hermetically coated fiber and TE
The measurement was performed using M (transmission electron microscope), and the centerline average roughness Ra was measured using STM (scanning tunneling microscope). The initial strength was a tensile test with a span of 1 m and a strain rate of 5% / min.
The same tensile test as described above was performed after immersion in 0 ° C. pure water for 300 hours.

【0015】[0015]

【表1】 [Table 1]

【0016】表1に示されるように、炭素被覆の膜厚が
大きくなるとともに、中心線平均粗さも粗くなる傾向に
あることが判る。
As shown in Table 1, it is understood that as the film thickness of the carbon coating increases, the center line average roughness tends to increase.

【0017】また、炭素膜厚と引張強度との関係を図2
に、中心線平均粗さと引張強度との関係を図3にそれぞ
れ示す。これらの図においては、初期強度を●、浸漬後
強度を■でそれぞれ示しており、さらに、比較のため
に、炭素被覆が施されていない従来例の初期強度を○、
浸漬後強度を□で併せて示している。
FIG. 2 shows the relationship between carbon film thickness and tensile strength.
3 shows the relationship between the center line average roughness and the tensile strength, respectively. In these figures, the initial strength is indicated by ●, the strength after immersion is indicated by ■, and for comparison, the initial strength of the conventional example without carbon coating is indicated by ○,
The strength after immersion is also shown by □.

【0018】先ず、初期強度については、炭素被覆を施
していない従来例に比べて、炭素被覆を施した光ファイ
バが、強度が若干劣化しており、膜厚が大きくなって、
炭素被覆の中心線平均粗さが粗くなる程、その傾向が強
いことから、初期強度の劣化は、中心線平均粗さによる
ものと考えられる。すなわち、表面の粗い部分に応力が
集中しやすく、破断しやすいものと考えられる。したが
って、炭素被覆の中心線平均粗さを、本発明のように、
1nm以下とすることにより、図3に示されるように、
従来例とほぼ同程度の初期強度を維持できることが判
る。
First, regarding the initial strength, the carbon coated optical fiber is slightly deteriorated in strength as compared with the conventional example not coated with carbon, and the film thickness is increased.
Since the tendency becomes stronger as the center line average roughness of the carbon coating becomes rougher, the deterioration of the initial strength is considered to be due to the center line average roughness. That is, it is considered that the stress is likely to be concentrated on the rough portion of the surface and is easily broken. Therefore, the centerline average roughness of the carbon coating is, as in the present invention,
By setting the thickness to 1 nm or less, as shown in FIG.
It can be seen that it is possible to maintain almost the same initial strength as the conventional example.

【0019】一方、浸漬後強度については、炭素被覆を
施していない従来例では、顕著な強度劣化が見られるの
に対して、炭素被覆を施したハーメチックコートファイ
バでは、強度劣化が少ない。しかしながら、炭素被覆を
施したハーメチックコートファイバにおいても、炭素の
膜厚が、300Å未満では、浸漬後強度が、かなり劣化
している。これは、炭素の膜厚が薄くなり過ぎると、水
分の侵入を十分に防止できなくなったためであると考え
られる。したがって、炭素の膜厚を、本発明のように、
300Å以上とすることにより、図2に示されるよう
に、浸漬後の強度の劣化を低減できることになる。
On the other hand, with respect to the strength after immersion, in the conventional example not coated with carbon, remarkable strength deterioration is observed, whereas in the hermetically coated fiber coated with carbon, the strength deterioration is small. However, even in the hermetically coated fiber coated with carbon, if the carbon film thickness is less than 300 Å, the strength after immersion is considerably deteriorated. It is considered that this is because if the carbon film becomes too thin, it is not possible to sufficiently prevent the intrusion of water. Therefore, the film thickness of carbon is
By setting it to 300 Å or more, as shown in FIG. 2, the deterioration of the strength after immersion can be reduced.

【0020】このように、炭素を、300Å以上の膜厚
で、かつ、1nm以下の中心線平均粗さで被覆すること
により、図2,図3から明らかなように、水分を十分に
遮断して耐水特性が極めて良好であって、しかも、引張
強度も良好な大口径の光ファイバを得ることが可能とな
る。
As described above, by coating carbon with a film thickness of 300 Å or more and a center line average roughness of 1 nm or less, as shown in FIGS. 2 and 3, moisture is sufficiently blocked. Thus, it is possible to obtain an optical fiber having a large diameter, which has extremely good water resistance and also has good tensile strength.

【0021】[0021]

【発明の効果】以上のように本発明の大口径ハーメチッ
クコートファイバは、クラッド表面に炭素被覆が施され
ており、しかも、水分の侵入を防ぐのに十分な300Å
以上の膜厚を有し、また、中心線平均粗さが1nm以下
と小さいので、機械的強度の劣化がほとんどなく、耐水
特性が極めて良好である。
As described above, in the large-diameter hermetically coated fiber of the present invention, the cladding surface is coated with carbon, and moreover, 300 Å, which is sufficient to prevent the intrusion of water.
Since it has the above-mentioned film thickness and the center line average roughness is as small as 1 nm or less, there is almost no deterioration in mechanical strength and the water resistance is extremely good.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭素被覆が施された大口径の光ファイバの構造
断面図である。
FIG. 1 is a structural sectional view of a large-diameter optical fiber coated with carbon.

【図2】炭素膜厚と強度との関係を示す特性図である。FIG. 2 is a characteristic diagram showing the relationship between carbon film thickness and strength.

【図3】表面粗さと強度との関係を示す特性図である。FIG. 3 is a characteristic diagram showing a relationship between surface roughness and strength.

【符号の説明】[Explanation of symbols]

1 コア 2 クラッド 3 炭素被覆層 Ra 中心線平均粗さ 1 core 2 clad 3 carbon coating layer Ra center line average roughness

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹田 哲也 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 田中 紘幸 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuya Takeda 4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Cable Industries, Ltd. Itami Works (72) Inventor Hiroyuki Tanaka 4-3 Ikejiri, Itami City, Hyogo Mitsubishi Cable Industries Itami Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】クラッド表面に300Å以上の膜厚で、か
つ、1nm以下の中心線平均粗さの炭素被覆を設けてあ
ることを特徴とする大口径ハーメチックコートファイ
バ。
1. A large-diameter hermetically coated fiber characterized in that a carbon coating having a film thickness of 300 Å or more and a center line average roughness of 1 nm or less is provided on the cladding surface.
JP4044669A 1992-03-02 1992-03-02 Large-diameter hermetically coated fiber Pending JPH05241053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4044669A JPH05241053A (en) 1992-03-02 1992-03-02 Large-diameter hermetically coated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4044669A JPH05241053A (en) 1992-03-02 1992-03-02 Large-diameter hermetically coated fiber

Publications (1)

Publication Number Publication Date
JPH05241053A true JPH05241053A (en) 1993-09-21

Family

ID=12697858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4044669A Pending JPH05241053A (en) 1992-03-02 1992-03-02 Large-diameter hermetically coated fiber

Country Status (1)

Country Link
JP (1) JPH05241053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926524A1 (en) * 1997-12-10 1999-06-30 Sumitomo Electric Industries, Ltd. Optical-fiber cable and manufacturing method thereof
JP2016057629A (en) * 2010-01-26 2016-04-21 コーニング インコーポレイテッド Optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926524A1 (en) * 1997-12-10 1999-06-30 Sumitomo Electric Industries, Ltd. Optical-fiber cable and manufacturing method thereof
JP2016057629A (en) * 2010-01-26 2016-04-21 コーニング インコーポレイテッド Optical fiber

Similar Documents

Publication Publication Date Title
GB1595638A (en) Optical waveguides with protective coating
CA2077019C (en) Optical glass fiber
JPH05241053A (en) Large-diameter hermetically coated fiber
CN1052215C (en) Optical fibre covered with amorphous boron protective layer and method of depositing such layer
US5246746A (en) Method for forming hermetic coatings for optical fibers
JPH05241054A (en) Hermetically coated optical fiber for communication
JPH0648325B2 (en) Optical fiber and manufacturing method thereof
US5953478A (en) Metal-coated IR-transmitting chalcogenide glass fibers
JP2002508856A (en) Optical waveguide carbon coating
JP2701621B2 (en) Heat resistant optical fiber
JP3511811B2 (en) Optical fiber manufacturing method
JPH0225853B2 (en)
JP2959890B2 (en) Carbon coated optical fiber
JP3406034B2 (en) Carbon coated optical fiber
JP2585680B2 (en) Optical fiber
JPS6228101B2 (en)
JPS63175813A (en) Metal coated optical fiber core
JP2846452B2 (en) Carbon coated optical fiber
JPH01167707A (en) Fiber for light transmission and its production
JP2002047031A (en) Preform coated with alumina and/or silica and optical fiber
JP3117456B2 (en) Small diameter optical fiber
El Abdi et al. Optical Fiber Behavior Under Inert Atmosphere
JPH03187956A (en) Carbon-coated fiber
JP2775991B2 (en) Optical fiber and method for manufacturing the same
JPH06342117A (en) Optical transmission system