JPH05240709A - Wavelength measuring device - Google Patents

Wavelength measuring device

Info

Publication number
JPH05240709A
JPH05240709A JP4286292A JP4286292A JPH05240709A JP H05240709 A JPH05240709 A JP H05240709A JP 4286292 A JP4286292 A JP 4286292A JP 4286292 A JP4286292 A JP 4286292A JP H05240709 A JPH05240709 A JP H05240709A
Authority
JP
Japan
Prior art keywords
fabry
temperature
wavelength
pressure
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4286292A
Other languages
Japanese (ja)
Inventor
Terushi Tada
昭史 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4286292A priority Critical patent/JPH05240709A/en
Publication of JPH05240709A publication Critical patent/JPH05240709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To provide a wavelength measuring device which does not require airtightness and a control mechanism for the purpose of maintaining temperature or pressure. CONSTITUTION:In two kinds of Fabry-Perot etalon interferometers having a Fabry-Perot etalon 4 having a medium 5 the temperature coefficient or pressure coefficient of the refractive index of which is beta1 (refractive index n1(t), t: temperature) between reflecting surfaces and a Fabry-Perot etalon 8 having a medium 9 the temperature coefficient or pressure coefficient of the refractive index of which is beta2 (refractive index n2(t)) between reflecting surfaces, both the amount of changes in wavelength and the amount of changes in temperature or pressure are simultaneously measured according to the positions y1, y2 of interference fringes detected by detecting devices 7, 11, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、波長測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength measuring device.

【0002】[0002]

【従来の技術】従来の波長測定装置については、特開平
1−287427号公報等に詳細に記述されている。
2. Description of the Related Art A conventional wavelength measuring device is described in detail in JP-A-1-287427.

【0003】図3は従来の波長測定装置を説明するため
の図である。
FIG. 3 is a diagram for explaining a conventional wavelength measuring device.

【0004】図3において、波長を測定したい光を入射
窓20から導入し、拡散板3によりビームを拡げて反射
面間媒質22のファブリ−ペローエタロン21を透過さ
せる。透過光は集光光学系23により結像され干渉縞を
検出装置24上に形成する。この干渉縞は波長の違いに
より形状が変化するので、干渉縞形状を観測することに
より波長を測定できる。
In FIG. 3, the light whose wavelength is to be measured is introduced from the entrance window 20, the beam is expanded by the diffusing plate 3 and transmitted through the Fabry-Perot etalon 21 of the inter-reflecting medium 22. The transmitted light is imaged by the condensing optical system 23 to form interference fringes on the detection device 24. Since the shape of this interference fringe changes depending on the difference in wavelength, the wavelength can be measured by observing the shape of the interference fringe.

【0005】ここで、精度および再現性よく波長を測定
するために、反射面間の媒質22の温度変化あるいは圧
力変化による屈折率変化を排除する必要がある。この目
的で、ファブリ−ペローエタロン21を機密容器25内
に設け、温度制御装置26および圧力制御装置27で温
度および圧力を制御している。
Here, in order to measure the wavelength with high accuracy and reproducibility, it is necessary to eliminate the change in the refractive index of the medium 22 between the reflecting surfaces due to the temperature change or the pressure change. For this purpose, the Fabry-Perot etalon 21 is provided in the airtight container 25, and the temperature and pressure are controlled by the temperature control device 26 and the pressure control device 27.

【0006】[0006]

【発明が解決しようとする課題】ところで従来の波長測
定装置においては、ファブリ−ペローエタロンの反射面
間の媒質が温度変化あるいは圧力変化の影響を受ける
と、屈折率が変動し干渉縞形状が同一波長でも変化して
しまう。これを抑えるために、ファブリ−ペローエタロ
ンを温度および圧力が一定の気密室内に設ける必要があ
る。
In the conventional wavelength measuring apparatus, when the medium between the reflecting surfaces of the Fabry-Perot etalon is affected by temperature change or pressure change, the refractive index changes and the interference fringe shape remains the same. It also changes with the wavelength. In order to suppress this, it is necessary to install the Fabry-Perot etalon in an airtight chamber whose temperature and pressure are constant.

【0007】しかし気密室内の温度あるいは圧力を一定
に維持するには、温度検出器および温度調整器あるいは
圧力検出器および圧力調整器等の装置を設置しなければ
ならず、装置が大かがりになるという問題がある。
However, in order to keep the temperature or pressure in the airtight chamber constant, devices such as a temperature detector and a temperature regulator or a pressure detector and a pressure regulator must be installed, and the device becomes oversized. There is a problem.

【0008】本発明の目的は、温度維持あるいは圧力維
持のための気密性および制御機構の必要のない簡便な波
長測定装置を提供することにある。
An object of the present invention is to provide a simple wavelength measuring device which does not require airtightness and a control mechanism for maintaining temperature or pressure.

【0009】[0009]

【課題を解決するための手段】第1の発明による波長測
定装置は、2つ以上のファブリ−ペロー干渉計から構成
され、それぞれの干渉計のファブリ−ペローエタロンの
反射面間の媒質の屈折率の温度係数が異なっていること
を特徴とする。
The wavelength measuring device according to the first invention comprises two or more Fabry-Perot interferometers, and the refractive index of the medium between the reflecting surfaces of the Fabry-Perot etalons of each interferometer. Are characterized by different temperature coefficients.

【0010】第2の発明による波長測定装置は、2つ以
上のファブリ−ペロー干渉計から構成され、それぞれの
干渉計のファブリ−ペローエタロンの反射面間の媒質の
屈折率の圧力係数が異なっていることを特徴とする。
The wavelength measuring device according to the second invention is composed of two or more Fabry-Perot interferometers, and the pressure coefficient of the refractive index of the medium between the reflecting surfaces of the Fabry-Perot etalons of each interferometer is different. It is characterized by being

【0011】[0011]

【作用】第1の発明による波長測定装置においては、反
射面間の媒質の屈折率の温度係数が異なるファブリ−ペ
ローエタロンを透過した光がそれぞれ形成する干渉縞の
変化量が温度の変化に対する場合と波長の変化に対する
場合とで異なるため、干渉縞の変化量から波長変化量お
よび温度変化量を同時に検出できる。これより測定装置
雰囲気の温度変化が生じても精度良く波長を測定でき
る。
In the wavelength measuring device according to the first aspect of the invention, when the amount of change in the interference fringes formed by the light transmitted through the Fabry-Perot etalon having different temperature coefficients of the refractive index of the medium between the reflecting surfaces is related to the change in temperature. The difference between the change in the interference fringes and the change in the wavelength can be detected simultaneously from the change in the interference fringes. As a result, the wavelength can be accurately measured even if the temperature of the atmosphere of the measuring device changes.

【0012】第2の発明による波長測定装置において
は、反射面間の媒質の屈折率の圧力係数が異なるファブ
リ−ペローエタロンを透過した光がそれぞれ形成する干
渉縞の変化量が、圧力の変化に対する場合と波長の変化
に対する場合とで異なるため、干渉縞の変化量から波長
変化量および圧力変化量を同時に検出できる。これより
測定装置雰囲気の圧力変化が生じても精度良く波長を測
定できる。
In the wavelength measuring device according to the second aspect of the invention, the change amount of the interference fringes formed by the light transmitted through the Fabry-Perot etalon having different pressure coefficients of the refractive index of the medium between the reflecting surfaces is relative to the change of the pressure. Since the case and the case with respect to the wavelength change are different, the wavelength change amount and the pressure change amount can be simultaneously detected from the change amount of the interference fringes. As a result, the wavelength can be accurately measured even if the pressure in the atmosphere of the measuring device changes.

【0013】[0013]

【実施例】本発明の実施例を図面用いて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0014】図1は、第1の発明の波長測定装置の一実
施例を説明するための図である。
FIG. 1 is a diagram for explaining an embodiment of the wavelength measuring device of the first invention.

【0015】図1に示した波長測定装置は、2つの干渉
計に測定光を分割するための部分反射鏡1と全反射鏡あ
るいは部分反射鏡2、測定光を広げるための拡散板3、
反射面間距離L1 で屈折率の温度係数がβ1 の媒質5
(屈折率n1 (t),t:温度)を反射面間にもつファ
ブリ−ペローエタロン4、干渉縞を結像するための集光
光学系6、集光光学系6の焦点面近傍で集光光学系6か
らの距離F1 に配置した干渉縞を観測するための検出装
置7、および反射面間距離L2 で屈折率の温度係数がβ
2 の媒質9(屈折率n2 (t))を反射面間にもつファ
ブリ−ペローエタロン8、干渉縞を結像するための集光
光学系10、集光光学系10の焦点面近傍で集光光学系
10からの距離F2 に配置した干渉縞を観測するための
検出装置11とから構成される。配置は図示の如くであ
る。
The wavelength measuring device shown in FIG. 1 has a partial reflection mirror 1 and a total reflection mirror or partial reflection mirror 2 for dividing the measurement light into two interferometers, a diffusion plate 3 for spreading the measurement light,
Medium 5 with a distance L 1 between reflecting surfaces and a temperature coefficient of refractive index β 1
A Fabry-Perot etalon 4 having (refractive index n 1 (t), t: temperature) between reflecting surfaces, a condensing optical system 6 for forming an interference fringe, and a condensing optical system 6 near the focal plane. A detector 7 for observing interference fringes arranged at a distance F 1 from the optical optical system 6, and a temperature coefficient β of the refractive index at a distance L 2 between the reflecting surfaces.
A Fabry-Perot etalon 8 having a medium 9 of 2 (refractive index n 2 (t)) between reflecting surfaces, a condensing optical system 10 for forming an interference fringe, and a condensing optical system 10 having a focal plane near the focal plane. A detector 11 for observing interference fringes arranged at a distance F 2 from the optical optical system 10. The arrangement is as shown.

【0016】この波長測定装置において、ある特定の波
長λ0 、温度t0 における、ファブリ−ペローエタロン
4を透過したm1 次光による干渉縞の検出装置7上での
光軸からの距離x1 、およびファブリ−ペローエタロン
8を透過したm2 次光による干渉縞の検出装置11上で
の光軸からの距離x2 を事前に測定する。
In this wavelength measuring device, at a specific wavelength λ 0 and temperature t 0 , a distance x 1 from the optical axis on the detecting device 7 of an interference fringe due to the m 1 -order light transmitted through the Fabry-Perot etalon 4 is detected. , And the distance x 2 from the optical axis on the detection device 11 of the interference fringes due to the m 2 -order light transmitted through the Fabry-Perot etalon 8 are measured in advance.

【0017】測定光の波長λは、ファブリ−ペローエタ
ロン4を透過したm1 次光による干渉縞の検出装置7上
での光軸からの距離がy1 、ファブリ−ペローエタロン
8を透過したm2 次光による干渉縞の検出装置11上で
の光軸からの距離がy2 のとき、
The wavelength λ of the measurement light is m 1 after passing through the Fabry-Perot etalon 8 when the distance from the optical axis on the detector 7 for the interference fringes due to the m 1st- order light passing through the Fabry-Perot etalon 4 is y 1 . When the distance from the optical axis on the detection device 11 of the interference fringes due to the secondary light is y 2 ,

【0018】[0018]

【数1】 [Equation 1]

【0019】で表せる。この式には温度tが含まれない
ため測定装置雰囲気の温度変化に関係なく波長を測定で
きる。従って、第1の発明を用いれば、温度維持のため
の気密性および制御機構の必要のない簡便な波長測定装
置を提供できる。
Can be expressed as Since this expression does not include the temperature t, the wavelength can be measured regardless of the temperature change in the atmosphere of the measuring device. Therefore, by using the first invention, it is possible to provide a simple wavelength measuring device that does not require airtightness and a control mechanism for maintaining temperature.

【0020】図2は、第2の発明の波長測定装置の一実
施例を説明するための図である。
FIG. 2 is a diagram for explaining an embodiment of the wavelength measuring device of the second invention.

【0021】図2に示した波長測定装置は、2つの干渉
計に測定光を分割するための部分反射鏡1と全反射鏡あ
るいは部分反射鏡2、測定光を広げるための拡散板3、
反射面間距離L3 で屈折率の圧力係数がγ3 の媒質13
(屈折率n3 (p)),p:圧力)を反射面間にもつフ
ァブリ−ペローエタロン12、干渉縞を結像するための
集光光学系14、集光光学系14の焦点面近傍で集光光
学系14からの距離F3 に配置した干渉縞を観測するた
めの検出装置15、および反射面間距離L4 で屈折率の
圧力係数がγ4 の媒質17(屈折率n4 (p))を反射
面間にもつファブリ−ペローエタロン16、干渉縞を結
像するための集光光学系18、集光光学系18の焦点面
近傍で集光光学系18からの距離F4 に配置した干渉縞
を観測するための検出装置19とから構成される。配置
は図示の如くである。
The wavelength measuring device shown in FIG. 2 has a partial reflection mirror 1 and a total reflection mirror or partial reflection mirror 2 for splitting the measurement light into two interferometers, a diffusion plate 3 for spreading the measurement light,
A medium 13 having a distance L 3 between the reflecting surfaces and a pressure coefficient of refractive index γ 3
A Fabry-Perot etalon 12 having (refractive index n 3 (p), p: pressure) between reflecting surfaces, a condensing optical system 14 for forming interference fringes, and in the vicinity of the focal plane of the condensing optical system 14. detector 15, and the pressure coefficient of the refractive index at the reflecting surface distance L 4 is gamma 4 medium 17 for observing the interference fringes are arranged in a distance F 3 from the condensing optical system 14 (refractive index n 4 (p )) Between the reflecting surfaces, a Fabry-Perot etalon 16, a condensing optical system 18 for forming an interference fringe, and a distance F 4 from the condensing optical system 18 near the focal plane of the condensing optical system 18. And a detection device 19 for observing the interference fringes. The arrangement is as shown.

【0022】この波長測定装置において、ある特定の波
長λ0 、圧力p0 における、ファブリ−ペローエタロン
12を透過したm3 次光による干渉縞の検出装置15上
での光軸からの距離x3 、およびファブリ−ペローエタ
ロン16を透過したm4 次光による干渉縞の検出装置1
9上での光軸からの距離x4 を事前に測定する。
In this wavelength measuring device, at a specific wavelength λ 0 and pressure p 0 , a distance x 3 from the optical axis on the detecting device 15 of the interference fringes due to the m 3 -order light transmitted through the Fabry-Perot etalon 12 is measured. , And a device 1 for detecting interference fringes by the m 4th order light transmitted through the Fabry-Perot etalon 16
The distance x 4 from the optical axis on 9 is measured in advance.

【0023】測定光の波長λは、ファブリ−ペローエタ
ロン12を透過したm3 次光による干渉縞の検出装置1
5上での光軸からの距離がy3 、ファブリ−ペローエタ
ロン16を透過したm4 次光による干渉縞の検出装置1
9上での光軸からの距離がy4 のとき、
The wavelength λ of the measurement light is a device 1 for detecting interference fringes by the m 3 -order light transmitted through the Fabry-Perot etalon 12.
5, the distance from the optical axis on the optical axis is y 3 , and the interference fringe detection device 1 is the m 4th- order light transmitted through the Fabry-Perot etalon 16
When the distance from the optical axis on 9 is y 4 ,

【0024】[0024]

【数2】 [Equation 2]

【0025】で表せる。この式には圧力pが含まれない
ため測定装置雰囲気の圧力変化に関係なく波長を測定で
きる。従って、第2の発明を用いれば、圧力維持のため
の気密性および制御機構の必要のない簡便な波長測定装
置を提供できる。
Can be expressed as Since this formula does not include the pressure p, the wavelength can be measured regardless of the pressure change in the atmosphere of the measuring device. Therefore, by using the second invention, it is possible to provide a simple wavelength measuring device that does not require airtightness and a control mechanism for maintaining pressure.

【0026】[0026]

【発明の効果】以上述べたように本発明によれば、温度
変化あるいは圧力変化に関係なく波長を測定できるた
め、温度維持あるいは圧力維持のための気密性および制
御機構の必要のない簡便な波長測定装置を提供できる。
As described above, according to the present invention, the wavelength can be measured irrespective of the temperature change or the pressure change. Therefore, a simple wavelength which does not require the airtightness and the control mechanism for maintaining the temperature or the pressure. A measuring device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明による波長測定装置の一実施例を示
す図である。
FIG. 1 is a diagram showing an embodiment of a wavelength measuring device according to the first invention.

【図2】第2の発明による波長測定装置の一実施例を示
す図である。
FIG. 2 is a diagram showing an embodiment of a wavelength measuring device according to the second invention.

【図3】従来の波長測定装置を示す図である。FIG. 3 is a diagram showing a conventional wavelength measuring device.

【符号の説明】[Explanation of symbols]

1 部分反射鏡 2 全反射鏡あるいは部分反射鏡 3 拡散板 4 反射面間距離L1 のファブリ−ペローエタロン 5 屈折率の温度係数がβ1 の媒質 6 焦点距離F1 の集光光学系 7,11,15,19,24 検出装置 8 反射面間距離L2 のファブリ−ペローエタロン 9 屈折率の温度係数がβ2 の媒質 10 焦点距離F2 の集光光学系 12 反射面間距離L3 のファブリ−ペローエタロン 13 屈折率の圧力係数がγ3 の媒質 14 焦点距離F3 の集光光学系 16 反射面間距離L4 のファブリ−ペローエタロン 17 屈折率の圧力係数がγ4 の媒質 18 焦点距離F4 の集光光学系 20 入射窓 21 ファブリ−ペローエタロン 22 反射面間媒質 23 焦点距離F5 の集光光学系 25 気密室 26 温度制御装置 27 圧力制御装置DESCRIPTION OF SYMBOLS 1 partial reflection mirror 2 total reflection mirror or partial reflection mirror 3 diffuser plate 4 Fabry-Perot etalon with distance L 1 between reflection surfaces 5 medium with temperature coefficient of refractive index β 1 6 focusing optics with focal length F 1 7, 11, 15, 19, 24 Detection device 8 Fabry-Perot etalon with inter-reflecting surface distance L 2 9 Medium with temperature coefficient of refractive index β 2 10 Condensing optical system with focal length F 2 12 Inter-reflecting surface distance L 3 Fabry - Perot etalon 13 the refractive index of the pressure coefficient of gamma 3 medium 14 focal length F 3 of the converging optical system 16 reflecting surface distance L 4 Fabry - Perot etalon 17 medium 18 the focus of the pressure coefficient of the refractive index is gamma 4 Focusing optical system with distance F 4 20 Entrance window 21 Fabry-Perot etalon 22 Medium between reflecting surfaces 23 Focusing optical system with focal length F 5 25 Airtight chamber 26 Temperature controller 27 Pressure controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】2つ以上のファブリ−ペロー干渉計から構
成され、それぞれの干渉計のファブリ−ペローエタロン
の反射面間の媒質の屈折率の温度係数が異なっているこ
とを特徴とする波長測定装置。
1. A wavelength measurement comprising two or more Fabry-Perot interferometers, wherein the temperature coefficient of the refractive index of the medium between the reflecting surfaces of the Fabry-Perot etalons of each interferometer is different. apparatus.
【請求項2】2つ以上のファブリ−ペロー干渉計から構
成され、それぞれの干渉計のファブリ−ペローエタロン
の反射面間の媒質の屈折率の圧力係数が異なっているこ
とを特徴とする波長測定装置。
2. A wavelength measurement comprising two or more Fabry-Perot interferometers, wherein the pressure coefficient of the refractive index of the medium between the reflecting surfaces of the Fabry-Perot etalons of each interferometer is different. apparatus.
JP4286292A 1992-02-28 1992-02-28 Wavelength measuring device Pending JPH05240709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4286292A JPH05240709A (en) 1992-02-28 1992-02-28 Wavelength measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4286292A JPH05240709A (en) 1992-02-28 1992-02-28 Wavelength measuring device

Publications (1)

Publication Number Publication Date
JPH05240709A true JPH05240709A (en) 1993-09-17

Family

ID=12647846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4286292A Pending JPH05240709A (en) 1992-02-28 1992-02-28 Wavelength measuring device

Country Status (1)

Country Link
JP (1) JPH05240709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016200155A1 (en) * 2015-06-08 2016-12-15 주식회사 고영테크놀러지 Humid air forming device, inspection device comprising same, and inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016200155A1 (en) * 2015-06-08 2016-12-15 주식회사 고영테크놀러지 Humid air forming device, inspection device comprising same, and inspection method
US10619870B2 (en) 2015-06-08 2020-04-14 Koh Young Technology Inc. Humid air forming device, inspection device comprising same, and inspection method

Similar Documents

Publication Publication Date Title
US5243614A (en) Wavelength stabilizer for narrow bandwidth laser
US7450246B2 (en) Measuring device and method for determining relative positions of a positioning stage configured to be moveable in at least one direction
US4984894A (en) Method of and apparatus for measuring film thickness
JP4912504B1 (en) Refractive index measurement method and measurement apparatus
US7130059B2 (en) Common-path frequency-scanning interferometer
JP7410853B2 (en) Method and device for non-contact measurement of distance to a surface or distance between two surfaces
US5285261A (en) Dual interferometer spectroscopic imaging system
US5642196A (en) Method and apparatus for measuring the thickness of a film using low coherence reflectometry
KR20000011448A (en) Process and device for measuring the thickness of a transparent material
US7280216B2 (en) Method and apparatus for determining the wavelength of an input light beam
JP3219879B2 (en) Wavelength detector
JPS58169004A (en) Highly accurate interference length measuring method in atmosphere
JPH05240709A (en) Wavelength measuring device
JP2932829B2 (en) Wavelength fluctuation measurement device
JP2932821B2 (en) Wavelength fluctuation measurement device
JP2002522782A (en) Apparatus for measuring the wavelength of the emission beam
JPS5821527A (en) Fourier converting type infrared spectrophotometer
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
KR102631633B1 (en) System for measuring thickness of thin film
JPH0567821A (en) Wavelength monitor for narrow-band laser
Weingaertner et al. Interferometric methods for the measurement of wavefront aberrations
JPH11287612A (en) Interferometer
JP2810194B2 (en) Interference optical system and exposure apparatus having the same
JPH05264250A (en) Optical measuring device for surface form
JPH01196523A (en) Laser apparatus