JPH05240325A - Gear made of fiber reinforced resin - Google Patents
Gear made of fiber reinforced resinInfo
- Publication number
- JPH05240325A JPH05240325A JP4042985A JP4298592A JPH05240325A JP H05240325 A JPH05240325 A JP H05240325A JP 4042985 A JP4042985 A JP 4042985A JP 4298592 A JP4298592 A JP 4298592A JP H05240325 A JPH05240325 A JP H05240325A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- gear
- fibers
- reinforced resin
- prepreg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Gears, Cams (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は繊維強化樹脂歯車に関す
る。この歯車は例えば自動車のカムシャフトタイミング
ギヤ等に利用できる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced resin gear. This gear can be used, for example, as a camshaft timing gear of an automobile.
【0002】[0002]
【従来の技術】繊維強化樹脂歯車は、噛み合い音が低
い、軽量で回転慣性力が小さい等の利点をもつため、近
年、種々の分野で多用されつつある。ここで、特開昭6
0ー206628号公報に開示されている様に、補強用
短繊維と熱硬化性樹脂とを混練した材料を型のキャビテ
ィに装填し、加熱加圧成形した繊維強化樹脂歯車が知ら
れている。また特開昭60ー206629号公報に開示
されている様に、補強用短繊維と熱硬化性樹脂とからな
るジエニール状のプリプレグを型のキャビティに円周方
向に装填し、加熱加圧成形した繊維強化樹脂歯車が知ら
れている。2. Description of the Related Art Fiber-reinforced resin gears have recently been widely used in various fields because they have advantages such as low meshing noise, light weight, and small rotational inertia. Here, JP-A-6
As disclosed in Japanese Unexamined Patent Publication No. 0-206628, a fiber-reinforced resin gear is known in which a material obtained by kneading reinforcing short fibers and a thermosetting resin is loaded into a mold cavity and heat-pressed. Further, as disclosed in JP-A-60-206629, a denier prepreg consisting of reinforcing short fibers and a thermosetting resin is circumferentially loaded into a mold cavity and heat-pressed. Fiber-reinforced resin gears are known.
【0003】また、特開平2ー241729号公報に開
示されている様に、メタ系芳香族ポリアミド繊維の紡織
布にフェノール樹脂を含浸させたプリプレグを渦巻状に
巻いて棒状とするとともに、その棒状の両端を合わせて
ドーナツ状としたドーナツ状予備成形材を成形固化して
リング状素材を形成し、リング状素材の外周部を歯切り
加工した繊維強化樹脂歯車が知られている。しかし特開
平2ー241729号公報にかかる繊維強化樹脂歯車で
は、強化繊維がメタ系芳香族ポリアミド繊維のため、歯
部の強度、歯部の耐摩耗性が小さいという問題がある。Further, as disclosed in JP-A-2-241729, a prepreg obtained by impregnating a woven cloth of meta-aromatic polyamide fiber with a phenol resin is spirally wound into a rod-like shape. There is known a fiber-reinforced resin gear in which a doughnut-shaped preform material having both ends thereof is combined and solidified to form a ring-shaped material, and the outer peripheral portion of the ring-shaped material is gear-cut. However, the fiber-reinforced resin gear disclosed in JP-A-2-241729 has a problem that the strength of the tooth portion and the wear resistance of the tooth portion are small because the reinforcing fiber is the meta-aromatic polyamide fiber.
【0004】[0004]
【発明が解決しようとする課題】ところで上記した繊維
強化樹脂歯車で用いる強化繊維としては、カーボン繊
維、ガラス繊維、アラミド繊維等が一般的であるが、カ
ーボン繊維のみで補強した歯車では、強度、耐摩耗性は
良いが、カーボン繊維は摩擦係数が小さいためカッター
の刃先が滑る等の理由で難削材であり加工性が極めて悪
く、量産向きでなく、更に、カーボン繊維は高弾性率の
ため、繊維強化樹脂歯車の本来の目的である噛み合い音
の低減に対する効果が小さい。更に。また、ガラス繊維
のみで強化した繊維強化樹脂歯車では、相手歯車に対す
る攻撃性が極めて大きいため、特に高負荷用途を狙った
場合、相手歯車の耐摩耗性の面から致命的である。一
方、メタ系ポリアミド繊維で強化した繊維強化樹脂歯車
では、加工性も良く、音の低減に対して有効であり、か
つ自身の耐摩耗性、相手攻撃性を含めた摩耗特性も良好
である。Carbon fibers, glass fibers, aramid fibers and the like are generally used as the reinforcing fibers used in the fiber reinforced resin gears described above. Although it has good wear resistance, carbon fiber is a difficult-to-cut material because the cutting edge of the cutter slips because it has a small coefficient of friction, workability is extremely poor, it is not suitable for mass production, and because carbon fiber has a high elastic modulus The effect of reducing the meshing noise, which is the original purpose of the fiber-reinforced resin gear, is small. Furthermore. Further, a fiber-reinforced resin gear reinforced only with glass fibers has a very high attacking property against a mating gear, so that it is fatal from the viewpoint of wear resistance of the mating gear particularly when aiming for a high load application. On the other hand, a fiber-reinforced resin gear reinforced with a meta-polyamide fiber has good workability, is effective in reducing noise, and has good wear characteristics including its own wear resistance and opponent attack.
【0005】ところで、近年、繊維強化樹脂歯車では、
歯切り加工の良好性、歯部の耐摩耗性、歯部の強度、耐
負荷性の両立が望まれている。本発明は上記した実情に
鑑みなされたものであり、その目的は、歯切り加工の際
の加工性、歯部の強度、耐摩耗性を兼ね備えた繊維強化
樹脂歯車を提供することにある。By the way, in recent years, in fiber-reinforced resin gears,
It is desired to have good gear cutting, wear resistance of the teeth, strength of the teeth, and load resistance. The present invention has been made in view of the above circumstances, and an object thereof is to provide a fiber-reinforced resin gear having workability during gear cutting, strength of a tooth portion, and wear resistance.
【0006】[0006]
【課題を解決するための手段】本発明にかかる繊維強化
樹脂歯車は、プリプレグを巻いて棒状とするとともに、
その棒状の両端を合わせてドーナツ状としたドーナツ状
予備成形材を成形固化したリング状素材を歯切りして、
歯部の噛み合い面にプリプレグを構成する基材の繊維が
木の年輪状に配向した繊維強化樹脂歯車であって、該基
材は、加工性の良い軟質繊維と強度の高い硬質繊維とが
混織して構成されていることを特徴とするものである。A fiber-reinforced resin gear according to the present invention has a rod shape formed by winding a prepreg.
Tooth-cut the ring-shaped material obtained by molding and solidifying the donut-shaped preforming material that is made into a donut shape by combining both ends of the rod shape,
A fiber-reinforced resin gear in which the fibers of the base material that constitutes the prepreg on the meshing surface of the teeth are oriented in the shape of a tree ring, and the base material is a mixture of soft fibers with good workability and hard fibers with high strength. It is characterized by being woven.
【0007】本発明にかかる繊維強化樹脂歯車では、歯
部の噛み合い面に繊維が木の年輪状に配向している。こ
こで、木の年輪状とは、繊維が多重に配向していること
をいい、輪状に配向している形態、半輪状、部分輪状に
配向している形態を含む。基材は、加工性の良い軟質繊
維と強度の高い硬質繊維とが混織して構成されている。
混織の程度は歯車の要求特性に応じて適宜選択できる
が、体積%で繊維総量を30〜70%程度とした場合に
は、軟質繊維は繊維総量中95〜40%程度、硬質繊維
は5〜60%程度にできる。In the fiber-reinforced resin gear according to the present invention, the fibers are oriented on the meshing surfaces of the teeth in the shape of a tree ring. Here, the annual ring shape of a tree means that the fibers are orientated in multiple directions, and includes a mode in which they are oriented in a ring shape, a mode in which they are oriented in a semi-circular shape, and a mode in which they are oriented in a partial ring shape. The base material is formed by mixing and weaving soft fibers having good processability and hard fibers having high strength.
The degree of mixed weaving can be appropriately selected according to the required characteristics of the gear, but when the total fiber amount is about 30 to 70% in volume%, the soft fiber is about 95 to 40% in the total fiber amount, and the hard fiber is 5%. It can be about 60%.
【0008】本発明の繊維強化樹脂歯車で用いる軟質繊
維は、弾性率が硬質繊維よりも低い繊維を意味する。軟
質繊維としては、基本的には歯車を形成可能であれば良
く、特に制約を受けるものではないが、その切削加工性
及び、噛み合い音の低減性の面から、メタ系アラミド繊
維が好ましい。硬質繊維は軟質繊維よりも弾性率が高い
繊維を意味する。硬質繊維としては、カーボン繊維、パ
ラ系アラミド繊維、ガラス繊維を採用できる。カーボン
繊維は高弾性率で、高強度かつ耐摩耗性に優れる。The soft fiber used in the fiber-reinforced resin gear of the present invention means a fiber having an elastic modulus lower than that of the hard fiber. The soft fiber is basically not limited to any particular one as long as it can form a gear, but a meta-aramid fiber is preferable from the viewpoints of its machinability and reduction of meshing noise. Hard fiber means a fiber having a higher elastic modulus than a soft fiber. Carbon fibers, para-aramid fibers, and glass fibers can be used as the hard fibers. Carbon fiber has a high elastic modulus, high strength, and excellent wear resistance.
【0009】本発明の繊維強化樹脂歯車においては、繊
維の総量としては特に制約を受けることなく、歯車の要
求特性に応じて任意に設定すれば良いが、歯部の強度及
び成形性の面を考慮すると、繊維の総体積率は50%前
後、特に40〜60%程度が好ましい。本発明の繊維強
化樹脂歯車に使用するマトリックス樹脂としては、フェ
ノ−ル樹脂、エポキシ樹脂、ポリイミド樹脂等の各種熱
硬化樹脂、あるいは、PES、PEEK、PAI等の各
種熱可塑性樹脂であって良い。即ち、軟質繊維、硬質繊
維と何らかの方法で複合化可能な樹脂であれば良い。In the fiber-reinforced resin gear of the present invention, the total amount of fibers is not particularly limited and may be arbitrarily set according to the required characteristics of the gear. Considering this, the total volume ratio of the fibers is preferably around 50%, particularly preferably 40 to 60%. The matrix resin used in the fiber-reinforced resin gear of the present invention may be various thermosetting resins such as phenol resin, epoxy resin and polyimide resin, or various thermoplastic resins such as PES, PEEK and PAI. That is, any resin may be used as long as it can be combined with the soft fiber or the hard fiber by some method.
【0010】[0010]
【作用】歯部は、加工性の良い軟質繊維の特性と、強度
の高い硬質繊維の特性とを合わせもつ。The function of the tooth portion is that it has the characteristics of a soft fiber having good workability and the characteristics of a hard fiber having high strength.
【0011】[0011]
(実施例1) (1)プリプレグの製造 溶剤によりワニス状に溶融させたフェノ−ル樹脂を用い
ると共に、基材としてアラミド繊維とカーボン繊維とを
一体的に混織した平織の混織布を用いる。そして、その
フェノ−ル樹脂を混織布に含浸させ、その後に、この溶
剤を乾燥除去した。これによりアラミド繊維とカーボン
繊維とフェノ−ル樹脂とから成るプリプレグシートを作
成した。そしてこのプリプレグシートを、図2に示す様
に平行四辺形状に切断し、プリプレグ1とした。プリプ
レグ1は、辺1a〜1dをもち、辺1cの直角方向に対
して辺1aが角度θ(5°)傾斜している。ここで、プ
リプレグ1は、長さL1が235mm、幅L2が228
mm、厚み0.2mmである。このプリプレグ1では図
2に示す様に繊維1x、1yの繊維配向は辺1cに対し
て0°と90°である。(Example 1) (1) Production of prepreg A phenolic resin melted in a varnish form with a solvent is used, and a plain weave woven fabric in which aramid fibers and carbon fibers are integrally mixed and woven is used as a base material. .. Then, the phenolic resin was impregnated into the mixed woven cloth, and then the solvent was dried and removed. Thus, a prepreg sheet made of aramid fiber, carbon fiber and phenol resin was prepared. Then, this prepreg sheet was cut into parallelogram shapes as shown in FIG. The prepreg 1 has sides 1a to 1d, and the side 1a is inclined at an angle θ (5 °) with respect to the direction perpendicular to the side 1c. Here, the prepreg 1 has a length L1 of 235 mm and a width L2 of 228.
mm, thickness 0.2 mm. In this prepreg 1, as shown in FIG. 2, the fiber orientations of the fibers 1x and 1y are 0 ° and 90 ° with respect to the side 1c.
【0012】上記したプリプレグ1において、体積%で
アラミド繊維は80%、カーボン繊維は20%であり、
目付け量は140g/m2 である。上記したプリプレグ
1を構成するアラミド繊維の特性について説明する。即
ち、繊維材質はメタ系アラミド(帝人(株)「コーネッ
クス」)であり、フィラメント特性として強度80kg
/mm2 、伸びは27%、弾性率は1250kg/mm
2 、ヤーン特性として番手は20texである。In the prepreg 1 described above, the aramid fiber is 80% and the carbon fiber is 20% in volume%,
The basis weight is 140 g / m 2 . The characteristics of the aramid fiber that constitutes the above prepreg 1 will be described. That is, the fiber material is meta-aramid ("Conex", Teijin Ltd.), and the filament property is a strength of 80 kg.
/ Mm 2 , elongation 27%, elastic modulus 1250 kg / mm
2 , yarn count is 20 tex.
【0013】また、上記したプリプレグ1を構成するカ
ーボン繊維の特性について説明する。即ち、繊維材質は
グラファイト(東邦レーヨン(株)「ベスファイト」)
であり、フィラメント特性として強度は380kg/m
m2 、伸びは1.6%、弾性率は23500kg/mm
2 、ヤーン特性として番手は67texである。ここ
で、メタ系アラミド繊維は、前記した様に低弾性率であ
り、機械加工性に優れ、歯車の噛み合い面等の発生音を
低く押える特徴を持つ。また、カーボン繊維は、前記し
た様に高弾性率であり、強度に優れ、かつ摩擦係数が小
さく耐摩耗性に優れる特徴をもつ。The characteristics of the carbon fiber constituting the above prepreg 1 will be described. That is, the fiber material is graphite (“Besfight” from Toho Rayon Co., Ltd.)
The strength of the filament is 380 kg / m.
m 2 , elongation 1.6%, elastic modulus 23500 kg / mm
2 , yarn count is 67 tex. Here, the meta-aramid fiber has a low elastic modulus as described above, is excellent in machinability, and has a feature of suppressing the generated sound of the meshing surface of the gear etc. to be low. Further, the carbon fiber has a high elastic modulus as described above, is excellent in strength, has a small friction coefficient, and is excellent in wear resistance.
【0014】(2)リング状素材の製造 次に、図1(A)に示す様に、平行四辺形状に切断した
プリプレグ1を用い、そのプリプレグ1を一辺1cから
渦巻き状に巻き取り、棒状とする。次に、図1(C)に
示す様に、棒状としたプリプレグ1の一端部と他端部と
が合わさる様に合せ部3aを形成し、プリプレグ1を湾
曲させてドーナツ状予備成形材3を得た。ここで、ドー
ナツ状予備成形材3の合せ部3a(渦巻き棒の合せ)
は、同部の強度低下を避けるべくオーバーラップさせた
構造とされている。オーバーラップの長さは、図1のプ
リプレグ1の切断時にその形状を工夫することにより任
意に設定できる。(2) Manufacture of ring-shaped material Next, as shown in FIG. 1 (A), a prepreg 1 cut into parallelograms is used, and the prepreg 1 is spirally wound from one side 1c to form a rod shape. To do. Next, as shown in FIG. 1 (C), a mating portion 3a is formed so that one end and the other end of the rod-shaped prepreg 1 are aligned with each other, and the prepreg 1 is curved to form the doughnut-shaped preform 3. Obtained. Here, the mating part 3a of the doughnut-shaped preform material 3 (coil bar matching)
Has an overlapping structure in order to avoid a decrease in strength of the same portion. The length of overlap can be arbitrarily set by devising the shape of the prepreg 1 shown in FIG.
【0015】このようにして得たドーナツ状予備成形材
3を、図3に示す様に、合せ部3aが180°対向する
ように2本重ね合せた状態で、図4に示す金型4にセッ
トする。このとき金型4内には、中央孔5eをもつリン
グ状の鋼製インサ−ト5を配置している。この金型4
は、キャビティの底部に位置決め用突部40aをもつ下
型40と、下型40のキャビティに挿入されるリング状
加圧面41aをもつ円筒状の加圧パンチ41と、加圧パ
ンチ41の中央孔41bに挿通された中子42とで構成
されている。そして、中子42でインサート5を保持す
るとともに、キャビティ内に上下に2個重ねて配置した
ドーナツ状予備成形材3を、加圧パンチ41で矢印E方
向に押圧して加熱圧縮成形を行い、これによりプリプレ
グ1中の樹脂成分を固化させ、図5に示すリング状素材
6を形成した。この際の成形条件は、温度180℃、圧
力250kgf/cm2 、加圧時間15分である。As shown in FIG. 3, two doughnut-shaped preforms 3 thus obtained are stacked on each other so that the mating portions 3a are opposed to each other by 180 °, and the doughnut-shaped preform 3 is placed in the mold 4 shown in FIG. set. At this time, a ring-shaped steel insert 5 having a central hole 5e is arranged in the mold 4. This mold 4
Is a lower die 40 having a positioning protrusion 40a at the bottom of the cavity, a cylindrical pressure punch 41 having a ring-shaped pressure surface 41a inserted into the cavity of the lower die 40, and a central hole of the pressure punch 41. It is composed of a core 42 inserted through 41b. Then, the insert 42 is held by the core 42, and the doughnut-shaped preforming material 3 which is vertically arranged in the cavity is pressed by the pressure punch 41 in the arrow E direction to perform heat compression molding. As a result, the resin component in the prepreg 1 was solidified to form the ring-shaped material 6 shown in FIG. The molding conditions at this time are a temperature of 180 ° C., a pressure of 250 kgf / cm 2 , and a pressing time of 15 minutes.
【0016】図5に示すリング状素材6では、鋼製イン
サ−ト5の凹部5a及び凸部5bと繊維強化樹脂部分の
内周部とは強固に結合している。図6にリング状素材6
の断面を示す。リング状素材6の繊維強化部分6aは、
均一に分散されたアラミド繊維とカーボン繊維との双方
で強化されている。ここで、リング状素材6は、内径L
7が40.0mm、外径L9が79.0、厚さtが10
mm、インサート5の外径L8が55mmである。また
リング状素材6の繊維強化部分6aにおいて、繊維総量
は体積率で50%であり、繊維総量中、体積%で80%
がアラミド繊維、20%がカーボン繊維である。In the ring-shaped material 6 shown in FIG. 5, the concave portions 5a and the convex portions 5b of the steel insert 5 and the inner peripheral portion of the fiber reinforced resin portion are firmly bonded. Ring-shaped material 6 in Figure 6
The cross section of FIG. The fiber-reinforced portion 6a of the ring-shaped material 6 is
It is reinforced with both uniformly dispersed aramid fibers and carbon fibers. Here, the ring-shaped material 6 has an inner diameter L
7 is 40.0 mm, outer diameter L9 is 79.0, and thickness t is 10
mm, and the outer diameter L8 of the insert 5 is 55 mm. Further, in the fiber-reinforced portion 6a of the ring-shaped material 6, the total fiber amount is 50% by volume, and the total fiber amount is 80% by volume%.
Is aramid fiber and 20% is carbon fiber.
【0017】(3)歯切り加工 図5に示すリング状素材6を用い、そのリング状素材6
の外周部に、カッターにより切削加工を施すことにより
歯切り加工を行い、図7、図8に示す様に、外周部に歯
部7をもつ繊維強化樹脂歯車8を得た。このとき歯切り
加工の際の切除により、繊維が一部切断される。この繊
維強化樹脂歯車8の歯車諸元は以下の様である。即ち、
種類はインボリュートハスバ歯車であり、歯先直径は7
9.0mm、歯元直径は66.9mm、ピッチ円直径は
73.9mm、全歯たけは6.05mm、歯数は32、
直角モジュールは2.0、歯直角圧力角は18.0°、
ねじれ角は30°である。(3) Gear cutting processing The ring-shaped material 6 shown in FIG. 5 is used.
The outer peripheral portion was subjected to tooth cutting by cutting with a cutter to obtain a fiber reinforced resin gear 8 having tooth portions 7 on the outer peripheral portion as shown in FIGS. 7 and 8. At this time, some of the fibers are cut off by cutting during the gear cutting process. The specifications of the fiber-reinforced resin gear 8 are as follows. That is,
The type is an involute helical gear with a tip diameter of 7
9.0 mm, root diameter 66.9 mm, pitch circle diameter 73.9 mm, total tooth depth 6.05 mm, number of teeth 32,
Right angle module is 2.0, tooth pressure angle is 18.0 °,
The twist angle is 30 °.
【0018】本実施例にかかる繊維の配向形態を図7、
図8に示す。図7は主として歯部7の噛み合い面70に
おける木の年輪状の繊維配向を示す。また図8は木の年
輪状に配向した繊維を省略し、噛み合い面70における
他の繊維配向を示す。図7に示す様に、本実施例にかか
る繊維強化樹脂歯車8では、歯部7の噛み合い面70で
は、繊維100が木の年輪状に配向している。また歯部
7の最外周面としての歯先面75では、ほぼ周方向にの
びる繊維101と、歯車の軸芯Kにそってのびる繊維1
02とが交差して配向している。また、歯部7の軸端面
76では、ほぼ周方向にのびる繊維103と、歯車の軸
芯Kに対してほぼ放射方向にのびる繊維104とが交差
して配向している。また図8に示す様に、歯部7の噛み
合い面70では、周方向にのびる繊維103のうち歯切
りの際に切断された切断端面103aが噛み合い面70
の表面で表出している。The orientation form of the fibers according to this embodiment is shown in FIG.
It shows in FIG. FIG. 7 mainly shows the annual ring-shaped fiber orientation of the tree on the meshing surface 70 of the tooth portion 7. Further, FIG. 8 omits the fibers oriented in a tree ring shape, and shows another fiber orientation in the meshing surface 70. As shown in FIG. 7, in the fiber-reinforced resin gear 8 according to this embodiment, the fibers 100 are oriented in a tree ring shape at the meshing surface 70 of the tooth portion 7. Further, on the tooth top surface 75 as the outermost peripheral surface of the tooth portion 7, the fiber 101 extending substantially in the circumferential direction and the fiber 1 extending along the axis K of the gear are provided.
02 intersects with each other and is oriented. Further, on the shaft end surface 76 of the tooth portion 7, a fiber 103 extending substantially in the circumferential direction and a fiber 104 extending substantially in the radial direction with respect to the shaft axis K of the gear are oriented to intersect. Further, as shown in FIG. 8, in the meshing surface 70 of the tooth portion 7, the cut end surface 103 a of the fiber 103 extending in the circumferential direction, which is cut during gear cutting, is meshed with the meshing surface 70.
It is exposed on the surface of.
【0019】なお、複合強化部7bの繊維構成比は、使
用する繊維布の目付量を変えることにより、任意に設定
できる。ところで、歯車の使用に当って、歯部7のうち
応力的に最も厳しい部位が歯元72である。この点本実
施例では、歯車の軸芯Kに対してほぼ放射方向にのびる
繊維104が配向しており、この繊維104は高弾性率
のカーボン繊維でもある。そのため、歯部7の歯元72
の強度増加を図ることができる。The fiber composition ratio of the composite reinforcing portion 7b can be arbitrarily set by changing the basis weight of the fiber cloth used. By the way, in using the gear, the tooth base 72 is the most severe stress portion of the tooth portion 7. In this regard, in this embodiment, the fibers 104 extending substantially in the radial direction are oriented with respect to the axis K of the gear, and the fibers 104 are also carbon fibers having a high elastic modulus. Therefore, the tooth base 72 of the tooth portion 7
The strength can be increased.
【0020】また歯車の使用に当って、耐摩耗性が必要
な部位は歯部7の噛み合い面70のうち、ピッチ円73
付近、または、ピッチ円73よりもやや径内方の部位、
即ち半径方向におけるピッチ円73と歯元72との間の
部位である。この点本実施例では、図7から理解できる
様に、噛み合い面70の全面に年輪状の繊維100が配
向しており、この繊維100は、耐摩耗性及び強度に優
れるカーボン繊維でもあるので、耐摩耗性の向上も図る
ことができる。Further, in using the gear, a portion requiring wear resistance is a pitch circle 73 of the meshing surface 70 of the tooth portion 7.
A portion near or slightly inward of the pitch circle 73,
That is, it is a portion between the pitch circle 73 and the root 72 in the radial direction. In this respect, in this embodiment, as can be understood from FIG. 7, annual ring-shaped fibers 100 are oriented on the entire surface of the meshing surface 70, and since the fibers 100 are also carbon fibers excellent in wear resistance and strength, It is also possible to improve wear resistance.
【0021】(他の実施例)実施例1で用いたアラミド
繊維とカーボン繊維とを混織したプリプレグ1を用い、
そのプリプレグ1において、繊維の総体積率は実施例1
の場合と同様に50%とするものの、アラミド繊維とカ
ーボン繊維との混織比率のみを表1に示す様に変更し
た。そして、実施例1と同様の成形工程、歯切り加工工
程を経て、実施例1の場合と外形が全く同一の繊維強化
樹脂歯車(NO.a〜NO.f)を作成した。(Other Examples) Using the prepreg 1 in which the aramid fiber and the carbon fiber used in Example 1 are mixed and woven,
In the prepreg 1, the total volume ratio of fibers is
Although it was set to 50% as in the above case, only the mixed weaving ratio of aramid fiber and carbon fiber was changed as shown in Table 1. Then, through the same forming process and gear cutting process as in Example 1, fiber-reinforced resin gears (NO.a to NO.f) having exactly the same outer shape as in Example 1 were created.
【0022】[0022]
【表1】 ここで、他の実施例としてのNO.a〜NO.fにかか
る繊維強化樹脂歯車でも、歯部7の噛み合い面70で
は、アラミド繊維とカーボン繊維とが木の年輪状に配向
している。[Table 1] Here, NO. a-NO. Also in the fiber-reinforced resin gear according to f, the aramid fiber and the carbon fiber are oriented in a tree ring shape at the meshing surface 70 of the tooth portion 7.
【0023】(比較例)比較例1として、実施例1と全
く同様の外観をもつ繊維強化樹脂歯車において、繊維の
総体積率を50%としたままで、繊維をアラミド繊維の
みとした歯車を形成した(NO.g)。また、比較例2
として、繊維をカーボン繊維のみとした歯車を作成した
(NO.h)。(Comparative Example) As Comparative Example 1, a fiber-reinforced resin gear having exactly the same appearance as in Example 1 was used, in which the total volume ratio of the fibers was 50% and the fibers were aramid fibers only. Formed (NO.g). In addition, Comparative Example 2
As a result, a gear having only carbon fibers was prepared (NO.h).
【0024】[0024]
【表2】 (試験)実施例1の繊維強化樹脂歯車、他の実施例の繊
維強化樹脂歯車、及び比較例1、2の繊維強化樹脂歯車
を用い、以下述べる(1)歯部の歯先の曲げ強さ、
(2)歯部の噛み合い面の耐摩耗性、(3)歯切り加工
性の試験を行った。[Table 2] (Test) Using the fiber-reinforced resin gear of Example 1, the fiber-reinforced resin gear of other Examples, and the fiber-reinforced resin gears of Comparative Examples 1 and 2, the following (1) Bending strength of tooth tips of tooth portions is described below. ,
(2) Abrasion resistance of the meshing surface of the tooth portion and (3) Gear cutting workability test were conducted.
【0025】(1)歯部7の歯先の曲げ強さ試験 この試験では、歯車を固定し、歯部7のピッチ円付近に
曲げ荷重を加えて破断荷重の測定を行った。その結果を
図9に示す。図9の縦軸が曲げ荷重、横軸が繊維中のカ
ーボン繊維の含有体積率を示す。即ち図9の左端がアラ
ミド繊維のみの場合、右端がカーボン繊維のみの場合を
示している。(1) Bending Strength Test of Tooth Tip of Tooth 7 In this test, a gear was fixed and a bending load was applied to the tooth 7 in the vicinity of the pitch circle to measure the breaking load. The result is shown in FIG. The vertical axis of FIG. 9 represents the bending load, and the horizontal axis represents the carbon fiber content volume ratio in the fiber. That is, FIG. 9 shows the case where the left end is only aramid fibers and the right end is only carbon fibers.
【0026】図9に示す試験結果より、もっとも曲げ荷
重が小さいのが、アラミド繊維のみで強化したNO.g
である。そして、NO.a、NO.b、NO.c、N
O.d、NO.e、NO.f、NO.jの順に、つまり
カーボン繊維の含有率の増加に伴って曲げ荷重が増加す
る。なかでもカーボン繊維が100%のNO.hでは、
曲げ荷重が最も大きい。According to the test results shown in FIG. 9, the bending load is the smallest, that is, NO. g
Is. And NO. a, NO. b, NO. c, N
O. d, NO. e, NO. f, NO. The bending load increases in the order of j, that is, as the carbon fiber content increases. Among them, NO. In h,
The bending load is the largest.
【0027】(2)耐摩耗性試験 この試験では、表面を窒化処理した鋼(SCr20)製
のドライブギヤを用い、3kg−mの駆動トルクを加え
て、2000rpmの回転数で前記の各種歯車を駆動さ
せ、50時間経過後の歯部7の噛み合い面70の摩耗量
を測定した。その試験結果を図10に示す。図10の縦
軸が噛み合い面の摩耗量、横軸が繊維中のカーボン繊維
の含有体積率を示す。(2) Abrasion resistance test In this test, a drive gear made of steel (SCr20) whose surface was nitrided was used, and a driving torque of 3 kg-m was applied to the above various gears at a rotation speed of 2000 rpm. The amount of wear of the meshing surface 70 of the tooth portion 7 after driving for 50 hours was measured. The test results are shown in FIG. The vertical axis in FIG. 10 represents the amount of wear on the meshing surface, and the horizontal axis represents the volume fraction of carbon fibers contained in the fibers.
【0028】図10に示す試験結果より、アラミド繊維
のみ複合化したNO.gでは摩耗量が80μmを超えて
おり、最も摩耗量が大きい。そして、NO.a、NO.
b、NO.c、NO.d、NO.e、NO.f、NO.
jの順に、つまり、カーボン繊維含有率の増加に伴って
摩耗量が減少する。なかでもカーボン繊維のみで構成し
たNO.hでは摩耗量は最も少ない。From the test results shown in FIG. 10, NO. In g, the wear amount exceeds 80 μm, and the wear amount is the largest. And NO. a, NO.
b, NO. c, NO. d, NO. e, NO. f, NO.
The wear amount decreases in the order of j, that is, as the carbon fiber content increases. Among them, the NO. In h, the amount of wear is the smallest.
【0029】(3)歯切りの加工性の試験 刃先がダイヤモンドチップで構成された歯具をもつ歯切
り加工機を用い、1本の歯具で加工できる個数により加
工性を判定した。判定は、歯車の当初の加工精度をJI
S4級に設定し、この精度範囲より外れるときを加工限
度とした。試験結果を図11に示す。ここで、図11の
縦軸が加工可能数を示し、横軸が繊維中のカーボン繊維
の含有体積率を示す。図11に示す様に、もっとも歯切
り加工性が良いのが、アラミド繊維のみで強化したN
O.gである。そして、NO.a、NO.b、NO.
c、NO.d、NO.e、NO.f、NO.jの順に、
つまりカーボン繊維の含有量の増加に伴って加工可能数
は減少する。なかでも、カーボン繊維のみで強化したN
O.hでは、加工可能数は最も少なく、加工性が悪いこ
とがわかる。(3) Test of Workability of Gear Cutting A gear cutting machine having a toothing tool whose cutting edge is composed of a diamond tip was used to judge the workability by the number of teeth which can be processed by one toothing tool. The judgment is based on JI
It was set to S4 grade, and when it was out of this accuracy range, it was set as the processing limit. The test results are shown in FIG. Here, the vertical axis of FIG. 11 represents the number of machinable materials, and the horizontal axis represents the carbon fiber content volume ratio in the fiber. As shown in FIG. 11, the best workability for gear cutting is N reinforced only with aramid fibers.
O. It is g. And NO. a, NO. b, NO.
c, NO. d, NO. e, NO. f, NO. in the order of j,
That is, the processable number decreases as the carbon fiber content increases. Among them, N reinforced only with carbon fiber
O. It can be seen that in h, the number of machinable is the smallest and the machinability is poor.
【0030】(総合評価)さて、歯切り加工性、更には
歯車の噛み合い音(ガタ打ち音)を考慮すると、高弾性
率のカーボン繊維の量は少ない方が良い。また歯部7の
曲げ強さと歯部7の耐摩耗性とを考慮すると、カーボン
繊維の量が多いほど良い。そのため繊維総量を50体積
%とした場合、歯車の噛み合い音の低減、耐摩耗性、歯
切り加工性を共に有するには、カーボン繊維は繊維総量
中5〜50%が好ましく、10〜40%が更に好まし
い。(Comprehensive Evaluation) In view of gear cutting workability and gear meshing noise (backlash noise), it is preferable that the amount of high elastic modulus carbon fiber is small. Further, considering the bending strength of the tooth portion 7 and the wear resistance of the tooth portion 7, the larger the amount of carbon fiber, the better. Therefore, when the total amount of fibers is 50% by volume, the carbon fibers are preferably 5 to 50% in the total amount of fibers, and 10 to 40% in order to reduce gear meshing noise, wear resistance, and gear cutting workability. More preferable.
【0031】[0031]
【発明の効果】本発明の繊維強化樹脂歯車によれば、歯
部は、加工性の良い軟質繊維の特性と、強度の高い硬質
繊維の特性とを合わせもつ。そのため、歯切り加工の際
の加工性を高めつつ、歯部の強度、耐摩耗性を確保でき
る。特に歯車の軸芯に対して、ほぼ放射方向に硬質繊維
が配向している場合には、歯部の歯元の強度増加に有利
である。According to the fiber-reinforced resin gear of the present invention, the tooth portion has both the characteristics of the soft fiber having good workability and the characteristics of the hard fiber having high strength. Therefore, it is possible to secure the strength and wear resistance of the tooth portion while improving the workability in gear cutting. In particular, when the hard fibers are oriented substantially in the radial direction with respect to the shaft center of the gear, it is advantageous to increase the strength of the root of the tooth portion.
【図1】(A)(B)(C)はアラミド繊維とカーボン
繊維とを混織した基材のプリプレグでドーナツ状の予備
成形材を形成する工程を示す図である。1A, 1B, and 1C are diagrams showing a process of forming a doughnut-shaped preform by using a prepreg of a base material in which aramid fibers and carbon fibers are mixed and woven.
【図2】アラミド繊維とカーボン繊維とを混織した基材
のプリプレグの展開図である。FIG. 2 is a development view of a prepreg of a base material in which aramid fibers and carbon fibers are mixed and woven.
【図3】ドーナツ状の予備成形材を2個重ねた状態の斜
視図である。FIG. 3 is a perspective view of a state where two doughnut-shaped preforming materials are stacked.
【図4】金型内で2個重ねたドーナツ状の予備成形材を
圧縮成形する際の断面図である。FIG. 4 is a cross-sectional view at the time of compression-molding two donut-shaped preforms stacked in a mold.
【図5】リング状素材の斜視図である。FIG. 5 is a perspective view of a ring-shaped material.
【図6】リング状素材の断面を模式的に示す図である。FIG. 6 is a diagram schematically showing a cross section of a ring-shaped material.
【図7】木の年輪状の繊維の配向とともに示す繊維強化
樹脂歯車の歯部の部分斜視図である。FIG. 7 is a partial perspective view of a tooth portion of a fiber-reinforced resin gear, which is shown together with the orientation of annual ring-shaped fibers of a tree.
【図8】繊維の配向の一部を示す繊維強化樹脂歯車の歯
部の部分斜視図である。FIG. 8 is a partial perspective view of a tooth portion of a fiber-reinforced resin gear showing a part of fiber orientation.
【図9】曲げ荷重とカーボン繊維含有率との関係を示す
グラフである。FIG. 9 is a graph showing the relationship between bending load and carbon fiber content.
【図10】摩耗量とカーボン繊維含有率との関係を示す
グラフである。FIG. 10 is a graph showing the relationship between the amount of wear and the carbon fiber content.
【図11】加工可能数とカーボン繊維含有率との関係を
示すグラフである。FIG. 11 is a graph showing the relationship between the number of machinable and the carbon fiber content.
図中、1はプリプレグ、3はドーナツ状予備成形材、4
は金型、6はリング状素材、7は歯部、70は噛み合い
面を示す。In the figure, 1 is a prepreg, 3 is a doughnut-shaped preform, 4
Is a die, 6 is a ring-shaped material, 7 is a tooth portion, and 70 is a meshing surface.
Claims (1)
その棒状の両端を合わせてドーナツ状としたドーナツ状
予備成形材を成形固化したリング状素材を歯切りして、
歯部の噛み合い面にプリプレグを構成する基材の繊維が
木の年輪状に配向した繊維強化樹脂歯車であって、 該基材は、加工性の良い軟質繊維と強度の高い硬質繊維
とが混織して構成されていることを特徴とする繊維強化
樹脂歯車。1. A prepreg is wound to form a rod,
Tooth-cut the ring-shaped material obtained by molding and solidifying the donut-shaped preforming material that is made into a donut shape by combining both ends of the rod shape,
A fiber-reinforced resin gear in which the fibers of the base material forming the prepreg on the meshing surfaces of the teeth are oriented in a tree ring shape. The base material is a mixture of soft fibers with good processability and hard fibers with high strength. A fiber reinforced resin gear characterized by being woven.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4042985A JP2959907B2 (en) | 1992-02-28 | 1992-02-28 | Fiber reinforced resin gear |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4042985A JP2959907B2 (en) | 1992-02-28 | 1992-02-28 | Fiber reinforced resin gear |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05240325A true JPH05240325A (en) | 1993-09-17 |
JP2959907B2 JP2959907B2 (en) | 1999-10-06 |
Family
ID=12651332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4042985A Expired - Lifetime JP2959907B2 (en) | 1992-02-28 | 1992-02-28 | Fiber reinforced resin gear |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2959907B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0847914A1 (en) * | 1996-12-16 | 1998-06-17 | Honda Giken Kogyo Kabushiki Kaisha | Power unit for motor-assisted bicycle |
JP2009274612A (en) * | 2008-05-15 | 2009-11-26 | Nsk Ltd | Rack and pinion type electric power steering device |
-
1992
- 1992-02-28 JP JP4042985A patent/JP2959907B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0847914A1 (en) * | 1996-12-16 | 1998-06-17 | Honda Giken Kogyo Kabushiki Kaisha | Power unit for motor-assisted bicycle |
CN1079761C (en) * | 1996-12-16 | 2002-02-27 | 本田技研工业株式会社 | Power set of electric auxiliary bicycle |
JP2009274612A (en) * | 2008-05-15 | 2009-11-26 | Nsk Ltd | Rack and pinion type electric power steering device |
Also Published As
Publication number | Publication date |
---|---|
JP2959907B2 (en) | 1999-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3819461A (en) | Unidirectional, high modulus knitted fabrics | |
US5437450A (en) | Golf club shaft and process of preparing same | |
EP1145830B1 (en) | Gear made of fiber reinforced resin and method for manufacturing same | |
AU662520B2 (en) | Asymmetric braiding of improved fiber reinforced products | |
JP3310484B2 (en) | Fiber reinforced resin composite | |
JPH0742778A (en) | Carbon fiber reinforced plastic coil spring | |
US5059464A (en) | Phenol resin toothed wheel and a method of producing the same | |
CN1242188C (en) | transverse reinforced CVT belt | |
JPH05240325A (en) | Gear made of fiber reinforced resin | |
JP2959905B2 (en) | Fiber reinforced resin gear | |
KR20040034792A (en) | Conjugated yarn and fiber reinforced plastic | |
JP2953203B2 (en) | Fiber reinforced resin gear | |
EP0387803A1 (en) | Steel cord for reinforcing rubber | |
JP2959906B2 (en) | Fiber reinforced resin gear | |
JPH05240326A (en) | Gear made of fiber reinforced resin | |
JPH07113458A (en) | Phenol resin gear and manufacture thereof | |
JP3385904B2 (en) | Manufacturing method of phenolic resin gears | |
CN1050698A (en) | Continuous fibre reinforced plastic gear and autofrettage thereof | |
JP2010133551A (en) | High load transmission belt | |
EP1875102B1 (en) | Power transmission belt for transmitting high loads | |
JPH06210756A (en) | Helical gear made of fiber-reinforced resin and its manufacture | |
JP2003275355A (en) | Golf shaft | |
JPS6110167A (en) | Fiber reinforced plastics pulley | |
JPH01112075A (en) | Fiber-reinforced resin gear and manufacture thereof | |
JP2002273729A (en) | Reinforcing material for molding fiber-reinforced resin composite, fiber-reinforced resin composite and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080730 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080730 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090730 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090730 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100730 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110730 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110730 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120730 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120730 Year of fee payment: 13 |