JPH05240192A - Vortex pump - Google Patents

Vortex pump

Info

Publication number
JPH05240192A
JPH05240192A JP4281992A JP4281992A JPH05240192A JP H05240192 A JPH05240192 A JP H05240192A JP 4281992 A JP4281992 A JP 4281992A JP 4281992 A JP4281992 A JP 4281992A JP H05240192 A JPH05240192 A JP H05240192A
Authority
JP
Japan
Prior art keywords
blade
circumference
blades
circle connecting
circle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4281992A
Other languages
Japanese (ja)
Other versions
JP3003357B2 (en
Inventor
Eiichi Ito
永一 伊藤
Susumu Yamazaki
山崎  進
Masayuki Fujio
正行 藤生
Toshiji Yoshitomi
利治 吉富
Kazuo Kobayashi
和男 小林
Shizuka Ishikawa
静 石川
Yoshiaki Noda
嘉明 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4042819A priority Critical patent/JP3003357B2/en
Publication of JPH05240192A publication Critical patent/JPH05240192A/en
Application granted granted Critical
Publication of JP3003357B2 publication Critical patent/JP3003357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To improve aerodynamic performance by forming the shape of the reverse side of an impeller into a proper three-dimensional form to the blade back side or the rotating direction so that the inner circumferential side of the impeller can be conformed to a high speed relative flow. CONSTITUTION:An impeller 1 is formed of a hub 9 and a number of blades 5. When the cylindrical surface connecting the inside point of the blade 5 and parallel to the axis is R1, the circle connecting the outside end is R2, the circle connecting the center between the inside end and the outside end is Rc, and the circle connecting the center between R1 and Rc is Ri, the position of the front edge of the blade on the circumference of Rc is behind the inside end, when seen in the rotating direction of the blade. When the axial inlet angle of the blade rear end on the circumference of Ri is gammai, and the axial inlet angle on the circumference of Rc is gammaC, both gammai and gammac are smaller than 90 deg., and gammaj and gammac have different values. Since the blade form is determined to such a three-dimensional form, thus, the aerodynamic performance can be improved by far, compared with a conventional one.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、渦流式気体ポンプ、例
えば渦流ブロワ、あるいは渦流式液体ポンプ、例えばウ
エスコポンプに利用して好適な渦流ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vortex pump suitable for use in a vortex gas pump such as a vortex blower or a vortex liquid pump such as a Wesco pump.

【0002】[0002]

【従来の技術】渦流ポンプは小型で高い静圧力が得られ
る特徴がある。この特徴を更に高めるために、従来種々
の提案や検討がなされている。
2. Description of the Related Art A vortex pump is characterized by its small size and high static pressure. In order to further enhance this feature, various proposals and studies have been made in the past.

【0003】例えば、日本機械学会論文集第45巻39
6号(昭和54.8)1107頁〜1106頁には、羽
根の内側端を結ぶ円の半径をR1、外側端を結ぶ円の半
径をR2とするとき、R1/R2の値を変えることによ
り、渦流ブロワの特性(吐出流量対吐出圧力特性)が変
わることが記載してある。
For example, the Japan Society of Mechanical Engineers, Vol. 45, 39
On pages 1107 to 1106 of No. 6 (Showa 54.8), when the radius of the circle connecting the inner ends of the blades is R1 and the radius of the circle connecting the outer ends is R2, the values of R1 / R2 are changed. It is described that the characteristics of the eddy-flow blower (discharge flow rate-discharge pressure characteristic) change.

【0004】これによれば、その値0.68のものが
0.82のものより流量係数、圧力係数共に高く、0.
75のものが更に高いことが示されている。
According to this, the value of 0.68 is higher than that of 0.82 in both the flow coefficient and the pressure coefficient, and is 0.
75 has been shown to be even higher.

【0005】しかし、これを流量と圧力に直して述べる
と、R2の値が一定であれば、R1/R2の値が大きく
なれば、圧力は高く、流量は小さくなり、逆にR1/R
2の値を小さくすると流量は大きく、圧力は低くなるこ
とになる。
However, in terms of the flow rate and the pressure, when the value of R2 is constant, the higher the value of R1 / R2 is, the higher the pressure is and the smaller the flow rate is.
When the value of 2 is decreased, the flow rate is increased and the pressure is decreased.

【0006】渦流ブロワを小型にするためには、R2の
値を小さくすれば良いが、その値を単に小さくすると、
圧力が低下し、流量が少なくなってしまう。
In order to reduce the size of the vortex blower, it is sufficient to reduce the value of R2, but if the value is simply reduced,
The pressure drops and the flow rate decreases.

【0007】一方羽根の形状に工夫を凝らし、渦流ブロ
ワの空力性能を改善することも提案されている。特開昭
49−105220号公報、特開昭49−120209
号公報に示すものは、羽根の軸方向入口角、出口角を9
0度より小さく、或いは大きくして空力性能を改善する
ものである。また、実開昭52−170309号公報に
は、径方向入口角度を90度より小さいものが開示して
ある。
On the other hand, it has been proposed to improve the aerodynamic performance of the vortex flow blower by devising the shape of the blade. JP-A-49-105220, JP-A-49-120209
The one disclosed in Japanese Patent Publication has a blade with an axial inlet angle and outlet angle of 9
It is designed to be smaller or larger than 0 degree to improve aerodynamic performance. Further, Japanese Utility Model Laid-Open No. 52-170309 discloses a radial inlet angle smaller than 90 degrees.

【0008】[0008]

【発明が解決しようとする課題】渦流ポンプでは、高静
圧な流体を提供出来るという利点のため、近年用途が拡
がり、それに伴って、更に高静圧なもの、或いは圧力は
従来程度で良いが、更に小型化することなどが強く望ま
れている。
Since the vortex flow pump has the advantage of being able to provide a fluid with a high static pressure, its application has been expanded in recent years, and accordingly, a higher static pressure or a conventional pressure may be used. There is a strong demand for further miniaturization.

【0009】しかし、上記従来の技術を含め、これ迄の
技術では、所定の圧力を保って、更に小型化すること、
あるいは寸法を大きくすることなく、大幅に圧力を高め
ること等は、困難であった。
However, in the conventional techniques including the above-mentioned conventional technique, a predetermined pressure is maintained to further reduce the size,
Alternatively, it has been difficult to significantly increase the pressure without increasing the size.

【0010】また、従来の渦流ポンプは騒音が大きいと
言う問題が有り、このことが、医療機器などのように静
かな環境で使用するものへの適用を阻止する原因に成っ
ていた。
Further, the conventional vortex pump has a problem that it is noisy, which has been a cause to prevent its application to those used in a quiet environment such as medical equipment.

【0011】本発明はこの様な点に鑑みて成されたもの
であって、その目的とするところは、空力性能を従来の
ものに比べて遥かに高めることができる渦流ポンプを提
供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a vortex pump capable of significantly improving aerodynamic performance as compared with a conventional one. is there.

【0012】本発明の他の目的は、騒音の低い渦流ポン
プを提供することにある。
Another object of the present invention is to provide a vortex pump having low noise.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明においては、第1に少なくとも羽根車の内周
側を、高速な相対流れに対応できるように、羽根背中
側、すなわち回転方向に対し裏側の形状を適切な三次元
形状にすることにある。
In order to achieve the above object, in the present invention, firstly, at least on the inner peripheral side of the impeller, the blade back side, that is, the rotating direction, so as to be able to cope with a high-speed relative flow. On the other hand, the shape of the back side should be an appropriate three-dimensional shape.

【0014】つまり、羽根の内側端を結び、軸に平行な
円筒面をR1、外側端を結ぶ円をR2、内側端と外側端
との中央を結ぶ円をRc、R1とRcとの中央を結ぶ円
をRiとするとき、羽根の前縁のRcの円周上での位置
は、内側端よりも、羽根の回転方向に見たときに遅れて
おり、且つ、羽根後縁のRiの円周上での軸方向入口角
をγi、Rcの円周上での軸方向入口角をγcとすると
き、γiとγcとは共に90度よりも小さく、且つγi
とγcとは異なる値に構成することを特徴とするもので
ある。
That is, R1 is a cylindrical surface connecting the inner ends of the blades and parallel to the axis, R2 is a circle connecting the outer ends, Rc is a circle connecting the centers of the inner and outer ends, and the center of R1 and Rc is the center. When the connecting circle is Ri, the position on the circumference of Rc of the leading edge of the blade is behind the inner end when viewed in the rotation direction of the blade, and the circle of Ri on the trailing edge of the blade is also behind. When the axial inlet angle on the circumference is γi and the axial inlet angle on the circumference of Rc is γc, both γi and γc are smaller than 90 degrees, and γi
And γc are configured to have different values.

【0015】本発明では第2に羽根車の羽根間断面積
を、R1からRiにかけて縮小することにより、50m
/秒以上もの高速で羽根間に入射する流体の剥離を防止
する。つまり、Rcと隣り合う2枚の羽根の交点を求
め、交点を通る直線を回転軸としてもつ平面について、
羽根間における面積について、R1と羽根背中側ハブ面
との交点を通る断面A1の面積と、Riと羽根背中側ハ
ブ面との交点を通る断面Aiの面積、及び同一回転軸を
持ちA1とAiの中間に位置する断面Arの面積が、A
1の面積とAiの面積の間を直線補間したものに対し
て、少なくとも一部の断面積が縮小されていることを特
徴とする。
Secondly, in the present invention, the inter-blade cross-sectional area of the impeller is reduced from R1 to Ri so that it is 50 m.
Prevents separation of the fluid entering between the blades at a high speed of at least / sec. That is, the intersection of two blades adjacent to Rc is obtained, and a plane having a straight line passing through the intersection as a rotation axis is
Regarding the area between the blades, the area of a cross section A1 passing through the intersection of R1 and the blade back side hub surface, the area of the cross section Ai passing through the intersection of Ri and the blade back side hub surface, and A1 and Ai having the same rotation axis The area of the cross section Ar located in the middle of
It is characterized in that at least a part of the cross-sectional area is reduced with respect to the linear interpolation between the area of 1 and the area of Ai.

【0016】[0016]

【作用】円弧状流路の中を外部から観察可能なように透
明材でケーシングを作成し、円弧状流路の中を流れる流
体の流れを観察した結果、次のことが分かった。
A casing is made of a transparent material so that the inside of the arcuate flow path can be observed from the outside, and the flow of the fluid flowing through the arcuate flow path is observed.

【0017】即ち、図25、図26、図27、図28に
示すように、羽根5の外側端を5a、内側端5b、そし
てその中央を5cとするとき、吸込口6aから円弧状流
路8内に入った空気は、羽根5の速度に対する空気の、
円弧状流路8に沿う速度分布が、図25ないし図29の
特に図28に示すように、外側端5aから中央5c付近
までは正の値を示すが、中央5c付近から内側端5a迄
は負の値を示すことである。
That is, as shown in FIGS. 25, 26, 27, and 28, when the outer end of the blade 5 is 5a, the inner end 5b and the center thereof are 5c, the arc-shaped flow path from the suction port 6a. The air entering the inside of 8 is the air against the speed of the blades 5,
The velocity distribution along the arcuate flow path 8 has a positive value from the outer end 5a to the center 5c, but from the center 5c to the inner end 5a, as shown in FIGS. It is to show a negative value.

【0018】円弧状流路8を横切る方に流れる速度分布
は、図29に示すように、外側端5aから中央5c付近
迄は正の値を示し、中央5c付近から内側端5b迄は負
の値を示すことは、既に知られていたことである。
As shown in FIG. 29, the velocity distribution flowing across the arcuate flow path 8 shows a positive value from the outer end 5a to the center 5c and a negative value from the center 5c to the inner end 5b. Indicating a value was already known.

【0019】その結果、全体としては、図27に矢印7
0で示すように、内側端5b近くでは回転方向Fに対し
て若干戻ることが分かった。従来は矢印80で示すよう
に空気の流れは螺旋を描きながら、次第に回転方向Fへ
向かって単純に進むと考えられていた。
As a result, the arrow 7 in FIG.
As indicated by 0, it has been found that the inner edge 5b is slightly returned with respect to the rotation direction F. Conventionally, it has been considered that the air flow simply advances gradually in the rotation direction F while drawing a spiral as shown by an arrow 80.

【0020】それ故、本発明では空気の円弧状流路に沿
う速度と、円弧状流路8を横切る方に流れる速度成分の
合成ベクトルに合うように羽根5の径方向入口角、更に
軸方向入口角を定め、三次元形状に羽根形状を定めたの
で、空力性能が従来のものに比べて遥かに向上するもの
である。
Therefore, in the present invention, the radial inlet angle of the blades 5 and the axial direction are adjusted so that the velocity of the air along the arcuate flow path and the composite vector of the velocity components flowing in the direction of traversing the arcuate flow path 8 are matched. Since the inlet angle is set and the blade shape is set in a three-dimensional shape, the aerodynamic performance is much improved as compared with the conventional one.

【0021】更に、本発明の上記羽根間断面積縮小手段
を設けることにより、高速に入射する流れは、内周側か
ら羽根間に取り込まれたとき縮流し剥離しないので、音
源の発生を抑制でき、騒音のレベルが低いものとなる。
Further, by providing the inter-blade cross-sectional area reducing means of the present invention, since the high-speed incident flow is contracted and does not separate when taken in between the blades from the inner peripheral side, generation of a sound source can be suppressed, The noise level is low.

【0022】[0022]

【実施例】以下、図を参照しながら本発明の実施例につ
いて説明する。図5に於いて1は羽根車、2は円弧状流
路8を形成するケーシングである。円弧状流路8は回転
軸3の軸線と平行を成す方向に開口する溝状を成してい
る。円弧状流路8は、原動機4の回転軸3を中心とする
円弧状に構成してある。この円弧状流路8の一端は吸込
口6aに連通しており、他端は吐出口6bに連通してい
る。この吐出口6bから吸込口6aに至る間は羽根車1
と微少空隙を介して対抗する隔壁10で仕切られてい
る。吸込口6aに連なる吸込側通路6a’と吐出口6b
に連なる吐出口側通路6b’とは、ベース部材を兼ねた
消音器7内に平行を成すように設けてある。原動機4は
ベース部材を兼ねた消音器7上に固定して有り、ケーシ
ング2は原動機4に固定してある。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 5, 1 is an impeller, and 2 is a casing forming an arcuate flow path 8. The arcuate flow path 8 has a groove shape that opens in a direction parallel to the axis of the rotating shaft 3. The arcuate flow path 8 is formed in an arcuate shape centered on the rotation shaft 3 of the prime mover 4. One end of the arcuate flow path 8 communicates with the suction port 6a and the other end communicates with the discharge port 6b. The impeller 1 extends from the discharge port 6b to the suction port 6a.
It is partitioned by a partition wall 10 which is opposed to each other through a minute void. Suction side passage 6a 'and discharge port 6b connected to the suction port 6a
The discharge port side passage 6b 'connected to the above is provided parallel to the inside of the muffler 7 which also serves as the base member. The prime mover 4 is fixed on a silencer 7 which also serves as a base member, and the casing 2 is fixed to the prime mover 4.

【0023】羽根車1は図1ないし図3に示すようにハ
ブ9と多数の羽根5とで構成してあり、ハブ9は原動機
4の回転軸3に固定してある。このうちハブ9は回転軸
3を中心とし、円弧状流路8に対抗して軸方向に開口す
る環状の溝11を有しており、羽根5はこの溝11を横
切る方向に多数設けてある。
The impeller 1 is composed of a hub 9 and a large number of blades 5 as shown in FIGS. 1 to 3, and the hub 9 is fixed to a rotary shaft 3 of a prime mover 4. Of these, the hub 9 has an annular groove 11 centering on the rotary shaft 3 and opening in the axial direction so as to oppose the arcuate flow path 8, and a large number of blades 5 are provided in a direction crossing the groove 11. ..

【0024】ここで、羽根車1の各部の用語、及び記号
について纏めて説明する。 R1’:羽根5の内側端を結ぶ円の半径。 R2’:羽根5の外側端を結ぶ円の半径。 Rc’:R1’+R2’の2分の1を半径とする円の半
径。 Ro’:Rc’+R2’の2分の1を半径とする円の半
径。 Ri’:R1’+Rc’の2分の1を半径とする円の半
径。 R1 :回転軸3の軸心を中心とする半径R1’の円。 R2 :回転軸3の軸心を中心とする半径R2’の円。 Rc :回転軸3の軸心を中心とする半径Rc’の円。 Ro :回転軸3の軸心を中心とする半径Ro’の円。 Ri :回転軸3の軸心を中心とする半径Ri’の円。 β1 :径方向入口角であり、羽根5の後縁(軸方向先
端)に於けるR1の円周上の位置とRcの円周上の位置
とを結ぶ直線と、円R1の接線との成す角との補角。 β2 :径方向出口角であり、羽根5の後縁(軸方向先
端)に於けるR2の円周上の位置とRcの円周上の位置
とを結ぶ直線と、円R2の接線との成す角との補角。 γ1 :円R1の円周上に於ける軸方向入口角であり、
羽根5の後縁を結ぶ平面に対して羽根後縁近傍の成す
角。 γi :円Riの円周上に於ける軸方向入口角であり、
羽根5の後縁を結ぶ平面に対して羽根後縁近傍の成す
角。 γc :円Rcの円周上に於ける軸方向入口角であり、
羽根5の後縁を結ぶ平面に対して羽根後縁近傍の成す
角。 γo :円Roの円周上に於ける軸方向出口角であり、
羽根5の後縁を結ぶ平面に対して羽根後縁近傍の成す
角。 γ2 :円R2の円周上に於ける軸方向出口角であり、
羽根5の後縁を結ぶ平面に対して羽根後縁近傍の成す
角。 である。
Here, the terms and symbols of each part of the impeller 1 will be collectively described. R1 ′: radius of a circle connecting the inner ends of the blades 5. R2 ': radius of a circle connecting the outer ends of the blades 5. Rc ': radius of a circle having a radius of 1/2 of R1' + R2 '. Ro ': radius of a circle having a radius of 1/2 of Rc' + R2 '. Ri ′: Radius of a circle whose radius is half of R1 ′ + Rc ′. R1: A circle having a radius R1 ′ centered on the axis of the rotary shaft 3. R2: A circle having a radius R2 ′ centered on the axis of the rotating shaft 3. Rc: A circle having a radius Rc ′ centered on the axis of the rotating shaft 3. Ro: A circle having a radius Ro ′ centered on the axis of the rotating shaft 3. Ri: A circle having a radius Ri 'centered on the axis of the rotating shaft 3. β1: radial entrance angle, formed by a tangent to the circle R1 and a straight line connecting the circumferential position of R1 and the circumferential position of Rc at the trailing edge (tip in the axial direction) of the blade 5 Complementary to the horn. β2: Radial exit angle, which is formed by a tangent to the circle R2 and a straight line connecting the circumferential position of R2 and the circumferential position of Rc at the trailing edge (tip in the axial direction) of the blade 5. Complementary to the horn. γ1: axial entrance angle on the circumference of circle R1,
The angle formed near the trailing edge of the blade with respect to the plane connecting the trailing edges of the blades 5. γi: an axial entrance angle on the circumference of the circle Ri,
The angle formed near the trailing edge of the blade with respect to the plane connecting the trailing edges of the blades 5. γc: Axial entrance angle on the circumference of circle Rc,
The angle formed near the trailing edge of the blade with respect to the plane connecting the trailing edges of the blades 5. γo: Axial exit angle on the circumference of circle Ro,
The angle formed near the trailing edge of the blade with respect to the plane connecting the trailing edges of the blades 5. γ2: Axial exit angle on the circumference of circle R2,
The angle formed near the trailing edge of the blade with respect to the plane connecting the trailing edges of the blades 5. Is.

【0025】さて、図1に示す羽根車は図3、図4に示
すように、γcはγoやγiに比べて小さく構成してあ
る。
As shown in FIGS. 3 and 4, the impeller shown in FIG. 1 has a smaller γc than γo and γi.

【0026】また、径方向入口角βは90度よりも小さ
く構成してある。
The radial entrance angle β is smaller than 90 degrees.

【0027】さて、吸込口6aから円弧状流路8内に入
った空気は、羽根5の速度に対する空気の、円弧状流路
8に沿う速度分布が、前に述べたように、図25〜29
の特に図28に示すように、外側端5aから中央5cま
では正の値を示し、中央5c付近から内側端5b迄は負
の値を示す。
The air entering the arcuate flow path 8 through the suction port 6a has a velocity distribution along the arcuate flow path 8 of the air with respect to the velocity of the blades 5, as described above. 29
In particular, as shown in FIG. 28, the outer end 5a to the center 5c show a positive value, and the vicinity of the center 5c to the inner end 5b show a negative value.

【0028】また、円弧状流路8を横切る方に流れる速
度分布は、図29に示すように、外側端5aから中央5
c付近までは正の値を示し、中央5c付近から内側端5
a迄は負の値を示すことも既に述べた。
As shown in FIG. 29, the velocity distribution flowing across the arcuate flow path 8 is from the outer end 5a to the center 5 as shown in FIG.
A positive value is shown up to the vicinity of c, and the center 5c to the inner end 5
It has already been described that it shows a negative value up to a.

【0029】ここでの羽根車の速度三角形を示すと、図
6に示すようになる。ここで、Wo、Wc1、Wc2、
Wiは、夫々Ro、Rc、Rc、Riの円周近傍に於け
る羽根5に対する空気の相対速度、Uo、Uc1、Uc
2、Uiは、夫々Ro、Rc、Rc、Riの円周近傍に
於ける羽根5の周速、Co、Cc1、Cc2、Ciは、
夫々Ro、Rc、Rc、Riの円周近傍に於ける空気の
絶対速度である。ここで、Rcの円周近傍に2つの速度
三角形を描いた理由は、図28にも示したように、その
円周より僅かに外側で、空気の流れ方向が逆転するから
であり、両方向の流れを図示してある。
The speed triangle of the impeller here is shown in FIG. Where Wo, Wc1, Wc2,
Wi is the relative velocity of the air with respect to the blade 5 near the circumference of Ro, Rc, Rc, and Ri, Uo, Uc1, and Uc, respectively.
2, Ui are peripheral speeds of the blades 5 in the vicinity of the circumferences of Ro, Rc, Rc, and Ri, and Co, Cc1, Cc2, and Ci are:
These are absolute velocities of air near the circumferences of Ro, Rc, Rc, and Ri, respectively. Here, the reason why two velocity triangles are drawn in the vicinity of the circumference of Rc is that the air flow direction is reversed slightly outside the circumference as shown in FIG. The flow is illustrated.

【0030】本実施例では、γo、γc1の大きさは、
UoとWoとの成す角、Uc1とWc1との成す角と合
わせてある。従って、本実施例では空気の相対速度、即
ち空気の円弧状流路8に沿う速度と、円弧状流路8を横
切る方に流れる速度成分の合成ベクトルに合うように羽
根5の径方向入り角、更に軸方向入口角を定め、三次元
形状に羽根形状を定めたので空力性能が従来のものに比
べて遥かに向上する。
In this embodiment, the magnitudes of γo and γc1 are
The angle between Uo and Wo and the angle between Uc1 and Wc1 are also shown. Therefore, in this embodiment, the radial entry angle of the blade 5 is adjusted so that the relative velocity of the air, that is, the velocity of the air along the arc-shaped channel 8 and the combined vector of the velocity components flowing in the direction traversing the arc-shaped channel 8 are matched. Further, since the axial inlet angle is set and the blade shape is set in the three-dimensional shape, the aerodynamic performance is much improved as compared with the conventional one.

【0031】図7は、β1の値を90度にし、且つγの
値を22〜50度にしたときの従来例との無次元性能比
較を示す。
FIG. 7 shows a dimensionless performance comparison with the conventional example when the value of β1 is 90 degrees and the value of γ is 22 to 50 degrees.

【0032】従来例の諸量はβ1、β2、γc及び、γ
oがすべて90度である。また、本発明の実施例の性能
を得たときのγcは、γiよりも13度小さい値とし
た。β2の値は90度に、またR1/R2の値は0.5
8に固定した。図8は径方向入口角β1を20度と90
度に選択したときの、流量係数対圧力係数の関係を示し
ている。この図から径方向入口角β1を20度としたと
きのほうが、90度にしたときに比べて流量係数、圧力
係数共に大きいことが分かる。図9〜12は本発明の異
なる実施例である。この実施例では軸方向入口角γiが
90度よりも小さい値を有し、ハブに接する根元までこ
の状態が続いており、図10中の傾き角αに対応して各
部断面積は第11図のように変化する。この実施例によ
れば図6に示すように内周側から入射した相対速度wi
は、例えばRiが65mmの場合50m/秒以上と大き
いながらも、AiがA1やAcよりも小さく、軸方向は
ね先端よりもハブ側の幅が小さいことで縮流を生じ剥離
しない。よってブロッケージが生じないため流入がスム
ーズになり空力性能の向上と騒音低減の効果がある。図
13〜16は、対応する従来例であり、図15に示すよ
うにA1〜A2まで連続して断面積が増加するため剥離
が生じ流れの円滑さが阻害されてしまう。
The quantities of the conventional example are β1, β2, γc and γ
All o are 90 degrees. Further, γc when the performance of the example of the present invention is obtained is set to a value that is 13 degrees smaller than γi. The value of β2 is 90 degrees, and the value of R1 / R2 is 0.5
It was fixed at 8. FIG. 8 shows that the radial inlet angle β1 is 20 degrees and 90 degrees.
The relationship between the flow coefficient and the pressure coefficient when the degree is selected is shown. From this figure, it can be seen that when the radial inlet angle β1 is 20 degrees, both the flow coefficient and the pressure coefficient are larger than when they are 90 degrees. 9-12 are different embodiments of the present invention. In this embodiment, the axial inlet angle γi has a value smaller than 90 degrees, and this state continues up to the root contacting the hub. The sectional area of each part corresponds to the inclination angle α in FIG. It changes like. According to this embodiment, as shown in FIG. 6, the relative velocity wi incident from the inner circumference side
For example, when Ri is 65 mm, it is as large as 50 m / sec or more, but Ai is smaller than A1 or Ac and the width on the hub side is smaller than the tip of the axial splash, so that a contracted flow does not occur and separation does not occur. Therefore, blockage does not occur, so the inflow is smooth, and there are the effects of improving aerodynamic performance and reducing noise. 13 to 16 are corresponding conventional examples, and as shown in FIG. 15, since the cross-sectional area continuously increases from A1 to A2, separation occurs and flow smoothness is impeded.

【0033】また図17〜19は、他の実施例であり、
縮流による剥離防止のため、性能の向上が図られ圧力係
数16以上を得ている。
17 to 19 show another embodiment,
The performance is improved and the pressure coefficient is 16 or more to prevent separation due to contraction.

【0034】図20〜21は、本発明のさらに他の実施
例である。この実施例ではハブ9によっては覆われてい
ない。また羽根5はハブの両面に夫々設けてある。これ
においても羽根5の内側端を5bと考え、外側端を5a
と考え、更にその中間を5cと考えて、図17〜19に
示したものと同様に考えれば良い。これに於いてもβ1
は90度よりも小さく構成してあり、β2は90度より
も大きく構成してある。この実施例ではγiは90度よ
り小さい値である。
20 to 21 show still another embodiment of the present invention. In this embodiment, it is not covered by the hub 9. The blades 5 are provided on both sides of the hub, respectively. Also in this case, the inner end of the blade 5 is considered to be 5b, and the outer end is 5a.
Therefore, it is also possible to consider the intermediate value as 5c and to think in the same manner as that shown in FIGS. Even in this case β1
Is smaller than 90 degrees, and β2 is larger than 90 degrees. In this embodiment, γi is a value smaller than 90 degrees.

【0035】図22はさらに他の実施例である。この実
施例では、腹側の羽根先端近傍を広くしハブ側を狭い状
態にすることで縮流による性能の改善と騒音レベルの低
減が得られる。
FIG. 22 shows still another embodiment. In this embodiment, by improving the vicinity of the tip of the blade on the ventral side and narrowing the hub side, it is possible to improve the performance by reducing the flow and reduce the noise level.

【0036】図23、図24は更に他の実施例であり、
図22に示す実施例の羽根5の外周側がハブ9によって
覆われていないものであるが、同様に性能の改善と騒音
レベルの低減が得られる。
23 and 24 show still another embodiment,
Although the outer peripheral side of the blade 5 of the embodiment shown in FIG. 22 is not covered by the hub 9, similar improvement in performance and reduction in noise level can be obtained.

【0037】[0037]

【発明の効果】本発明によれば以上説明したように、円
弧状流路内を流れる空気の円弧状流路に沿う速度と、円
弧状流路を横切る方向に流れる速度成分の合成ベクトル
に合うように羽根の径方向入口角、更に軸方向入口角を
定め、三次元形状に羽根形状を定めたので空力性能が向
上する効果がある。また、入射した相対流れが大きいな
がらも、羽根間流路で縮小し剥離によるブロッケージが
生じないため流入がスムーズになり空力性能の向上と騒
音低減の効果がある。さらに、流れが剥離しないことで
むだなエネルギーが除かれることから音源から騒音を抑
制できることで消音器の構成を簡易化でき、また発熱量
が低減されることで冷却が容易になる効果もある。
As described above, according to the present invention, the combined vector of the velocity of the air flowing in the arc-shaped channel along the arc-shaped channel and the velocity component flowing in the direction crossing the arc-shaped channel is matched. As described above, since the radial inlet angle of the blade and the axial inlet angle are determined and the blade shape is determined in the three-dimensional shape, the aerodynamic performance is improved. Further, even though the incident relative flow is large, the flow path between the blades is reduced and blockage due to separation does not occur, so that the inflow is smooth and the aerodynamic performance is improved and the noise is reduced. Further, since the flow is not separated, wasteful energy is removed, so that noise can be suppressed from the sound source, so that the structure of the silencer can be simplified, and the calorific value can be reduced, so that cooling can be facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す特に羽根車の斜視図で
ある。
FIG. 1 is a perspective view of an impeller, showing an embodiment of the present invention.

【図2】図1に示した羽根車の一部を拡大して示す平面
図である。
FIG. 2 is a plan view showing a part of the impeller shown in FIG. 1 in an enlarged manner.

【図3】図2をA−A線、B−B線、及びC−C線に沿
って切断して示す断面図である。
FIG. 3 is a cross-sectional view showing FIG. 2 taken along line AA, line BB, and line CC.

【図4】図1に示した羽根車の各部の軸方向入口角、出
口角の推移を示す特性図である。
FIG. 4 is a characteristic diagram showing changes in an axial inlet angle and an outlet angle of each part of the impeller shown in FIG.

【図5】本発明の一実施例を示す渦流ブロワの斜視図で
ある。
FIG. 5 is a perspective view of a vortex flow blower showing an embodiment of the present invention.

【図6】図1に示した羽根車による速度ベクトルを示す
図である。
6 is a diagram showing a velocity vector by the impeller shown in FIG.

【図7】図1に示した実施例の実験データを従来のもの
と比較して示す特性図である。
FIG. 7 is a characteristic diagram showing experimental data of the example shown in FIG. 1 in comparison with conventional data.

【図8】図1に示した実施例の実験データのうち径方向
流入角β1を変えて示す特性図である。
FIG. 8 is a characteristic diagram showing the experimental data of the embodiment shown in FIG. 1 by changing the radial inflow angle β1.

【図9】本発明の異なる実施例を部分拡大して示す平面
図である。
FIG. 9 is a partially enlarged plan view showing another embodiment of the present invention.

【図10】図9の断面図である。10 is a cross-sectional view of FIG.

【図11】図10の傾き角αに対応する断面の面積変化
を示す図である。
11 is a diagram showing an area change of a cross section corresponding to the inclination angle α in FIG.

【図12】図10の各断面図である。12 is each sectional view of FIG.

【図13】従来例を図9の実施例に対応させて示す部分
拡大図である。
FIG. 13 is a partially enlarged view showing a conventional example corresponding to the embodiment of FIG.

【図14】図13の断面図である。14 is a cross-sectional view of FIG.

【図15】図14の傾き角αに対応する断面の面積変化
を示す図である。
FIG. 15 is a diagram showing an area change of a cross section corresponding to the inclination angle α in FIG.

【図16】図13の各断面を示す図である。FIG. 16 is a diagram showing each cross section of FIG. 13;

【図17】本発明の更に異なる実施例を示す羽根車の斜
視図である。
FIG. 17 is a perspective view of an impeller showing still another embodiment of the present invention.

【図18】図17に示した羽根車の正面図である。FIG. 18 is a front view of the impeller shown in FIG.

【図19】図18に示した羽根車の図3に対応する断面
図である。
19 is a sectional view of the impeller shown in FIG. 18, corresponding to FIG. 3;

【図20】本発明の羽根の更に異なる実施例を示す羽根
車の斜視図である。
FIG. 20 is a perspective view of an impeller showing still another embodiment of the blade of the present invention.

【図21】図20に示した羽根車の図3に対応する図で
ある。
21 is a view corresponding to FIG. 3 of the impeller shown in FIG. 20.

【図22】本発明の更に異なる実施例の図3に対応する
図である。
FIG. 22 is a view corresponding to FIG. 3 of still another embodiment of the present invention.

【図23】本発明の更に異なる実施例を示す図である。FIG. 23 is a diagram showing still another embodiment of the present invention.

【図24】図23の図3に対応する断面図である。FIG. 24 is a sectional view corresponding to FIG. 3 in FIG. 23.

【図25】円弧状流路を横切る方に流れる空気の状態を
示す図である。
FIG. 25 is a diagram showing a state of air flowing in a direction crossing an arcuate flow path.

【図26】円弧状流路に沿って流れる空気の状態を示す
図である。
FIG. 26 is a diagram showing a state of air flowing along an arcuate flow path.

【図27】円弧状流路の中の空気の流れを説明するため
の図である。
FIG. 27 is a diagram for explaining the flow of air in the arc-shaped channel.

【図28】円弧状流路に沿って流れる空気の速度分布を
示す図である。
FIG. 28 is a diagram showing a velocity distribution of air flowing along an arcuate flow path.

【図29】円弧状流路を横切る方向に流れる空気の速度
分布を示す図である。
FIG. 29 is a diagram showing a velocity distribution of air flowing in a direction crossing an arcuate flow path.

【符号の説明】[Explanation of symbols]

1…羽根車、2…ケーシング、3…回転軸、5…羽根、
5a…羽根外側端、8…円弧状流路、9…ハブである。
1 ... Impeller, 2 ... Casing, 3 ... Rotation axis, 5 ... Blade,
5a ... Blade outer end, 8 ... Arc-shaped flow path, 9 ... Hub.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉富 利治 千葉県習志野市東習志野7丁目1番1号 株式会社日立製作所習志野工場内 (72)発明者 小林 和男 千葉県習志野市東習志野7丁目1番1号 株式会社日立製作所習志野工場内 (72)発明者 石川 静 千葉県習志野市東習志野7丁目1番1号 株式会社日立製作所習志野工場内 (72)発明者 野田 嘉明 千葉県習志野市東習志野7丁目1番1号 株式会社日立製作所習志野工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiharu Yoshitomi 1-1-1, Higashi Narashino, Narashino City, Chiba Prefecture Inside the Narashino Factory, Hitachi Ltd. (72) Inventor Kazuo Kobayashi 7-1, 1-1 Higashi Narashino, Narashino City, Chiba Prefecture Hitachi, Ltd. Narashino Factory (72) Inventor Shizuka Ishikawa 7-1-1 Higashi Narashino, Narashino City, Chiba Prefecture Hitachi Ltd. Narashino Factory (72) Inventor Yoshiaki Noda 7-1-1 Higashi Narashino, Narashino City, Chiba Prefecture Narashino Factory, Hitachi, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】円弧状流路と該円弧状流路内に夫々連通す
る吸込口、吐出口と、これ等吐出口から吸込口へ至る間
を、羽根の通過経路に対して微少空隙を介して仕切る隔
壁と、回転軸に固定してあるハブと、前記円弧状流路に
沿い、前記ハブと一体に回転する多数の前記羽根とを有
するものに於いて、前記羽根の内側端を結ぶ円をR1、
外側端を結ぶ円をR2、且つ前記内側端と外側端との中
央を結ぶ円をRcとするとき、前記羽根の後縁の、Rc
の円周上での位置は、前記内側端よりも、前記羽根の回
転方向に見たときに遅れており、且つ前記羽根の後縁の
前記内側端とRcの円周との中央Riでの軸方向入口角
をγi、Rcの円周上での軸方向入口角をγcとすると
き、γiと、γcとは、共に90度よりも小さく、且つ
γiとγcとは異なる値を有していることを特徴とする
渦流ポンプ。
1. An arc-shaped flow path, a suction port and a discharge port communicating with the arc-shaped flow channel, and a space between the discharge port and the suction port through a minute gap with respect to a passage path of a blade. A partition wall, a hub fixed to the rotation shaft, and a large number of blades that rotate integrally with the hub along the arcuate flow path, the circle connecting the inner ends of the blades. R1,
When the circle connecting the outer ends is R2 and the circle connecting the center of the inner end and the outer end is Rc, Rc of the trailing edge of the blade is
On the circumference of the blade is behind the inner end in the rotation direction of the blade, and at the center Ri of the inner edge of the trailing edge of the blade and the circumference of Rc. When the axial inlet angle is γi and the axial inlet angle on the circumference of Rc is γc, both γi and γc are smaller than 90 degrees, and γi and γc have different values. A vortex pump characterized by being installed.
【請求項2】前記γcはγiに比べて小さい値を有して
いることを特徴とする請求項1記載の渦流ポンプ。
2. The vortex pump according to claim 1, wherein γc has a smaller value than γi.
【請求項3】前記羽根は前記円Riの円周上から前記円
Rcの円周上へ近づくに連れて前記軸方向入口角が次第
に小さくなっていることを特徴とする請求項2記載の渦
流ポンプ。
3. The vortex flow according to claim 2, wherein the axial inlet angle of the blade gradually decreases as it approaches the circumference of the circle Rc from the circumference of the circle Ri. pump.
【請求項4】円弧状流路と、該円弧状流路内に夫々連通
する吸込口、吐出口と、これ等吐出口から吸込口へ至る
間を、羽根の通過経路に対して微少空隙を介して仕切る
隔壁と、回転軸に固定してあるハブと、前記円弧状流路
に沿い、前記ハブと一体になって回転する多数の前記羽
根とを有するものに於いて、前記羽根の内側端を結ぶ円
をR1、外側端を結ぶ円をR2、前記内側端と外側端と
の中央を結ぶ円をRc、且つ前記R1の円周とRcの円
周との中央を結ぶ円をRiとするとき、Rcと隣り合う
2枚の羽根の背中側先端との交点を求め、交点を通る直
線を回転軸としてもつ平面において、羽根間における面
積について、R1と羽根背中側ハブ面との交点を通る断
面A1の面積と、Riと羽根背中側ハブ面との交点を通
る断面Aiの面積、及び同一回転軸を持ちA1とAiの
中間に位置する断面Arの面積が、A1の面積とAiの
面積の間を直線補間したものに対して、少なくとも一部
が小さくなっていることを特徴とする渦流ポンプ。
4. An arcuate flow path, a suction port and a discharge port communicating with the arcuate flow channel, and a minute gap between the discharge port and the suction port with respect to the passage path of the blade. An inner end of the blade, which has a partition wall through which the hub is fixed, a hub fixed to the rotating shaft, and a large number of the blades that rotate integrally with the hub along the arcuate flow path. Let R1 be a circle connecting the two, R2 be a circle connecting the outer ends, Rc be a circle connecting the centers of the inner end and the outer end, and Ri be a circle connecting the centers of the circumference of R1 and the circumference of Rc. At this time, the intersection between Rc and the back side tip of two adjacent blades is obtained, and in the plane having the straight line passing through the intersection as the axis of rotation, the area between the blades passes through the intersection between R1 and the blade back side hub surface. Area of cross-section A1 and area of cross-section Ai that passes through the intersection of Ri and the blade back side hub surface And an area of a cross section Ar having the same rotation axis and located in the middle of A1 and Ai is at least partly smaller than a linear interpolation between the area of A1 and the area of Ai. Eddy current pump.
【請求項5】前記断面Arの少なくとも一部の面積がA
1より小さくなっていることを特徴とする請求項4記載
の渦流ポンプ。
5. The area of at least part of the cross section Ar is A
The swirl pump according to claim 4, wherein the swirl pump is smaller than 1.
【請求項6】前記断面Arを構成する羽根の背中側形状
が、R1とRiの同心円筒面で断面して、羽根先端から
根元にかけて全域で軸方向角度は90度以下にしてなる
請求項第4項記載の渦流ポンプ。
6. A back side shape of a blade forming the cross section Ar is a cross section of a concentric cylindrical surface of R1 and Ri, and an axial angle is 90 degrees or less over the entire area from the blade tip to the root. A vortex pump according to item 4.
【請求項7】羽根の腹側の少なくとも羽根先端付近にお
いて、軸方向角度が90度以下にしてなる請求項第4項
記載の渦流ポンプ。
7. The vortex pump according to claim 4, wherein the axial angle is 90 degrees or less at least near the tip of the blade on the ventral side of the blade.
【請求項8】円弧状流路と、該円弧状流路内に夫々連通
する吸込口、吐出口と、これ等吐出口から吸込口へ至る
間を、羽根の通過経路に対して微少空隙を介して仕切る
隔壁と、回転軸に固定してあるハブと、前記円弧状流路
に沿い、前記ハブと一体に回転する多数の前記羽根とを
有するものに於いて、前記羽根の内側端を結ぶ円をR
1、外側端を結ぶ円をR2、前記内側端と外側端との中
央を結ぶ円をRc、且つ前記R1の円周とRcの円周と
の中央を結ぶ円をRiとするとき、R1/R2の値が
0.68よりも小さい値で圧力係数が14以上で、前記
羽根の後縁径方向入口角β1は90度よりも小さい値
で、前記羽根Riの円周上後縁での軸方向入口角γ1と
前記Rcの円周上での軸方向入口角を90度よりも小さ
い値で、且つγiとγcとは異なる値を有していること
を特徴とする渦流ポンプ。
8. An arcuate flow path, a suction port and a discharge port respectively communicating with the arc-shaped flow channel, and a minute gap between the discharge port and the suction port with respect to the passage path of the blades. A partition having a partition wall, a hub fixed to a rotating shaft, and a large number of blades that rotate integrally with the hub along the arcuate flow path and connect the inner ends of the blades. Circle to R
1, R1 is a circle connecting the outer ends, Rc is a circle connecting the centers of the inner and outer ends, and Ri is a circle connecting the centers of the circumference of R1 and the circumference of Rc. The value of R2 is less than 0.68, the pressure coefficient is 14 or more, the radial inlet angle β1 of the trailing edge of the blade is less than 90 degrees, and the axis of the blade Ri at the trailing edge on the circumference of the circle is small. A vortex pump, wherein the directional inlet angle γ1 and the axial inlet angle on the circumference of the Rc are smaller than 90 degrees, and γi and γc are different from each other.
【請求項9】円弧状流路と、該円弧状流路内に夫々通連
する吸込口、吐出口と、これ等吐出口から吸込口へ至る
間を、羽根の通過経路に対して微少空隙を介して仕切る
隔壁と、回転軸に固定してあるハブと、前記円弧状流路
に沿い、前記ハブと一体になって回転する多数の前記羽
根とを有するものに於いて、前記羽根の内側端を結ぶ円
をR1、外側端を結ぶ円をR2、前記内側端と外側端と
の中央を結ぶ円をRc、R1とRcの中央を結ぶ円をR
iとするとき、R1/R2の値が0.68よりも小さい
値で、圧力係数が14以上で、前記羽根の後縁のRcの
円周上での位置は、前記内側端よりも、前記羽根の回転
方向に見たときに遅れており、且つ前記羽根の前縁から
ハブ側に進むに連れて遅れており、しかもその遅れ程度
は、前記羽根の内側端から外側端へ向かうに連れて異な
っていることを特徴とするポンプ。
9. An arc-shaped flow path, a suction port and a discharge port which communicate with each other in the arc-shaped flow channel, and a minute gap between the discharge port and the suction port with respect to the passage path of the blade. A partition wall, a hub fixed to the rotating shaft, and a large number of blades that rotate integrally with the hub along the arcuate flow path. The circle connecting the ends is R1, the circle connecting the outer ends is R2, the circle connecting the centers of the inner and outer ends is Rc, and the circle connecting the centers of R1 and Rc is R.
When i, the value of R1 / R2 is smaller than 0.68, the pressure coefficient is 14 or more, and the position of the trailing edge of the blade on the circumference of Rc is larger than that of the inner end. The blade is delayed when viewed in the direction of rotation of the blade, and is delayed as it advances from the leading edge of the blade to the hub side, and the degree of the delay is increased from the inner end of the blade toward the outer end. Pumps characterized by being different.
JP4042819A 1992-02-28 1992-02-28 Swirl pump Expired - Lifetime JP3003357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4042819A JP3003357B2 (en) 1992-02-28 1992-02-28 Swirl pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4042819A JP3003357B2 (en) 1992-02-28 1992-02-28 Swirl pump

Publications (2)

Publication Number Publication Date
JPH05240192A true JPH05240192A (en) 1993-09-17
JP3003357B2 JP3003357B2 (en) 2000-01-24

Family

ID=12646564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4042819A Expired - Lifetime JP3003357B2 (en) 1992-02-28 1992-02-28 Swirl pump

Country Status (1)

Country Link
JP (1) JP3003357B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712935A1 (en) * 1993-11-24 1995-06-02 Bosch Gmbh Robert Vortex pump in particular for supplying fuel to the internal combustion engine of a vehicle.
JPH10220390A (en) * 1997-02-06 1998-08-18 Hitachi Ltd Muffler for blower
WO2006079274A1 (en) * 2005-01-28 2006-08-03 Shihuang Li Vortex centrifugal constant pressure pump
CN107110168A (en) * 2015-01-09 2017-08-29 皮尔伯格有限责任公司 Wing passage air blower for internal combustion engine
JP2021050699A (en) * 2019-09-26 2021-04-01 三菱重工業株式会社 Centrifugal compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015100214B4 (en) 2015-01-09 2021-01-14 Pierburg Gmbh Side channel blower for an internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712935A1 (en) * 1993-11-24 1995-06-02 Bosch Gmbh Robert Vortex pump in particular for supplying fuel to the internal combustion engine of a vehicle.
JPH10220390A (en) * 1997-02-06 1998-08-18 Hitachi Ltd Muffler for blower
WO2006079274A1 (en) * 2005-01-28 2006-08-03 Shihuang Li Vortex centrifugal constant pressure pump
CN107110168A (en) * 2015-01-09 2017-08-29 皮尔伯格有限责任公司 Wing passage air blower for internal combustion engine
US10443606B2 (en) 2015-01-09 2019-10-15 Pierburg Gmbh Side-channel blower for an internal combustion engine
JP2021050699A (en) * 2019-09-26 2021-04-01 三菱重工業株式会社 Centrifugal compressor

Also Published As

Publication number Publication date
JP3003357B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
AU2003207098B2 (en) Fan
US3788765A (en) Low specific speed compressor
US5273400A (en) Axial flow fan and fan orifice
US4531890A (en) Centrifugal fan impeller
US4543041A (en) Impellor for centrifugal compressor
KR100381466B1 (en) Turbomachinery and its manufacturing method
US5797724A (en) Pump impeller and centrifugal slurry pump incorporating same
US4165950A (en) Fan having forward-curved blades
US7476081B2 (en) Centrifugal compressing apparatus
JP2000240590A (en) Multiblade forward fan
JP3790101B2 (en) Mixed flow pump
US7186080B2 (en) Fan inlet and housing for a centrifugal blower whose impeller has forward curved fan blades
US3363832A (en) Fans
JPH0512560B2 (en)
US4757587A (en) Propeller construction of an electric fan
JPH05240192A (en) Vortex pump
JPH08240197A (en) Axial-flow fan
JP3391199B2 (en) Centrifugal fan
JP2680136B2 (en) Swirl blower
JP3040601B2 (en) Radial turbine blade
JP2718943B2 (en) Axial fan
JPH09296799A (en) Impeller of centrifugal compressor
JPH02230999A (en) Closed type impeller
JP2960459B2 (en) Swirl blower
JPS6344960B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20071119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101119

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111119

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121119