JPH05239738A - Glass fiber woven fabric and multilayer printed wiring board - Google Patents
Glass fiber woven fabric and multilayer printed wiring boardInfo
- Publication number
- JPH05239738A JPH05239738A JP4035496A JP3549692A JPH05239738A JP H05239738 A JPH05239738 A JP H05239738A JP 4035496 A JP4035496 A JP 4035496A JP 3549692 A JP3549692 A JP 3549692A JP H05239738 A JPH05239738 A JP H05239738A
- Authority
- JP
- Japan
- Prior art keywords
- printed wiring
- woven fabric
- wiring board
- glass
- warp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
- Woven Fabrics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、ガラス織布と多層プ
リント配線基板に関するものである。さらに詳しくは、
この発明は、寸法変化の少ない多層プリント配線基板の
ためのガラス織布とこれを用いた多層プリント配線基板
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a woven glass cloth and a multilayer printed wiring board. For more details,
TECHNICAL FIELD The present invention relates to a glass woven fabric for a multilayer printed wiring board having a small dimensional change and a multilayer printed wiring board using the same.
【0002】[0002]
【従来の技術】一般に、プリント配線基板の多くのもの
は銅張積層板を用い、ドリル穴あけ、穴内洗浄、無電解
銅メッキ等を行う公知の方法により製造される。そし
て、これらの加工工程中に、銅張積層板はその寸法が変
化し、多層プリント配線基板では多層成形工程が加わる
ために、より大きな寸法変化が起こることが一般に知ら
れている。2. Description of the Related Art Generally, many printed wiring boards are manufactured by a known method using a copper clad laminate and performing drilling, cleaning in the hole, electroless copper plating and the like. It is generally known that the dimensions of the copper-clad laminate change during these processing steps, and a larger dimension change occurs in the multilayer printed wiring board due to the addition of the multilayer forming step.
【0003】このようなプリント配線基板に使用される
ガラス織布の主要なものとしてはJIS R3423電
子機器用処理ガラスクロスがあり、その代表的なものの
糸の番手、織り密度、呼び厚さ、質量は、たとえば表1
に示される これらのクロスを両面プリント配線基板として使用する
場合の寸法変化はいずれもほぼ同様のレベルにある。ま
た従来EPEL−10A等のクロスの厚さが約100μ
mのもの、およびEPEL−18等のクロスの厚さが約
180μmのものは単独で多層プリント配線基板用とし
て使用されているが、EPEL−06等のクロス厚さが
40〜70μmのものは主に厚さ調整用に使用され、単
独で多層プリント配線基板用として使用されることは少
なかった。JIS R 3423 treated glass cloth for electronic equipment is a major type of glass woven cloth used for such printed wiring boards, and its representative number is yarn count, weave density, nominal thickness, and mass. Is, for example, Table 1
In the case of using these cloths shown in Fig. 2 as a double-sided printed wiring board, the dimensional changes are almost at the same level. In addition, the thickness of the cloth of the conventional EPEL-10A is about 100μ.
m, and EPEL-18 and the like with a cloth thickness of about 180 μm are used alone for multilayer printed wiring boards, but EPEL-06 and the like with a cloth thickness of 40 to 70 μm are mainly used. Was used for adjusting the thickness and was rarely used alone for a multilayer printed wiring board.
【0004】[0004]
【表1】 [Table 1]
【0005】[0005]
【発明が解決しようとする課題】しかしながら、電子機
器製品の軽薄短小化の傾向とともに、最近では、ICカ
ード、携帯電話などに使用される超薄板の多層プリント
配線基板用として、クロスの厚さが40〜70μmのも
のを単独で使用することが検討されてきている。ところ
が、クロスの呼び厚さが40〜70μmの従来の織布を
単独で使用して多層成形を行なう場合には、クロスの厚
さが約100μmの織布やクロスの呼び厚さが約180
μmの織布を単独で使用して多層成形を行なった場合と
比べて数倍の寸法変化が発生してしまい、その結果、内
外層間の回路の位置合わせや、部品の自動装着などを行
なうことが困難であった。However, along with the trend toward lighter, thinner, shorter, and smaller electronic products, the thickness of the cloth is recently used for ultra-thin multilayer printed wiring boards used in IC cards, mobile phones, and the like. It has been investigated to use a film having a thickness of 40 to 70 μm alone. However, when a conventional woven cloth having a nominal thickness of 40 to 70 μm is used alone to perform multi-layer molding, a woven cloth having a cloth thickness of about 100 μm and a nominal cloth thickness of about 180 μm.
Compared to the case where multi-layer molding is performed by using a woven fabric of μm alone, a dimensional change occurs several times, and as a result, alignment of circuits between inner and outer layers and automatic mounting of parts are required. Was difficult.
【0006】このため、50μm前後の厚みのガラスク
ロスを用いた超薄板の多層プリント配線基板において
も、寸法変化をより小さなものとすることが大変に重大
な課題となっていた。この発明は以上の通りの事情に鑑
みてなされたものであり、超薄板の多層プリント配線基
板用として、従来と同様の操作で、内外層間の回路の位
置合わせや、部品の自動装着等ができ、銅張積層板やプ
リプレグ等の多層成形用材料から多層プリント配線基板
を製造するに際して、基板の寸法変化がより小さいガラ
ス織布と、これを用いた多層プリント配線基板を提供す
ることを目的としている。For this reason, it has been a very serious problem to make the dimensional change smaller even in an ultra-thin multilayer printed wiring board using a glass cloth having a thickness of about 50 μm. The present invention has been made in view of the circumstances as described above. For an ultra-thin multilayer printed wiring board, alignment of circuits between inner and outer layers, automatic mounting of components, etc. can be performed by the same operation as the conventional one. An object of the present invention is to provide a glass woven fabric having a smaller dimensional change of the substrate when manufacturing a multilayer printed wiring board from a multilayer molding material such as a copper clad laminate or prepreg, and a multilayer printed wiring board using the same. I am trying.
【0007】[0007]
【課題を解決するための手段】この発明は上記の課題を
解決するものとして、ECD450−1/0のガラス糸
を経緯に用い、かつ経糸の織密度(y)(本/25mm)
と緯糸の織密度(x)(本/25mm)の関係が、 65≦y<100 x=0.757 y±4 を満たすこと特徴とする多層プリント配線基板用ガラス
織布を提供する。また、この発明は、多層プリント配線
基板用ガラス織布に熱硬化性樹脂を含浸してプリプレグ
を形成し、これを積層硬化し、加工したことを特徴とす
る多層プリント配線基板をも提供する。In order to solve the above problems, the present invention uses ECD450-1 / 0 glass yarn as warp and weave density (y) of warp (piece / 25 mm).
The present invention provides a glass woven fabric for a multilayer printed wiring board, characterized in that the relation between the weave density (x) of the weft and the weft density (book / 25 mm) satisfies 65 ≦ y <100 x = 0.757 y ± 4. The present invention also provides a multilayer printed wiring board characterized in that a glass woven cloth for a multilayer printed wiring board is impregnated with a thermosetting resin to form a prepreg, which is laminated and cured and processed.
【0008】この発明で使用するECD450−1/0
のガラス糸はJIS R3413に準拠した表示で、フ
ィラメント径が約5μm、番手が11.2texである
ことを示す。またこの発明で使用するガラス繊維糸とし
ては各種のものを使用しうるが、特にアルカリ分が0.8
%以下であるEガラス繊維が好ましいものの一つであ
る。ECD450-1 / 0 used in the present invention
The glass thread of No. 1 is a display based on JIS R3413, and shows that the filament diameter is about 5 μm and the count is 11.2 tex. As the glass fiber thread used in the present invention, various kinds can be used, but especially when the alkali content is 0.8
% Of E glass fibers is one of the preferred ones.
【0009】また、ガラス織布は製織用の糊剤を除去し
た後に、シランカップリング剤等で表面処理したもの
で、加工上でのそりやねじれの問題の少ない平織である
ことが望ましい。熱硬化性樹脂は電気用途に適したもの
であるならば任意のものを使用することができ、特にエ
ポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂など
を例示することができる。Further, the glass woven fabric is a plain woven fabric which is free from problems such as warping and twisting during processing, since the glass woven fabric is surface-treated with a silane coupling agent or the like after removing the sizing agent for weaving. Any thermosetting resin can be used as long as it is suitable for electrical applications, and epoxy resin, polyimide resin, bismaleimide resin and the like can be exemplified.
【0010】[0010]
【作用】この発明のガラス織布の場合には、多層プリン
ト配線基板に用いることにより寸法安定性が著しく向上
する。その理由には種々のものがあり、断定的には明ら
かではないが、ひとつの理由として、多層成形時のの熱
硬化樹脂が、縦横方向に同じレベルに流れ、残留歪を最
小とするような織物構造になっていることが考えられ
る。In the case of the glass woven fabric of the present invention, the dimensional stability is remarkably improved by using it in the multilayer printed wiring board. There are various reasons for this, and although it is not clear from the assertion, one reason is that the thermosetting resin at the time of multilayer molding flows to the same level in the vertical and horizontal directions to minimize residual strain. It is thought that it has a woven structure.
【0011】以下、実施例を示しさらに詳しくこの発明
について説明する。Hereinafter, the present invention will be described in more detail with reference to examples.
【0012】[0012]
【実施例】実施例1 質量55g/m2 、織密度が、経y=70、および緯x
=52で、番手z=11.2であるガラス織布を製造した。
この織布の数値y,xは、それぞれ、表2にも示したよ
うに、前記した通りのこの発明の関係式を満す範囲にあ
った。EXAMPLES Example 1 Mass 55 g / m 2 , weave density, warp y = 70, and weft x
= 52, a glass woven fabric having a count z = 11.2 was produced.
As shown in Table 2, the numerical values y and x of this woven fabric were within the ranges satisfying the relational expressions of the present invention as described above.
【0013】油化シェルエポキシ社製の臭素化ビスフェ
ノールA型エポキシ樹脂であるエピコート5045 1
00部に、硬化剤としてジシアンジアミド4.0 部、BD
MA0.15部、さらに溶剤としてメチルセロソルブ60部
を配合したエポキシ樹脂ワニスをこのガラス織布に加え
た。ただし、この樹脂の分量は55重量%になるように
加えている。そしてこのガラス織布を、120秒で加熱
乾燥し硬化させた。このようにして得られた一枚のプリ
プレグを銅箔と積層させ、温度170℃、圧力40kg/
cm2 、加熱時間90分の条件下で成形し、内層板用の薄
板を作成した。Epicoat 50451, a brominated bisphenol A type epoxy resin manufactured by Yuka Shell Epoxy Co., Ltd.
00 parts, 4.0 parts of dicyandiamide as a curing agent, BD
An epoxy resin varnish containing 0.15 parts of MA and 60 parts of methyl cellosolve as a solvent was added to the glass woven cloth. However, the amount of this resin is added so as to be 55% by weight. Then, this glass woven cloth was heated and dried for 120 seconds to be cured. One piece of prepreg thus obtained was laminated with copper foil, and the temperature was 170 ° C. and the pressure was 40 kg /
Molding was carried out under the conditions of cm 2 and heating time of 90 minutes to prepare a thin plate for the inner layer plate.
【0014】この内層板にJIS C6481に準じて
寸法変化測定点を付した後、常法に従って全面エッチン
グを行なった。次いで、上下に各一枚の上記のプリプレ
グを170℃、圧力40kg/cm2、加熱時間30分の条件
下で多層成形した。この多層成形前と多層成形後におけ
る、クロスの寸法変化をJISC6481に準じて測定
した。After dimensional change measurement points were attached to this inner layer plate according to JIS C6481, the entire surface was etched according to a conventional method. Next, a single layer of the above prepreg was formed on each of the upper and lower sides under conditions of 170 ° C., pressure of 40 kg / cm 2 , and heating time of 30 minutes. The dimensional change of the cloth before and after the multilayer molding was measured according to JIS C6481.
【0015】この測定結果も表2に示した。この表2お
よび後述の比較例からも明らかなように、寸法変化率は
経が−0.069 %で、緯が−0.075 %であり、非常に小さ
い値であった。実施例2 質量が64g/cm2 、織密度が経y=80および緯x=
61、番手z=11.2であるガラス織布を製造した。表2
にも示したように、この織布の数値y,xもそれぞれ上
記の関係式を満たすものであった。実施例1と同様にし
て内層板用の薄板を作成し、その後多層成形した。The results of this measurement are also shown in Table 2. As is clear from Table 2 and Comparative Examples described later, the dimensional change rate was -0.069% in warp and -0.075% in weft, which were very small values. Example 2 Mass 64 g / cm 2 , weave density warp y = 80 and weft x =
A glass woven fabric having a count of 61 and a count of z = 11.2 was manufactured. Table 2
As shown in Table 1, the numerical values y and x of this woven fabric also satisfied the above relational expressions. A thin plate for the inner layer plate was prepared in the same manner as in Example 1, and then multilayered.
【0016】多層成形前と多層成形後における、クロス
の寸法変化を実施例1と同様に測定した。この測定結果
も表2に示した。寸法変化率は経が−0.061 %で、緯が
−0.066%であり、非常に小さい値であった。実施例3 質量72kg/cm2、y=90、x=68、z=11.2である
ガラス織布を製造した。表2にも示したように、この
織布のy,xもそれぞれ上記の関係式を満していた。実
施例1と同様にして内層板用の薄板を作成し、その後多
層成形した。The dimensional change of the cloth before and after the multilayer molding was measured in the same manner as in Example 1. The results of this measurement are also shown in Table 2. The dimensional change rate was -0.061% for warp and -0.066% for weft, which were very small values. Example 3 A glass woven fabric having a mass of 72 kg / cm 2 , y = 90, x = 68 and z = 11.2 was produced. As shown in Table 2, y and x of this woven fabric also satisfied the above relational expressions. A thin plate for the inner layer plate was prepared in the same manner as in Example 1, and then multilayered.
【0017】多層成形前と多層成形後における、クロス
の寸法変化を実施例1と同様に測定した。この測定結果
も表2に示した。寸法変化率は経が−0.065 %で、緯が
−0.059%であり、非常に小さい値であった。The dimensional change of the cloth before and after the multilayer molding was measured in the same manner as in Example 1. The results of this measurement are also shown in Table 2. The dimensional change rate was -0.065% for warp and -0.059% for weft, which were very small values.
【0018】[0018]
【表2】 [Table 2]
【0019】比較例1 質量が48g/m2 、y=60、x=46、z= 11.2
であるガラス織布を用意した。表3にも示したように、
この織布のy,xは上記の関係式を満たさなかった。こ
のガラス織布を用いて、実施例1〜3と同様にして、内
層板用の薄板を作成しその後多層成形した。さらに実施
例1〜3と同様にして寸法変化を測定した。 Comparative Example 1 Mass of 48 g / m 2 , y = 60, x = 46, z = 11.2
I prepared a glass woven fabric. As shown in Table 3,
The y and x of this woven fabric did not satisfy the above relational expression. Using this glass woven fabric, a thin plate for an inner layer plate was prepared in the same manner as in Examples 1 to 3 and then multilayered. Further, the dimensional change was measured in the same manner as in Examples 1 to 3.
【0020】この測定結果も表3に示した。寸法変化率
は経が−0.191 %で、緯が−0.113%となり、非常に大
きい値であった。比較例2 質量72g/m2 、y=80、x=80、z=11.2であ
るガラス織布を用意した。表3にも示したように、この
織布の数値y,x,zは上記の関係式を満たさなかっ
た。The results of this measurement are also shown in Table 3. The dimensional change rate was -0.191% for warp and -0.113% for weft, which were very large values. Comparative Example 2 A glass woven fabric having a mass of 72 g / m 2 , y = 80, x = 80, and z = 11.2 was prepared. As shown in Table 3, the numerical values y, x, z of this woven fabric did not satisfy the above relational expression.
【0021】このガラス織布を用いて、実施例1〜3と
同様にして、内層板用の薄板を作成しその後多層成形し
た。さらに実施例1〜3と同様にして寸法変化を測定し
た。この測定結果を表3に示した。寸法変化率は経が−
0.101 %で、緯が−0.032%となり、非常に大きい値で
あった。比較例3 質量63g/m2 、y=90、x=50、z=11.2であ
るガラス織布を用意した。表3にも示したように、この
織布の数値y,xは上記の関係式を満たさなかった。Using this glass woven fabric, a thin plate for an inner layer plate was prepared in the same manner as in Examples 1 to 3, and then multilayered. Further, the dimensional change was measured in the same manner as in Examples 1 to 3. The measurement results are shown in Table 3. The rate of dimensional change is
At 0.101%, the latitude was -0.032%, which was a very large value. Comparative Example 3 A glass woven fabric having a mass of 63 g / m 2 , y = 90, x = 50, and z = 11.2 was prepared. As shown in Table 3, the numerical values y and x of this woven fabric did not satisfy the above relational expression.
【0022】このガラス織布を用いて、実施例1〜3と
同様にして、内層板用の薄板を作成しその後多層成形し
た。さらに実施例1〜3と同様にして寸法変化を測定し
た。この測定結果も表3に示した。寸法変化率は経が−
0.041 %で、緯が−0.115%となり、非常に大きい値で
あった。Using this glass woven fabric, a thin plate for an inner layer plate was prepared in the same manner as in Examples 1 to 3 and then multilayered. Further, the dimensional change was measured in the same manner as in Examples 1 to 3. The results of this measurement are also shown in Table 3. The rate of dimensional change is
At 0.041%, the latitude was -0.115%, which was a very large value.
【0023】[0023]
【表3】 [Table 3]
【0024】比較例4 この発明の対象となるクロスの厚さが40〜70μmの
ガラス織布に対して、クロスの厚さが約100μmであ
る厚いガラス織布を用いして、寸法変化率の比較を行な
った。この厚さのガラス織布は、従来から単独で多層配
線基板用として使用されているものである。 Comparative Example 4 A woven cloth having a cloth thickness of 40 to 70 μm, which is the object of the present invention, was used, and a thick glass woven cloth having a cloth thickness of about 100 μm was used. A comparison was made. The glass woven cloth of this thickness has been conventionally used alone for a multilayer wiring board.
【0025】ガラス織布は、表4にも示したように、J
IS品番EPEL−10Aのガラス織 布、つまり、質
量が107g/m2 、y=60、x=58、z=22.5で
ある。このガラス織布を用いて、実施例1〜3と同様に
して、内層板用の薄板を作成しその後多層成形した。さ
らに実施例1〜3と同様にして寸法変化を測定した。As shown in Table 4, the glass woven fabric has a J
A glass woven fabric of IS product number EPEL-10A, that is, a mass of 107 g / m 2 , y = 60, x = 58, and z = 22.5. Using this glass woven fabric, a thin plate for an inner layer plate was prepared in the same manner as in Examples 1 to 3 and then multilayered. Further, the dimensional change was measured in the same manner as in Examples 1 to 3.
【0026】この測定結果も表4に示した。寸法変化率
は経が−0.091 %で、緯が−0.053%であった。The results of this measurement are also shown in Table 4. The dimensional change rate was -0.091% for warp and -0.053% for weft.
【0027】[0027]
【表4】 [Table 4]
【0028】以上の実施例と比較例を比べると、比較例
1〜3で作成された多層プリント配線基板の寸法変化率
は、経緯の大きい方の値を見ると、−0.101 %〜−0.19
1 %と非常に大きい。それに対して、この発明の実施例
1〜3で作成された多層プリント配線基板の寸法変化率
は、経緯の大きい方の値で見ると、−0.065 %〜−0.07
5 %と非常に小さく、比較例と比べて1/2 以下である。Comparing the above example with the comparative example, the dimensional change rate of the multilayer printed wiring boards prepared in the comparative examples 1 to 3 is -0.101% to -0.19 when the larger value is observed.
Very large at 1%. On the other hand, the dimensional change rate of the multilayer printed wiring boards prepared in Examples 1 to 3 of the present invention is -0.065% to -0.07 when viewed in terms of the larger history.
It is very small at 5%, which is 1/2 or less compared to the comparative example.
【0029】さらに、この発明による多層プリント配線
基板の寸法変化率は、比較例4のクロスの厚さが約10
0μmのものを使用した場合と同レベルであり、板厚も
薄くなっている。Further, regarding the dimensional change rate of the multilayer printed wiring board according to the present invention, the thickness of the cloth of Comparative Example 4 is about 10.
It is at the same level as when using a 0 μm one, and the plate thickness is thin.
【0030】[0030]
【発明の効果】以上詳しく説明した通り、この発明によ
って、超薄板の寸法変化率の最大値(経緯の大きい方の
値)が従来品の1/2 以下となり、従来と同様の操作で支
障なく内外層内間の位置合わせや、部品の自動装着が可
能となる。その結果寸法安定性の高い多層プリント配線
基板が実現される。As described in detail above, according to the present invention, the maximum value of the dimensional change rate of the ultra-thin plate (the value with the larger history) is less than half that of the conventional product, and the same operation as the conventional one causes problems. Instead, it is possible to align the inside and outside layers and automatically mount parts. As a result, a multilayer printed wiring board with high dimensional stability is realized.
Claims (2)
に用い、かつ経糸の織密度(y)(本/25mm)と緯糸
の織密度(x)(本/25mm)との関係が、次式を満た
すことを特徴とする多層プリント配線基板用ガラス織
布。 65≦y<100 x=0.757 y±41. A glass yarn of ECD450-1 / 0 is used for the warp and the relationship between the weave density (y) of the warp (pieces / 25 mm) and the weave density of the weft (x) (pieces / 25 mm) is as follows. A glass woven fabric for a multilayer printed wiring board, which satisfies the formula. 65 ≦ y <100 x = 0.757 y ± 4
ス織布に熱硬化性樹脂を含浸してプリプレグを形成し、
これを積層硬化し、加工してなることを特徴とする多層
プリント配線基板。2. A prepreg is formed by impregnating a glass woven fabric for a multilayer printed wiring board according to claim 1 with a thermosetting resin,
A multilayer printed wiring board, which is obtained by laminating and hardening this and processing it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4035496A JPH05239738A (en) | 1992-02-24 | 1992-02-24 | Glass fiber woven fabric and multilayer printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4035496A JPH05239738A (en) | 1992-02-24 | 1992-02-24 | Glass fiber woven fabric and multilayer printed wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05239738A true JPH05239738A (en) | 1993-09-17 |
Family
ID=12443363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4035496A Pending JPH05239738A (en) | 1992-02-24 | 1992-02-24 | Glass fiber woven fabric and multilayer printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05239738A (en) |
-
1992
- 1992-02-24 JP JP4035496A patent/JPH05239738A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4103102A (en) | Reinforced flexible printed wiring board | |
EP0050855B1 (en) | Laminates | |
US5837624A (en) | Woven glass cloth for printed wiring board and printed wiring products manufactured therefrom | |
JP3578466B2 (en) | Inorganic fiber woven fabric for reinforcement and multilayer printed wiring board using the same | |
EP0603745A1 (en) | Composite printed circuit board substrate and process for its manufacture | |
JP2001055642A (en) | Cloth for reinforcing resin and laminated board by using the same | |
JPH05239738A (en) | Glass fiber woven fabric and multilayer printed wiring board | |
JP2007277463A (en) | Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same | |
JPH05239736A (en) | Glass woven fabric and multilayer printed circuit board | |
JP3323116B2 (en) | Glass cloth | |
JPS635512B2 (en) | ||
JPH1037038A (en) | Glass cloth | |
JPH11158752A (en) | Glass cloth | |
JPH05318640A (en) | Laminated sheet | |
JPH036892A (en) | Multilayer printed wiring board | |
JPS63270833A (en) | Glass fiber fabric for printed wiring circuit board | |
JP3272437B2 (en) | Glass fiber woven fabric and method for producing the same | |
JPH0249219B2 (en) | ||
JPS63267514A (en) | Material for flexible printed circuit board | |
JPH05140873A (en) | Production of glass cloth for reinforcing resin | |
JPH0564857A (en) | Manufacture of laminate | |
JPH07226571A (en) | Glass fiber woven cloth for printed wiring board and its manufacture | |
JPH0722719A (en) | Glass woven fabric material base and laminated sheet using same | |
JPH06272135A (en) | Woven fabric of glass yarn for multi-layer printed-wiring board and prepreg for multi-layer printed-wiring board | |
JPS62104196A (en) | Multilayer printed circuit substrate |