JPH05239043A - Separation of acetic acid from cyclohexene oxide - Google Patents

Separation of acetic acid from cyclohexene oxide

Info

Publication number
JPH05239043A
JPH05239043A JP25642391A JP25642391A JPH05239043A JP H05239043 A JPH05239043 A JP H05239043A JP 25642391 A JP25642391 A JP 25642391A JP 25642391 A JP25642391 A JP 25642391A JP H05239043 A JPH05239043 A JP H05239043A
Authority
JP
Japan
Prior art keywords
acetic acid
cyclohexene oxide
distillation
cyclohexene
azeotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25642391A
Other languages
Japanese (ja)
Inventor
Shigeru Yokota
滋 横田
Kunio Tagawa
邦雄 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP25642391A priority Critical patent/JPH05239043A/en
Publication of JPH05239043A publication Critical patent/JPH05239043A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently separate acetic acid in the crude reaction liquor from cyclohexene oxide produced by direct oxidation using an organic peracid and through a simple process on an industrial scale. CONSTITUTION:Cyclohexene is epoxidized with peracetic acid to produce cyclohexene oxide. Then, the resulting acetic acid and the cyclohexene are separated from each other from the crude reaction liquor by distillation in the presence of a compound azeotropic with the acetic acid. Owing to the use of this compound, cyclohexene oxide can efficiently be separated and purified, which has been very hard to separate from acetic acid by distillation because of its small difference in boiling point from acetic acid and its high reactivity therewith.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酢酸とシクロヘキセンオ
キシドの分離方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for separating acetic acid and cyclohexene oxide.

【0002】シクロヘキセンオキシドは、染料、医薬用
の中間体及び農薬関係の殺ダニ剤の原料として重要な化
合物である。
Cyclohexene oxide is an important compound as a raw material for dyes, pharmaceutical intermediates, and acaricides related to agricultural chemicals.

【0003】[0003]

【従来の技術】これまでにシクロヘキセンオキシドの製
造方法として、 (1)シクロヘキセンと次亜塩素酸との反応によって、
2−クロルシクロヘキサノ−ルを生成させたのち、アル
カリで処理してエポキシ化する方法(例えば、BUL
L.SOC.CHIM(4)、37,1454(192
5)等) (2)過蟻酸,過酢酸あるいは過プロピオン酸などの有
機過酸を用いて直接酸化する方法(例えば、学会誌「油
化学」36巻、No.6、P.436〜440等)
(3)触媒の存在下、過酸化水素あるいはハイドロパ−
オキシドで酸化する方法(例えば、特開昭49−124
003、特開昭52−211、特開昭62−23077
8等) (4)モリブデン錯体などの触媒の存在下、液相空気酸
化する方法(例えば、特開昭50−149645、特開
昭52−3036等) が知られている。
2. Description of the Related Art Heretofore, as a method for producing cyclohexene oxide, (1) by reacting cyclohexene with hypochlorous acid,
After producing 2-chlorocyclohexanol, a method of treating with an alkali to epoxidize it (for example, BUL
L. SOC. CHIM (4), 37, 1454 (192
5) etc.) (2) A method of directly oxidizing with an organic peracid such as performic acid, peracetic acid or perpropionic acid (for example, Journal of Japan Society of Oil Chemistry, Vol. 36, No. 6, P. 436-440, etc. )
(3) Hydrogen peroxide or hydroperoxide in the presence of a catalyst
A method of oxidizing with an oxide (for example, JP-A-49-124)
003, JP-A-52-211, and JP-A-62-23077.
8) (4) Liquid phase air oxidation in the presence of a catalyst such as a molybdenum complex (for example, JP-A-50-149645 and JP-A-52-3036) is known.

【0004】上記の方法の中で、(1)の次亜塩素酸を
使った方法が工業的に実施されているが、反応系に塩素
が存在するため、装置腐食の問題や製品中への塩素の混
入等の問題が生じていた。しかも、反応が2段で行われ
るため、簡単な反応の割にプロセスが複雑となってい
た。
Among the above methods, the method (1) using hypochlorous acid is industrially carried out. However, since chlorine is present in the reaction system, there is a problem of equipment corrosion and a problem in products. There was a problem such as chlorine contamination. Moreover, since the reaction is carried out in two stages, the process is complicated for the simple reaction.

【0005】(2)の有機過酸を用いて直接酸化する方
法は反応が1段で進行し、反応速度も非常に速く、また
触媒を用いないため工業的実施して行く場合に、触媒分
離工程が不要である等メリットが非常に大きい。
In the method (2) of directly oxidizing with an organic peracid, the reaction proceeds in a single stage and the reaction rate is very fast, and since no catalyst is used, the catalyst separation is carried out when industrially carried out. It has a great advantage such as no process required.

【0006】本発明者らは、上記の工業的に実施してい
く場合、プロセス的にシンプルな有機過酸による直接酸
化の方法について、実際に工業的に使用されている有機
過酸の一つである過酢酸を用いて検討を行い、高い反応
収率でシクロヘキセンオキシドの得られる条件を見い出
だし、既に特許出願している。
[0006] The inventors of the present invention, when carrying out the above-mentioned industrial processes, use a process-simple method of direct oxidation with an organic peracid, which is one of the organic peracids actually used industrially. , Peracetic acid, was found, conditions for obtaining cyclohexene oxide with a high reaction yield were found, and a patent has already been applied for.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、反応に
より生成したシクロヘキセンオキシドの精製方法につい
て検討を行なったところ、通常の蒸留による精製方法で
は収率良く製品シクロヘキセンオキシドを得ることがで
きないことが判明した。
However, when the method for purifying cyclohexene oxide produced by the reaction was examined, it was found that the product cyclohexene oxide could not be obtained in good yield by the ordinary purification method by distillation.

【0008】[0008]

【発明の目的】本発明の目的は、工業的に実施していく
場合、プロセス的にシンプルな有機過酸による直接酸化
の方法で製造されたシクロヘキセンオキシドと反応粗液
中に存在する酢酸とを効率良く分離する方法を開発する
ことにある。
OBJECT OF THE INVENTION The object of the present invention is to carry out, when industrially carried out, the cyclohexene oxide produced by the process of direct oxidation with an organic peracid and the acetic acid present in the reaction crude liquid. It is to develop a method for efficient separation.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、
「シクロヘキセンを過酢酸でエポキシ化してシクロヘキ
センオキシドを製造した反応粗液から、酢酸と共沸する
化合物を共存させて、酢酸とシクロヘキセンオキシドを
高収率で蒸留分離することを特徴とする酢酸とシクロヘ
キセンオキシドの分離方法」である。以下に、本発明の
酢酸とシクロヘキセンオキシドを高収率で蒸留分離する
方法を詳細に説明する。
That is, the present invention is
"Acetic acid and cyclohexene oxide are characterized by distilling and separating acetic acid and cyclohexene oxide in a high yield from a reaction crude liquid prepared by epoxidizing cyclohexene with peracetic acid to produce cyclohexene oxide in the presence of a compound azeotropic with acetic acid. The method of separating oxides ". The method of distilling and separating acetic acid and cyclohexene oxide of the present invention in high yield is described in detail below.

【0010】本発明者らは以前一段の反応でシクロヘキ
センからシクロヘキセンオキシドを効率良く製造する方
法を提案し特許出願しているが、製造したシクロヘキセ
ンオキシドを通常の蒸留法で分離しようとすると、エポ
キシ化剤である過酢酸中に含まれている酢酸(760m
mHgで沸点118℃)やエポキシ化反応後に副生する
酢酸と生成したシクロヘキセンオキシド(760mmH
gで沸点129℃)との沸点差(760mmHgで約1
1℃)が小さいために蒸留収率が著しく低くなる。ま
た、さらに悪い事には酢酸とシクロヘキセンオキシドと
の反応性が高いために、蒸留中に反応していっそう蒸留
収率を悪くする結果になっている(反応式1)。
The present inventors have previously proposed and patented a method for efficiently producing cyclohexene oxide from cyclohexene by a one-step reaction. However, when the produced cyclohexene oxide is separated by an ordinary distillation method, it is epoxidized. Acetic acid contained in peracetic acid (760 m
mHg boiling point 118 ° C) and acetic acid by-produced after epoxidation reaction and generated cyclohexene oxide (760 mmH
Boiling point difference with boiling point 129 ° C in g (about 1 at 760 mmHg)
(1 ° C.) is small, the distillation yield is remarkably low. To make matters worse, the reactivity between acetic acid and cyclohexene oxide is high, which results in the reaction during the distillation to further deteriorate the distillation yield (reaction formula 1).

【0011】酢酸とシクロヘキセンオキシドの分離方法
の概略としては、第1塔目の蒸留塔で反応粗液と酢酸と
共沸する化合物とから酢酸を共沸混合物として塔頂側に
留出させ、シクロヘキセンオキシドを釜液(または缶出
液)中に混合物として得る。そして、第1塔の釜液(ま
たは缶出液)中に混合物として得られたシクロヘキセン
オキシドを第2塔目以降で精製する。本発明は、第1塔
目の蒸留塔で反応粗液と酢酸と共沸する化合物とから酢
酸を共沸混合物として塔頂側に留出させ、シクロヘキセ
ンオキシドを釜液(または缶出液)中に混合物として得
るための酢酸とシクロヘキセンオキシドの分離方法に関
するものである。
An outline of the method for separating acetic acid and cyclohexene oxide is as follows. In the first distillation column, acetic acid is distilled as an azeotropic mixture from the reaction crude liquid and the compound azeotropic with acetic acid, and cyclohexene is removed. The oxide is obtained as a mixture in the kettle liquor (or bottoms). Then, the cyclohexene oxide obtained as a mixture in the kettle liquid (or bottom liquid) of the first column is purified in the second column and thereafter. In the present invention, acetic acid is distilled as an azeotrope from the reaction crude liquid and the compound azeotropic with acetic acid in the first distillation column to the top of the column, and cyclohexene oxide is added to the kettle liquid (or bottom liquid). In particular, it relates to a method for separating acetic acid and cyclohexene oxide to obtain a mixture.

【0012】以下、順を追って発明の内容を説明して行
く。
The contents of the invention will be described below step by step.

【0013】反応粗液中のシクロヘキセンオキシド対す
る酢酸と共沸する化合物の仕込み量は、蒸留圧力におけ
る共沸組成(共沸組成は圧力によって異なる)になるの
に必要な量の少なくとも1モル倍を超える量、より好ま
しくは1.1〜3モル倍量範囲で使用される。
The amount of the compound azeotropically azeotroping with acetic acid for cyclohexene oxide in the crude reaction liquid should be at least 1 mol times the amount required for the azeotropic composition at the distillation pressure (the azeotropic composition varies depending on the pressure). It is used in an amount exceeding the above range, more preferably in a range of 1.1 to 3 times the molar amount.

【0014】1モル倍量より少ないと共沸で留出してこ
ない酢酸が温度の一番高い釜に落ちて、(反応式1)で
シクロヘキセンオキシドと反応してシクロヘキセンオキ
シド蒸留収率を著しく悪くする。また、酢酸と共沸する
化合物の仕込み量が多すぎると、酢酸の共沸分離時及び
シクロヘキセンオキシド精製時の加熱蒸気代がかかる一
方なので好ましくない。
If the amount is less than 1 mol times, acetic acid that is not distilled off azeotropically falls into the kettle having the highest temperature and reacts with cyclohexene oxide in (Reaction formula 1) to significantly deteriorate the cyclohexene oxide distillation yield. .. On the other hand, if the amount of the compound that is azeotropic with acetic acid is too large, it is not preferable because the heating vapor cost is increased during the azeotropic separation of acetic acid and the purification of cyclohexene oxide.

【0015】酢酸と共沸する化合物の仕込み段は、原料
反応粗液と同一仕込み段に仕込んでも良いし、別々の段
に仕込んでも良いが、より好ましくは酢酸より低沸点の
酢酸と共沸する化合物の場合には、原料反応粗液仕込み
段より下の段に仕込むのが好ましい。酢酸と共沸する化
合物としてはトルエン(760mmHgで共沸温度11
0.6℃、共沸組成酢酸28.1wt%・トルエン7
1.9wt%)、エチルベンゼン(760mmHgで共
沸温度114.65℃、共沸組成酢酸66wt%・エチ
ルベンゼン34wt%)、o−キシレン(760mmH
gで共沸温度116.0℃、共沸組成酢酸76wt%・
o−キシレン24wt%)、m−キシレン(760mm
Hgで共沸温度115.35℃、共沸組成酢酸72.5
wt%・m−キシレン27.5wt%)、p−キシレン
(760mmHgで共沸温度115.25℃、共沸組成
酢酸72wt%・p−キシレン28wt%)、n−ヘプ
タン(760mmHgで共沸温度95℃、共沸組成酢酸
17wt%・n−ヘプタン83wt%)、シクロヘキセ
ン(760mmHgで共沸温度81.8℃、共沸組成酢
酸6.5wt%・シクロヘキセン93.5wt%)など
が挙げられる。
The compound for azeotroping with acetic acid may be charged in the same stage as the raw material reaction crude liquid or in a separate stage, but more preferably, it is azeotropic with acetic acid having a boiling point lower than that of acetic acid. In the case of a compound, it is preferable to charge the raw material reaction crude liquid in a stage lower than the stage. Toluene (760 mmHg at azeotropic temperature 11
0.6 ° C, azeotropic composition 28.1 wt% acetic acid / toluene 7
1.9 wt%), ethylbenzene (azeotropic temperature 114.65 ° C. at 760 mmHg, azeotropic composition 66 wt% acetic acid / ethylbenzene 34 wt%), o-xylene (760 mmH)
azeotropic temperature 116.0 ° C., azeotropic composition acetic acid 76 wt%
o-xylene 24 wt%), m-xylene (760 mm
Azeotropic temperature at Hg of 115.35 ° C, azeotropic composition of acetic acid 72.5
wt% · m-xylene 27.5 wt%), p-xylene (azeotropic temperature 115.25 ° C. at 760 mmHg, azeotropic composition acetic acid 72 wt% · p-xylene 28 wt%), n-heptane (azeotropic temperature 95 at 760 mmHg). C., azeotropic composition 17% by weight acetic acid / n-heptane 83% by weight), cyclohexene (azeotropic temperature 81.8 ° C. at 760 mmHg, azeotropic composition acetic acid 6.5% by weight, cyclohexene 93.5% by weight) and the like.

【0016】蒸留圧力はリボイラ−の温度を出来るだけ
下げて、副反応を抑制するために蒸留圧力は出来るだけ
下げたほうが好ましいが、コンデンサ−の能力や冷媒の
種類により異なるり、通常10〜100mmHgの塔頂
圧力で行なわれ、より好ましくは20〜50mmHgの
塔頂圧力で行なうのが好ましい。蒸留圧力を下げ過ぎる
と、コンデンサ−の能力や冷媒の種類によっては、低沸
物(特に過酢酸の低沸溶媒(酢酸エチルなど)や未反応
シクロヘキセンなど)が捕集しきれなくなるため、コン
デンサ−の能力や冷媒の種類に見合った蒸留圧力を選ぶ
必要がある。
The distillation pressure is preferably as low as possible to reduce the temperature of the reboiler and in order to suppress side reactions, the distillation pressure is preferably as low as possible, but it depends on the capacity of the condenser and the type of refrigerant, and is usually 10 to 100 mmHg. Is performed at a column top pressure of, and more preferably at a column top pressure of 20 to 50 mmHg. If the distillation pressure is lowered too much, depending on the capacity of the condenser and the type of refrigerant, low-boiling substances (particularly low-boiling solvent of peracetic acid (such as ethyl acetate) and unreacted cyclohexene) cannot be collected, so the condenser- It is necessary to select a distillation pressure that is suitable for the capacity and the type of refrigerant.

【0017】蒸留方式としては、バッチ方式でも連続方
式でもよいが、蒸留塔内を含め釜の温度が一番高いため
に、バッチ方式だと釜における滞留時間が長すぎるた
め、(反応式1)の副反応が起きやすく、連続方式に比
べるとシクロヘキセンオキシドの収率が低くなるので連
続蒸留で行うのが好ましい。
The distillation system may be either a batch system or a continuous system, but since the temperature of the kettle including the inside of the distillation column is the highest, the residence time in the kettle is too long in the batch system, so that (reaction formula 1) It is preferable to carry out the continuous distillation because the side reaction of (3) easily occurs and the yield of cyclohexene oxide is lower than that in the continuous system.

【0018】また、連続方式の場合でもサ−モサイホン
式リボイラ−の容量は、原料粗液仕込み量や蒸留塔の塔
径にもよるが、可能な限り小さいものを用いるのが好ま
しい。したがって、場合によってはサ−モサイホン式リ
ボイラ−の代わりに、薄膜蒸発器のような液の滞留時間
を出来るだけ短くできるような蒸発器をリボイラ−とし
て用いてもよい。
Further, even in the case of the continuous system, the capacity of the thermosiphon type reboiler depends on the amount of the raw material crude liquid charged and the column diameter of the distillation column, but it is preferable to use as small a volume as possible. Therefore, in some cases, instead of the thermosiphon reboiler, an evaporator such as a thin film evaporator that can shorten the residence time of the liquid as much as possible may be used as the reboiler.

【0019】共沸蒸留により酢酸を除去した高沸物を含
むシクロヘキセンオキシドと過剰の酢酸と共沸する化合
物はさらにバッチ蒸留もしくは連続蒸留により過剰の酢
酸と共沸する化合物及び高沸物を分離し、純粋なシクロ
ヘキセンオキシドを得る。
The cyclohexene oxide containing high-boiling substances from which acetic acid has been removed by azeotropic distillation and the compound azeotroping with excess acetic acid are further separated by batch distillation or continuous distillation to separate the compounds azeotropic with excess acetic acid and the high-boiling substances. , Pure cyclohexene oxide is obtained.

【0020】具体的には、バッチ蒸留の場合過剰の酢酸
と共沸する化合物を留出させた後、シクロヘキセンオキ
シドを留出させて製品を得る。また、連続蒸留の場合第
1塔目で過剰の酢酸と共沸する化合物留出させ、缶出液
を第2塔目に仕込んでシクロヘキセンオキシドを留出さ
せて製品を得る。第2塔目はバッチ蒸留塔であっても、
連続蒸留塔であっても良い。なお、バッチ蒸留(または
連続蒸留)前に薄膜蒸発器などを使って、高沸物を除去
した後にその留出液を上記の方法によりバッチ蒸留(ま
たは連続蒸留)し、シクロヘキセンオキシドを得ても良
い。
Specifically, in the case of batch distillation, a compound that is azeotropic with excess acetic acid is distilled off, and then cyclohexene oxide is distilled off to obtain a product. Further, in the case of continuous distillation, a compound which is azeotropic with excess acetic acid is distilled off in the first column, and a bottom product is charged into the second column to distill cyclohexene oxide to obtain a product. Even if the second column is a batch distillation column,
It may be a continuous distillation column. In addition, even if cyclohexene oxide is obtained by performing batch distillation (or continuous distillation) by the above method after removing high boiling substances using a thin film evaporator or the like before batch distillation (or continuous distillation). good.

【0021】次に、実施例を挙げて本発明を説明する
が、本発明はこれらの実施例によって何ら限定されるも
のではない。
Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

【0022】[0022]

【実施例1】温水バス、撹拌装置、温度計、コンデンサ
−及び過酢酸を連続的に仕込むポンプを備えた10Lガ
ラス製丸底フラスコにシクロヘキセン1010gを張り
込み、攪拌機で攪拌しながら、温水バスに漬け反応器内
の液温が30℃になるよう昇温した。昇温後、過酢酸2
9.2wt%及び酢酸約6wt%を含有する酢酸エチル
溶液3830gを、反応器内の液温が30℃になるよう
保ちながら、2時間かけて仕込み、更に1時間30℃に
保持した。
Example 1 1010 g of cyclohexene was placed in a 10 L glass round-bottomed flask equipped with a hot water bath, a stirrer, a thermometer, a condenser and a pump for continuously charging peracetic acid, and the mixture was immersed in the hot water bath while stirring with a stirrer. The temperature of the liquid in the reactor was raised to 30 ° C. After heating, peracetic acid 2
3830 g of an ethyl acetate solution containing 9.2 wt% and about 6 wt% of acetic acid was charged over 2 hours while keeping the liquid temperature in the reactor at 30 ° C., and further maintained at 30 ° C. for 1 hour.

【0023】反応終了後、反応器内の反応粗液を取り出
して、ガスクロマトグラフィ−による分析を行なった。
その結果、シクロヘキセンの転化率は97.2%で、シ
クロヘキセン基準のシクロヘキセンオキシドの収率は9
4.2%で、シクロヘキセン基準のシクロヘキセンオキ
シドの選択率は96.9%であった。
After completion of the reaction, the reaction crude liquid in the reactor was taken out and analyzed by gas chromatography.
As a result, the conversion of cyclohexene was 97.2%, and the yield of cyclohexene oxide based on cyclohexene was 9%.
At 4.2%, the selectivity of cyclohexene oxide based on cyclohexene was 96.9%.

【0024】上記の手順により製造した原料反応粗液を
以下の精製実験に使用したが、保存中に酢酸とシクロヘ
キセンオキシドが反応して、若干経時変化するため原料
反応粗液中のシクロヘキセンオキシド濃度は若干低下し
たものを使用している。
The raw material reaction crude liquid produced by the above procedure was used in the following purification experiment. Since acetic acid and cyclohexene oxide react with each other during storage and change with time, the concentration of cyclohexene oxide in the raw material reaction crude liquid is I use a slightly lowered one.

【0025】[0025]

【実施例2】容量100mリットルのサ−モサイホン式
リボイラ−を備えた40mmφ40段オ−ルダショウ蒸
留塔を使って、釜から20段目にシクロヘキセンを過酢
酸でエポキシ化した反応粗液を66.5g/hrで仕込
み、釜から10段目にトルエンを62.6g/hrで仕
込み、塔頂圧力が30mmHgとなるようにコントロ−
ルしながら還流比1で連続蒸留した。その結果、塔頂側
より酢酸11.7wt%を含む液108.0g/hrが
留出し、塔頂側に留出したシクロヘキセンオキシドは痕
跡量であり、ボトム側よりシクロヘキセンオキシド5
7.6wt%を含む液19.4g/hrが得られ、ボト
ム側に酢酸は全く検出されなかった。シクロヘキセンオ
キシドの缶出率は93.0%であった。
Example 2 Using a 40 mmφ 40-stage Oldershaw distillation column equipped with a thermosyphon type reboiler having a capacity of 100 ml, 66.5 g of a reaction crude liquid obtained by epoxidizing cyclohexene with peracetic acid at the 20th stage from the kettle was used. / Hr, and toluene at the 10th stage from the kettle was charged at 62.6 g / hr to control the column top pressure to 30 mmHg.
Continuous distillation was carried out with a reflux ratio of 1. As a result, 108.0 g / hr of a liquid containing 11.7 wt% of acetic acid was distilled out from the top side of the column, and cyclohexene oxide distilled to the top side of the column was a trace amount, and cyclohexene oxide 5
A solution containing 7.6 wt% of 19.4 g / hr was obtained, and acetic acid was not detected at all on the bottom side. The bottom yield of cyclohexene oxide was 93.0%.

【0026】[0026]

【比較例1】容量100mリットルのサ−モサイホン式
リボイラ−を備えた40mmφ40段オ−ルダショウ蒸
留塔を使って、実施例1で得られる原料反応粗液から共
沸剤を用いないで、シクロヘキセンオキシドの精製を試
みた。釜から23段目にシクロヘキセンを過酢酸でエポ
キシ化した反応粗液を182g/hrで仕込み、塔頂圧
力が30mmHgとなるようにコントロ−ルしながら還
流比3で連続蒸留した。その結果、塔頂側より酢酸2
6.7wt%を含む液109.0g/hr、ボトム側よ
りシクロヘキセンオキシド45.9wt%を含む液5
5.5g/hrが得られた。それとは別に、トラップ液
17.5g/hrが得られた。シクロヘキセンオキシド
の缶出率は77.5%であった。
Comparative Example 1 A 40 mmφ 40-stage Oldershaw distillation column equipped with a thermosyphon type reboiler having a capacity of 100 ml was used to prepare cyclohexene oxide from the raw material reaction crude liquid obtained in Example 1 without using an azeotropic agent. Was tried. A reaction crude liquid obtained by epoxidizing cyclohexene with peracetic acid was charged at 182 g / hr on the 23rd stage from the kettle and continuously distilled at a reflux ratio of 3 while controlling the column top pressure to be 30 mmHg. As a result, acetic acid 2
Liquid containing 6.7 wt% 109.0 g / hr, liquid containing cyclohexene oxide 45.9 wt% from the bottom 5
5.5 g / hr was obtained. Separately, 17.5 g / hr of trap solution was obtained. The bottom yield of cyclohexene oxide was 77.5%.

【0027】この比較例は通常実験室的に使用される段
数の多い塔を用いても、酢酸と共沸する化合物を共沸剤
として用いないと、酢酸の沸点(760mmHgで11
8℃)とシクロヘキセンオキシドの沸点(760mmH
gで129℃)が近いために酢酸とシクロヘキセンオキ
シドを蒸留分離できないことを示している。
In this comparative example, even if a column having a large number of plates, which is usually used in a laboratory, is used, the boiling point of acetic acid (11 at 760 mmHg) is obtained unless a compound that azeotropes with acetic acid is used as an azeotropic agent.
8 ℃) and boiling point of cyclohexene oxide (760mmH
It shows that acetic acid and cyclohexene oxide cannot be separated by distillation because they are close to each other (129 ° C. in g).

【0028】[0028]

【発明の効果】本発明の方法により、酢酸と共沸する化
合物を用いて、酢酸と沸点差が小さくしかも酢酸との反
応性が高いために従来蒸留分離の非常に難しかったシク
ロヘキセンオキシドを効率良く蒸留分離することが可能
になった。
According to the method of the present invention, a compound azeotropic with acetic acid is used to efficiently produce cyclohexene oxide, which has been difficult to separate by distillation by distillation because of its small boiling point difference with acetic acid and high reactivity with acetic acid. It became possible to separate by distillation.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年12月12日[Submission date] December 12, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Name of item to be corrected] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 酢酸とシクロヘキセンオキシドの分離
方法
Title of the Invention Method for separating acetic acid and cyclohexene oxide

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酢酸とシクロヘキセンオ
キシドの分離方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for separating acetic acid and cyclohexene oxide.

【0002】シクロヘキセンオキシドは、染料、医薬用
の中間体及び農薬関係の殺ダニ剤の原料として重要な化
合物である。
Cyclohexene oxide is an important compound as a raw material for dyes, pharmaceutical intermediates, and acaricides related to agricultural chemicals.

【0003】[0003]

【従来の技術】これまでにシクロヘキセンオキシドの製
造方法として、 (1)シクロヘキセンと次亜塩素酸との反応によって、
2−クロルシクロヘキサノ−ルを生成させたのち、アル
カリで処理してエポキシ化する方法(例えば、BUL
L.SOC.CHIM(4)、37,1454(192
5)等) (2)過蟻酸,過酢酸あるいは過プロピオン酸などの有
機過酸を用いて直接酸化する方法(例えば、学会誌「油
化学」36巻、No.6、P.436〜440等)
(3)触媒の存在下、過酸化水素あるいはハイドロパ−
オキシドで酸化する方法(例えば、特開昭49−124
003、特開昭52−211、特開昭62−23077
8等) (4)モリブデン錯体などの触媒の存在下、液相空気酸
化する方法(例えば、特開昭50−149645、特開
昭52−3036等) が知られている。
2. Description of the Related Art Heretofore, as a method for producing cyclohexene oxide, (1) by reacting cyclohexene with hypochlorous acid,
After producing 2-chlorocyclohexanol, a method of treating with an alkali to epoxidize it (for example, BUL
L. SOC. CHIM (4), 37, 1454 (192
5) etc.) (2) A method of directly oxidizing with an organic peracid such as performic acid, peracetic acid or perpropionic acid (for example, Journal of Japan Society of Oil Chemistry, Vol. 36, No. 6, P.436-440 etc. )
(3) Hydrogen peroxide or hydroperoxide in the presence of a catalyst
A method of oxidizing with an oxide (for example, JP-A-49-124)
003, JP-A-52-211, and JP-A-62-23077.
8) (4) Liquid phase air oxidation in the presence of a catalyst such as a molybdenum complex (for example, JP-A-50-149645 and JP-A-52-3036) is known.

【0004】上記の方法の中で、(1)の次亜塩素酸を
使った方法が工業的に実施されているが、反応系に塩素
が存在するため、装置腐食の問題や製品中への塩素の混
入等の問題が生じていた。しかも、反応が2段で行われ
るため、簡単な反応の割にプロセスが複雑となってい
た。
Among the above methods, the method (1) using hypochlorous acid is industrially carried out. However, since chlorine is present in the reaction system, there is a problem of equipment corrosion and a problem in products. There was a problem such as chlorine contamination. Moreover, since the reaction is carried out in two stages, the process is complicated for the simple reaction.

【0005】(2)の有機過酸を用いて直接酸化する方
法は反応が1段で進行し、反応速度も非常に速く、また
触媒を用いないため工業的実施して行く場合に、触媒分
離工程が不要である等メリットが非常に大きい。
In the method (2) of directly oxidizing with an organic peracid, the reaction proceeds in a single stage and the reaction rate is very fast, and since no catalyst is used, the catalyst separation is carried out when industrially carried out. It has a great advantage such as no process required.

【0006】本発明者らは、上記の工業的に実施してい
く場合、プロセス的にシンプルな有機過酸による直接酸
化の方法について、実際に工業的に使用されている有機
過酸の一つである過酢酸を用いて検討を行い、高い反応
収率でシクロヘキセンオキシドの得られる条件を見い出
だし、既に特許出願している。
[0006] The inventors of the present invention, when carrying out the above-mentioned industrial processes, use a process-simple method of direct oxidation with an organic peracid, which is one of the organic peracids actually used industrially. , Peracetic acid, was found, conditions for obtaining cyclohexene oxide with a high reaction yield were found, and a patent has already been applied for.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、反応に
より生成したシクロヘキセンオキシドの精製方法につい
て検討を行なったところ、通常の蒸留による精製方法で
は収率良く製品シクロヘキセンオキシドを得ることがで
きないことが判明した。
However, when the method for purifying cyclohexene oxide produced by the reaction was examined, it was found that the product cyclohexene oxide could not be obtained in good yield by the ordinary purification method by distillation.

【0008】[0008]

【発明の目的】本発明の目的は、工業的に実施していく
場合、プロセス的にシンプルな有機過酸による直接酸化
の方法で製造されたシクロヘキセンオキシドと反応粗液
中に存在する酢酸とを効率良く分離する方法を開発する
ことにある。
OBJECT OF THE INVENTION The object of the present invention is to carry out, when industrially carried out, the cyclohexene oxide produced by the process of direct oxidation with an organic peracid and the acetic acid present in the reaction crude liquid. It is to develop a method for efficient separation.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、
「シクロヘキセンを過酢酸でエポキシ化してシクロヘキ
センオキシドを製造した反応粗液から、酢酸と共沸する
化合物を共存させて、酢酸とシクロヘキセンオキシドを
高収率で蒸留分離することを特徴とする酢酸とシクロヘ
キセンオキシドの分離方法」である。以下に、本発明の
酢酸とシクロヘキセンオキシドを高収率で蒸留分離する
方法を詳細に説明する。
That is, the present invention is
“Acetic acid and cyclohexene oxide are characterized by distilling and separating acetic acid and cyclohexene oxide in a high yield from a reaction crude liquid prepared by epoxidizing cyclohexene with peracetic acid to produce cyclohexene oxide, in the presence of a compound that is azeotropic with acetic acid. The method of separating oxides ". The method for distilling and separating acetic acid and cyclohexene oxide of the present invention in high yield will be described in detail below.

【0010】本発明者らは以前一段の反応でシクロヘキ
センからシクロヘキセンオキシドを効率良く製造する方
法を提案し特許出願しているが、製造したシクロヘキセ
ンオキシドを通常の蒸留法で分離しようとすると、エポ
キシ化剤である過酢酸中に含まれている酢酸(760m
mHgで沸点118℃)やエポキシ化反応後に副生する
酢酸と生成したシクロヘキセンオキシド(760mmH
gで沸点129℃)との沸点差(760mmHgで約1
1℃)が小さいために蒸留収率が著しく低くなる。ま
た、さらに悪い事には酢酸とシクロヘキセンオキシドと
の反応性が高いために、蒸留中に反応していっそう蒸留
収率を悪くする結果になっている(下記反応式1参
照)。
The present inventors have previously proposed and patented a method for efficiently producing cyclohexene oxide from cyclohexene by a one-step reaction. However, when the produced cyclohexene oxide is separated by an ordinary distillation method, it is epoxidized. Acetic acid contained in peracetic acid (760 m
mHg boiling point 118 ° C) and acetic acid by-produced after epoxidation reaction and generated cyclohexene oxide (760 mmH
Boiling point difference with boiling point 129 ° C in g (about 1 at 760 mmHg)
(1 ° C.) is small, the distillation yield is remarkably low. To make matters worse, the reactivity between acetic acid and cyclohexene oxide is high, so that the reaction is performed during the distillation and the distillation yield is further deteriorated (see Reaction Formula 1 below).

【0011】[0011]

【化1】 酢酸とシクロヘキセンオキシドの分離方法の概略として
は、第1塔目の蒸留塔で反応粗液と酢酸と共沸する化合
物とから酢酸を共沸混合物として塔頂側に留出させ、シ
クロヘキセンオキシドを釜液(または缶出液)中に混合
物として得る。そして、第1塔の釜液(または缶出液)
中に混合物として得られたシクロヘキセンオキシドを第
2塔目以降で精製する。本発明は、第1塔目の蒸留塔で
反応粗液と酢酸と共沸する化合物とから酢酸を共沸混合
物として塔頂側に留出させ、シクロヘキセンオキシドを
釜液(または缶出液)中に混合物として得るための酢酸
とシクロヘキセンオキシドの分離方法に関するものであ
る。
[Chemical 1] The outline of the method for separating acetic acid and cyclohexene oxide is as follows. In the first distillation column, acetic acid is distilled as an azeotrope from the reaction crude liquid and the compound azeotropic with acetic acid at the top of the column, and cyclohexene oxide is charged in the reactor. Obtained as a mixture in liquid (or bottoms). And the pot liquid (or the bottom liquid) of the first tower
The cyclohexene oxide obtained as a mixture therein is purified after the second column. In the present invention, acetic acid is distilled as an azeotrope from the reaction crude liquid and the compound azeotropic with acetic acid in the first distillation column to the top of the column, and cyclohexene oxide is added to the kettle liquid (or bottom liquid). In particular, it relates to a method for separating acetic acid and cyclohexene oxide to obtain a mixture.

【0012】以下、順を追って発明の内容を説明して行
く。
The contents of the invention will be described below step by step.

【0013】反応粗液中のシクロヘキセンオキシド対す
る酢酸と共沸する化合物の仕込み量は、蒸留圧力におけ
る共沸組成(共沸組成は圧力によって異なる)になるの
に必要な量の少なくとも1モル倍を超える量、より好ま
しくは1.1〜3モル倍量範囲で使用される。
The amount of the compound azeotropically azeotroping with acetic acid for cyclohexene oxide in the crude reaction liquid should be at least 1 mol times the amount required for the azeotropic composition at the distillation pressure (the azeotropic composition varies depending on the pressure). It is used in an amount exceeding the above range, more preferably in a range of 1.1 to 3 times the molar amount.

【0014】1モル倍量より少ないと共沸で留出してこ
ない酢酸が温度の一番高い釜に落ちて、(反応式1)で
シクロヘキセンオキシドと反応してシクロヘキセンオキ
シド蒸留収率を著しく悪くする。また、酢酸と共沸する
化合物の仕込み量が多すぎると、酢酸の共沸分離時及び
シクロヘキセンオキシド精製時の加熱蒸気代がかかる一
方なので好ましくない。
If the amount is less than 1 mol times, acetic acid that is not distilled off azeotropically falls into the kettle having the highest temperature and reacts with cyclohexene oxide in (Reaction formula 1) to significantly deteriorate the cyclohexene oxide distillation yield. .. On the other hand, if the amount of the compound that is azeotropic with acetic acid is too large, it is not preferable because the heating vapor cost is increased during the azeotropic separation of acetic acid and the purification of cyclohexene oxide.

【0015】酢酸と共沸する化合物の仕込み段は、原料
反応粗液と同一仕込み段に仕込んでも良いし、別々の段
に仕込んでも良いが、より好ましくは酢酸より低沸点の
酢酸と共沸する化合物の場合には、原料反応粗液仕込み
段より下の段に仕込むのが好ましい。酢酸と共沸する化
合物としてはトルエン(760mmHgで共沸温度11
0.6℃、共沸組成酢酸28.1wt%・トルエン7
1.9wt%)、エチルベンゼン(760mmHgで共
沸温度114.65℃、共沸組成酢酸66wt%・エチ
ルベンゼン34wt%)、o−キシレン(760mmH
gで共沸温度116.0℃、共沸組成酢酸76wt%・
o−キシレン24wt%)、m−キシレン(760mm
Hgで共沸温度115.35℃、共沸組成酢酸72.5
wt%・m−キシレン27.5wt%)、p−キシレン
(760mmHgで共沸温度115.25℃、共沸組成
酢酸72wt%・p−キシレン28wt%)、n−ヘプ
タン(760mmHgで共沸温度95℃、共沸組成酢酸
17wt%・n−ヘプタン83wt%)、シクロヘキセ
ン(760mmHgで共沸温度81.8℃、共沸組成酢
酸6.5wt%・シクロヘキセン93.5wt%)など
が挙げられる。
The compound for azeotroping with acetic acid may be charged at the same stage as the raw material reaction crude liquid or at a different stage, but more preferably it is azeotropic with acetic acid having a lower boiling point than acetic acid. In the case of a compound, it is preferable to charge the raw material reaction crude liquid in a stage lower than the stage. Toluene (760 mmHg at azeotropic temperature 11
0.6 ° C, azeotropic composition 28.1 wt% acetic acid / toluene 7
1.9 wt%), ethylbenzene (azeotropic temperature 114.65 ° C. at 760 mmHg, azeotropic composition 66 wt% acetic acid / ethylbenzene 34 wt%), o-xylene (760 mmH)
azeotropic temperature 116.0 ° C., azeotropic composition acetic acid 76 wt%
o-xylene 24 wt%), m-xylene (760 mm
Azeotropic temperature at Hg of 115.35 ° C, azeotropic composition of acetic acid 72.5
wt% · m-xylene 27.5 wt%), p-xylene (azeotropic temperature 115.25 ° C. at 760 mmHg, azeotropic composition acetic acid 72 wt% · p-xylene 28 wt%), n-heptane (azeotropic temperature 95 at 760 mmHg). C., azeotropic composition 17% by weight acetic acid / n-heptane 83% by weight), cyclohexene (azeotropic temperature 81.8 ° C. at 760 mmHg, azeotropic composition acetic acid 6.5% by weight, cyclohexene 93.5% by weight) and the like.

【0016】蒸留圧力はリボイラ−の温度を出来るだけ
下げて、副反応を抑制するために蒸留圧力は出来るだけ
下げたほうが好ましいが、コンデンサ−の能力や冷媒の
種類により異なり、通常10〜100mmHgの塔頂圧
力で行なわれ、より好ましくは20〜50mmHgの塔
頂圧力で行なうのが好ましい。蒸留圧力を下げ過ぎる
と、コンデンサ−の能力や冷媒の種類によっては、低沸
物(特に過酢酸の低沸溶媒(酢酸エチルなど)や未反応
シクロヘキセンなど)が捕集しきれなくなるため、コン
デンサ−の能力や冷媒の種類に見合った蒸留圧力を選ぶ
必要がある。
The distillation pressure is preferably as low as possible to reduce the temperature of the reboiler and in order to suppress side reactions, the distillation pressure is preferably as low as possible. However, it depends on the capacity of the condenser and the kind of the refrigerant, and is usually 10 to 100 mmHg. It is carried out at a top pressure, more preferably at a top pressure of 20 to 50 mmHg. If the distillation pressure is lowered too much, depending on the capacity of the condenser and the type of refrigerant, low-boiling substances (particularly low-boiling solvent of peracetic acid (such as ethyl acetate) and unreacted cyclohexene) cannot be collected, so the condenser- It is necessary to select a distillation pressure that is suitable for the capacity and the type of refrigerant.

【0017】蒸留方式としては、バッチ方式でも連続方
式でもよいが、蒸留塔内を含め釜の温度が一番高いため
に、バッチ方式だと釜における滞留時間が長すぎるた
め、(反応式1)の副反応が起きやすく、連続方式に比
べるとシクロヘキセンオキシドの収率が低くなるので連
続蒸留で行うのが好ましい。
The distillation system may be either a batch system or a continuous system, but since the temperature of the kettle including the inside of the distillation column is the highest, the residence time in the kettle is too long in the batch system, so that (reaction formula 1) It is preferable to carry out the continuous distillation because the side reaction of (3) easily occurs and the yield of cyclohexene oxide is lower than that in the continuous system.

【0018】また、連続方式の場合でもサ−モサイホン
式リボイラ−の容量は、原料粗液仕込み量や蒸留塔の塔
径にもよるが、可能な限り小さいものを用いるのが好ま
しい。したがって、場合によってはサ−モサイホン式リ
ボイラ−の代わりに、薄膜蒸発器のような液の滞留時間
を出来るだけ短くできるような蒸発器をリボイラ−とし
て用いてもよい。
Further, even in the case of the continuous system, the capacity of the thermosiphon type reboiler depends on the amount of the raw material crude liquid charged and the column diameter of the distillation column, but it is preferable to use as small a volume as possible. Therefore, in some cases, instead of the thermosiphon reboiler, an evaporator such as a thin film evaporator that can shorten the residence time of the liquid as much as possible may be used as the reboiler.

【0019】共沸蒸留により酢酸を除去した高沸物を含
むシクロヘキセンオキシドと過剰の酢酸と共沸する化合
物はさらにバッチ蒸留もしくは連続蒸留により過剰の酢
酸と共沸する化合物及び高沸物を分離し、純粋なシクロ
ヘキセンオキシドを得る。
The cyclohexene oxide containing high-boiling substances from which acetic acid has been removed by azeotropic distillation and the compound azeotroping with excess acetic acid are further separated by batch distillation or continuous distillation to separate the compounds azeotropic with excess acetic acid and the high-boiling substances. , Pure cyclohexene oxide is obtained.

【0020】具体的には、バッチ蒸留の場合過剰の酢酸
と共沸する化合物を留出させた後、シクロヘキセンオキ
シドを留出させて製品を得る。また、連続蒸留の場合第
1塔目で過剰の酢酸と共沸する化合物を留出させ、缶出
液を第2塔目に仕込んでシクロヘキセンオキシドを留出
させて製品を得る。第2塔目はバッチ蒸留塔であって
も、連続蒸留塔であっても良い。なお、バッチ蒸留(ま
たは連続蒸留)前に薄膜蒸発器などを使って、高沸物を
除去した後にその留出液を上記の方法によりバッチ蒸留
(または連続蒸留)し、シクロヘキセンオキシドを得て
も良い。
Specifically, in the case of batch distillation, a compound that is azeotropic with excess acetic acid is distilled off, and then cyclohexene oxide is distilled off to obtain a product. In the case of continuous distillation, a compound that is azeotropic with excess acetic acid is distilled off in the first column, and a bottom product is charged into the second column to distill cyclohexene oxide to obtain a product. The second column may be a batch distillation column or a continuous distillation column. In addition, even if cyclohexene oxide is obtained by performing batch distillation (or continuous distillation) by the above method after removing high boiling substances using a thin film evaporator or the like before batch distillation (or continuous distillation). good.

【0021】次に、実施例を挙げて本発明を説明する
が、本発明はこれらの実施例によって何ら限定されるも
のではない。
Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

【0022】[0022]

【実施例1】温水バス、撹拌装置、温度計、コンデンサ
−及び過酢酸を連続的に仕込むポンプを備えた10Lガ
ラス製丸底フラスコにシクロヘキセン1010gを張り
込み、攪拌機で攪拌しながら、温水バスに漬け反応器内
の液温が30℃になるよう昇温した。昇温後、過酢酸2
9.2wt%及び酢酸約6wt%を含有する酢酸エチル
溶液3830gを、反応器内の液温が30℃になるよう
保ちながら、2時間かけて仕込み、更に1時間30℃に
保持した。
Example 1 1010 g of cyclohexene was placed in a 10 L glass round-bottomed flask equipped with a hot water bath, a stirrer, a thermometer, a condenser and a pump for continuously charging peracetic acid, and the mixture was immersed in the hot water bath while stirring with a stirrer. The temperature of the liquid in the reactor was raised to 30 ° C. After heating, peracetic acid 2
3830 g of an ethyl acetate solution containing 9.2 wt% and about 6 wt% of acetic acid was charged over 2 hours while keeping the liquid temperature in the reactor at 30 ° C, and further maintained at 30 ° C for 1 hour.

【0023】反応終了後、反応器内の反応粗液を取り出
して、ガスクロマトグラフィ−による分析を行なった。
その結果、シクロヘキセンの転化率は97.2%で、シ
クロヘキセン基準のシクロヘキセンオキシドの収率は9
4.2%で、シクロヘキセン基準のシクロヘキセンオキ
シドの選択率は96.9%であった。
After completion of the reaction, the reaction crude liquid in the reactor was taken out and analyzed by gas chromatography.
As a result, the conversion of cyclohexene was 97.2%, and the yield of cyclohexene oxide based on cyclohexene was 9%.
At 4.2%, the selectivity of cyclohexene oxide based on cyclohexene was 96.9%.

【0024】上記の手順により製造した原料反応粗液を
以下の精製実験に使用したが、保存中に酢酸とシクロヘ
キセンオキシドが反応して、若干経時変化するため原料
反応粗液中のシクロヘキセンオキシド濃度は若干低下し
たものを使用している。
The raw material reaction crude liquid produced by the above procedure was used in the following purification experiment. Since acetic acid and cyclohexene oxide react with each other during storage and change with time, the concentration of cyclohexene oxide in the raw material reaction crude liquid is I use a slightly lowered one.

【0025】[0025]

【実施例2】容量100mリットルのサ−モサイホン式
リボイラ−を備えた40mmφ40段オ−ルダショウ蒸
留塔を使って、釜から20段目にシクロヘキセンを過酢
酸でエポキシ化した反応粗液を66.5g/hrで仕込
み、釜から10段目にトルエンを62.6g/hrで仕
込み、塔頂圧力が30mmHgとなるようにコントロ−
ルしながら還流比1で連続蒸留した。その結果、塔頂側
より酢酸11.7wt%を含む液108.0g/hrが
留出し、塔頂側に留出したシクロヘキセンオキシドは痕
跡量であり、ボトム側よりシクロヘキセンオキシド5
7.6wt%を含む液19.4g/hrが得られ、ボト
ム側に酢酸は全く検出されなかった。シクロヘキセンオ
キシドの缶出率は93.0%であった。
Example 2 Using a 40 mmφ 40-stage Oldershaw distillation column equipped with a thermosyphon type reboiler having a capacity of 100 ml, 66.5 g of a reaction crude liquid obtained by epoxidizing cyclohexene with peracetic acid at the 20th stage from the kettle was used. / Hr, and toluene at the 10th stage from the kettle was charged at 62.6 g / hr to control the column top pressure to 30 mmHg.
Continuous distillation was carried out with a reflux ratio of 1. As a result, 108.0 g / hr of a liquid containing 11.7 wt% of acetic acid was distilled out from the top side of the column, and cyclohexene oxide distilled to the top side of the column was a trace amount, and cyclohexene oxide 5
A solution containing 7.6 wt% of 19.4 g / hr was obtained, and acetic acid was not detected at all on the bottom side. The bottom yield of cyclohexene oxide was 93.0%.

【0026】[0026]

【比較例1】容量100mリットルのサ−モサイホン式
リボイラ−を備えた40mmφ40段オ−ルダショウ蒸
留塔を使って、実施例1で得られる原料反応粗液から共
沸剤を用いないで、シクロヘキセンオキシドの精製を試
みた。釜から23段目にシクロヘキセンを過酢酸でエポ
キシ化した反応粗液を182g/hrで仕込み、塔頂圧
力が30mmHgとなるようにコントロ−ルしながら還
流比3で連続蒸留した。その結果、塔頂側より酢酸2
6.7wt%を含む液109.0g/hr、ボトム側よ
りシクロヘキセンオキシド45.9wt%を含む液5
5.5g/hrが得られた。それとは別に、トラップ液
17.5g/hrが得られた。シクロヘキセンオキシド
の缶出率は77.5%であった。
Comparative Example 1 A 40 mmφ 40-stage Oldershaw distillation column equipped with a thermosyphon type reboiler having a capacity of 100 ml was used to prepare cyclohexene oxide from the raw material reaction crude liquid obtained in Example 1 without using an azeotropic agent. Was tried. A reaction crude liquid obtained by epoxidizing cyclohexene with peracetic acid was charged at 182 g / hr on the 23rd stage from the kettle and continuously distilled at a reflux ratio of 3 while controlling the column top pressure to be 30 mmHg. As a result, acetic acid 2
Liquid containing 6.7 wt% 109.0 g / hr, liquid containing cyclohexene oxide 45.9 wt% from the bottom 5
5.5 g / hr was obtained. Separately, 17.5 g / hr of trap solution was obtained. The bottom yield of cyclohexene oxide was 77.5%.

【0027】この比較例は通常実験室的に使用される段
数の多い塔を用いても、酢酸と共沸する化合物を共沸剤
として用いないと、酢酸の沸点(760mmHgで11
8℃)とシクロヘキセンオキシドの沸点(760mmH
gで129℃)が近いために酢酸とシクロヘキセンオキ
シドを蒸留分離できないことを示している。
In this comparative example, even if a column having a large number of plates which is usually used in the laboratory is used, the boiling point of acetic acid (11 at 760 mmHg is 11
8 ℃) and boiling point of cyclohexene oxide (760mmH
It shows that acetic acid and cyclohexene oxide cannot be separated by distillation because they are close to each other (129 ° C. in g).

【0028】[0028]

【発明の効果】本発明の方法により、酢酸と共沸する化
合物を用いて、酢酸と沸点差が小さくしかも酢酸との反
応性が高いために従来蒸留分離の非常に難しかったシク
ロヘキセンオキシドを効率良く蒸留分離することが可能
になった。
According to the method of the present invention, a compound azeotropic with acetic acid is used to efficiently produce cyclohexene oxide, which has been difficult to separate by distillation by distillation because of its small boiling point difference with acetic acid and high reactivity with acetic acid. It became possible to separate by distillation.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07D 303/04 Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area C07D 303/04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シクロヘキセンを過酢酸でエポキシ化し
てシクロヘキセンオキシドを製造した反応粗液から、酢
酸と共沸する化合物を共存させて酢酸とシクロヘキセン
オキシドを蒸留分離することを特徴とする酢酸とシクロ
ヘキセンオキシドの分離方法。
1. An acetic acid and a cyclohexene oxide, characterized by distilling and separating acetic acid and cyclohexene oxide from a reaction crude liquid produced by epoxidizing cyclohexene with peracetic acid to produce cyclohexene oxide, in the presence of a compound azeotropic with acetic acid. Separation method.
JP25642391A 1991-10-03 1991-10-03 Separation of acetic acid from cyclohexene oxide Pending JPH05239043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25642391A JPH05239043A (en) 1991-10-03 1991-10-03 Separation of acetic acid from cyclohexene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25642391A JPH05239043A (en) 1991-10-03 1991-10-03 Separation of acetic acid from cyclohexene oxide

Publications (1)

Publication Number Publication Date
JPH05239043A true JPH05239043A (en) 1993-09-17

Family

ID=17292461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25642391A Pending JPH05239043A (en) 1991-10-03 1991-10-03 Separation of acetic acid from cyclohexene oxide

Country Status (1)

Country Link
JP (1) JPH05239043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035558A1 (en) * 2002-09-05 2004-04-29 Daicel Chemical Industries, Ltd. Process for preparation of alicyclic diepoxy compounds, curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic components, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation
US7786224B2 (en) * 2001-03-23 2010-08-31 Daicel Chemical Industries, Ltd Liquid composition of alicyclic diepoxide, curing agent and/or curing accelerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7786224B2 (en) * 2001-03-23 2010-08-31 Daicel Chemical Industries, Ltd Liquid composition of alicyclic diepoxide, curing agent and/or curing accelerator
WO2004035558A1 (en) * 2002-09-05 2004-04-29 Daicel Chemical Industries, Ltd. Process for preparation of alicyclic diepoxy compounds, curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic components, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation
US7781543B2 (en) 2002-09-05 2010-08-24 Daicel Chemical Industries, Ltd. Curable alicyclic diepoxy resin composition

Similar Documents

Publication Publication Date Title
EP0061393B1 (en) Continuous process for the preparation of propylene oxide
US5380884A (en) Method for producing glycidyl methacrylate
KR860000134B1 (en) Process for preparing epsilon-caprolactone
US4934519A (en) Process for working up crude liquid vinyl acetate
JPH0441449A (en) Production of cyclohexane-1,2-diol
CA1153006A (en) PROCESS FOR THE MANUFACTURE OF VERY PURE .epsilon.-CAPROLACTONE
JPH05239043A (en) Separation of acetic acid from cyclohexene oxide
EP0501374B1 (en) Process for purifying dimethyl carbonate
US3920708A (en) Process for preparing glycidol
EP0487305B1 (en) Method of purifying crude glycidyl (meth)acrylate
US3449219A (en) Process for fractionating propylene from propylene oxide in the presence of hydrocarbon flux
US4705868A (en) Process for the preparation of epoxidized organosilicon compounds
US4935101A (en) Process for the recovery of a water-insoluble epoxy alcohol
JP2952027B2 (en) Method for producing cyclohexene oxide
JPH053466B2 (en)
JPS6110571A (en) Method for purifying glycidol
US20090159841A1 (en) Recovery of Optically Active Epoxy Alcohols
JP2001106680A (en) Method for producing glycidol
JPS6233165A (en) Manufacture of fatty epoxide
JPH0881452A (en) Alicyclic epoxy-containing (meth)acrylate composition and its production
JP3841886B2 (en) Process for producing 1,2-indanediols
JP3336072B2 (en) Method for producing epoxidized tetrahydrobenzyl alcohol
JP2000229983A (en) Separation of trimethoxysilane
JPH0749383B2 (en) Method for producing monochloroacetone
JPH0640984A (en) Production of 2-@(3754/24)2'-halogenoethoxy)ethanol