JPH0523784A - Resin composition for producing curing mold and production of casting mold - Google Patents

Resin composition for producing curing mold and production of casting mold

Info

Publication number
JPH0523784A
JPH0523784A JP18095491A JP18095491A JPH0523784A JP H0523784 A JPH0523784 A JP H0523784A JP 18095491 A JP18095491 A JP 18095491A JP 18095491 A JP18095491 A JP 18095491A JP H0523784 A JPH0523784 A JP H0523784A
Authority
JP
Japan
Prior art keywords
mold
sand
weight
reaction
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18095491A
Other languages
Japanese (ja)
Other versions
JP2954397B2 (en
Inventor
Naoki Kiyouchika
直喜 京近
Akira Yoshida
昭 吉田
Hitoshi Funada
等 船田
Tsutomu Tanaka
田中  勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP18095491A priority Critical patent/JP2954397B2/en
Publication of JPH0523784A publication Critical patent/JPH0523784A/en
Application granted granted Critical
Publication of JP2954397B2 publication Critical patent/JP2954397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To provide the binder compsn. for a curing mold used in a molding method for self-curing and gas-curing molds and the process for production of a casting sand mold. CONSTITUTION:This resin compsn. for production of the ester-curing mold is formed by incorporating a water-soluble phenolic resin which is produced by effecting reaction in an acidic region by using a bivalent or higher valency metallic ion catalyst in a stage for bringing phenols and aldehydes into reaction, effecting the reaction with an alkaline catalyst in an alkaline region in the stage before the above-mentioned stage and/or the stage thereafter and is further incorporated with metallic powder and/or alloy powder during the reaction into this compsn. This process for production of the casting mold consists in using the above-mentioned resin compsn. The strength of the casting mold formed from a reclained refractory granular material is greatly improved by using the above-mentioned resin compsn. and process for production of the casting mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自硬性及びガス硬化性鋳
型造型法に用いられる、硬化性鋳型用粘結剤組成物及び
鋳物砂型の製造方法に関するものであり、更に詳しくは
水溶性フェノール樹脂を粘結剤とし、有機エステルを硬
化剤として、耐火性粒状材料を造型する鋳物用砂型を製
造することにおいて、耐火性粒状材料の再使用性が著し
く改良された硬化性鋳型用樹脂組成物及びこの樹脂組成
物を使用した鋳物砂型の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a binder composition for a curable mold and a method for producing a molding sand mold, which is used in a self-hardening and gas-curable mold molding method, and more specifically, a water-soluble phenol resin. As a binder, the organic ester as a curing agent, in the production of a sand mold for casting to mold the refractory granular material, the reusability of the refractory granular material is significantly improved curable mold resin composition and The present invention relates to a method for producing a foundry sand mold using this resin composition.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】有機粘
結剤を用いて主型や中子のような鋳型を製造する造型法
として、自硬性鋳型法、コールドボックス鋳型法、クロ
ーニング法(シェル法)は公知である。特に有機自硬性
鋳型造型法は機械鋳物分野を中心に生産性、鋳物品質、
安全衛生上の観点から無機系に代わって既に汎用的な造
型法となっている。一方、従来、中、高速で鋳型を製造
するにはフェノール樹脂を粒状耐火物に被覆した、所謂
コーテッドサンド(CoatedSand) を加熱硬化して鋳型を
製造するクローニング法が幅広く使用されている。しか
し、鋳型製造時の省エネルギー、鋳型生産速度、更に鋳
型、鋳物の品質を改善するために、ガス状又はエロゾル
状物質で常温硬化させるコールドボックス鋳型法がクロ
ーニング法を代替する鋳型の製造法として鋳物業界で真
剣に導入が試みられてきている。
2. Description of the Related Art As a molding method for manufacturing a mold such as a main mold or a core using an organic binder, a self-hardening mold method, a cold box mold method, a cloning method (shell Method) is known. In particular, the organic self-hardening mold making method is mainly used in the field of mechanical casting to improve productivity, casting quality,
From the viewpoint of safety and health, it has already become a general-purpose molding method in place of the inorganic type. On the other hand, conventionally, in order to manufacture a mold at medium to high speed, a cloning method in which a so-called Coated Sand in which a phenol resin is coated on a granular refractory is heat-cured to manufacture a mold is widely used. However, in order to save energy at the time of mold production, mold production speed, and further improve the quality of the mold and casting, the cold-box mold method in which the material is cooled at room temperature with a gaseous or aerosol-like substance is used as a mold manufacturing method that replaces the cloning method. The industry is trying to introduce it seriously.

【0003】最近鋳物品質及び作業環境を改善する粘結
剤組成物として、水溶性フェノール樹脂を粘結剤とし、
これを有機エステルで硬化せしめる有機自硬性鋳型造型
法及びガス硬化性鋳型造型法に用いられる鋳物砂用粘結
剤組成物が特開昭50−130627号公報、特開昭58−154433
号公報、特開昭58−154434号公報等により知られるよう
になった。この粘結剤を用いた鋳型造型法では、従来の
酸硬化型粘結剤と異なり粘結剤組成物中に硫黄元素や窒
素元素を含まないため、注湯時の亜硫酸ガスの発生によ
る作業環境の汚染が無い、或は鋳物に対して硫黄元素や
窒素元素に起因する鋳物欠陥が少ないという特徴を有す
る反面、該粘結剤方式の鋳物砂の再生性が極端に悪く、
その使用には制限があることはよく知られているところ
であり、その改善が強く要望されている。
Recently, as a binder composition for improving casting quality and working environment, a water-soluble phenol resin is used as a binder,
A binder composition for molding sand used in an organic self-hardening mold molding method and a gas-curable mold molding method in which it is cured with an organic ester is disclosed in JP-A-50-130627 and JP-A-58-154433.
It has come to be known from Japanese Patent Publication No. 58-154434 and Japanese Patent Publication No. 58-154434. In the mold making method using this binder, unlike the conventional acid-curable binder, since the binder composition does not contain elemental sulfur or nitrogen, the working environment due to the generation of sulfurous acid gas during pouring Contrary to the above, there is no pollution, or there are few casting defects due to elemental sulfur and nitrogen to the casting, but the reproducibility of the binder type foundry sand is extremely poor,
It is well known that its use is limited, and its improvement is strongly desired.

【0004】かかる粘結剤組成物は、得られる鋳型の強
度が低いため、造型に必要な鋳型強度を得るために樹脂
の添加量が多くならざるを得なかった。またこの粘結剤
の特に大きな欠点として、一旦鋳造した後再使用を目的
とする回収砂や複数回繰り返して使用した再生砂を用い
るほど鋳型強度の確保が難しくなり、益々粘結剤の砂に
対する使用量が多くなる等の悪循環に陥りやすい欠点が
あった。又このような鋳型中の粘結剤量の増大は、注湯
時の熱分解ガス量の増大につながり、鋳物のガス欠陥及
び作業環境の悪化につながる等の欠点も併せ持つことに
なる。かような欠点を少しでも軽減するために、一般的
には砂表面の残留有機物やアルカリ分を除去するため、
強度の機械的研磨再生処理を行うと同時に、新砂の補給
割合を多くするか、若しくは砂の使い捨て等で対処して
いるのが現状であった。このため、鋳物砂を再生で使用
する場合には砂の再生率はせいぜい85%程度が限界であ
った(FOUNDRY TRADE JOURNAL−8/22 DECEMBER 198
9)。この砂再生性について、一般的に普及している酸
硬化型のフラン樹脂の場合と比較すると尚一層違いが明
確になる。即ち、酸硬化型フラン樹脂の場合、一般的に
新砂よりも再生砂を用いる方が鋳型の強度が高くとれる
ため、粘結剤の添加量は再生砂系では多少少なくする。
且つ、強度の機械的研磨再生処理は必要としないため、
再生砂の回収率も約95%以上である。
In such a binder composition, since the strength of the obtained mold is low, the amount of the resin added must be increased in order to obtain the mold strength required for molding. In addition, as a particularly big drawback of this binder, the more difficult it is to secure the mold strength with the use of recovered sand that is intended to be reused after casting once or reclaimed sand that has been repeatedly used a plurality of times, the more difficult it is for binder sand There was a drawback that it was easy to fall into a vicious circle, such as the amount used. Further, such an increase in the amount of the binder in the mold leads to an increase in the amount of the pyrolysis gas at the time of pouring, and also has drawbacks such as a gas defect of the casting and a deterioration of working environment. In order to reduce such drawbacks even a little, in general, to remove the residual organic matter and alkali content on the sand surface,
At the same time as the mechanical mechanical polishing and regeneration treatment, at the same time, the supply rate of fresh sand is increased or the sand is thrown away. Therefore, when the foundry sand is used for regeneration, the sand regeneration rate is limited to about 85% at most (FOUNDRY TRADE JOURNAL-8 / 22 DECEMBER 198).
9). The difference in this sand reproducibility becomes even clearer as compared with the case of acid-curing furan resin which is widely used. That is, in the case of an acid-curing furan resin, the strength of the mold is generally higher when reclaimed sand is used than when fresh sand is used. Therefore, the amount of the binder added is somewhat reduced in the reclaimed sand system.
And since it does not require a strong mechanical polishing regeneration treatment,
The recovery rate of recycled sand is about 95% or more.

【0005】硬化可能な粘結剤によって結合した砂から
鋳型と中子を製造する場合に、砂の再生は重要な経済的
問題である。鋳型または中子から砂を再生するには、鋳
造物を取り出した後に、使用済み鋳型と中子を機械的な
振動又は分解して砂をばらばらにし、塊又は凝集体を破
壊し砂を回収する。回収した砂表面には粘結剤の焼け残
り成分が存在するため、普通は次に再生処理する。再生
砂の再生方法には一般的に認められた3方法(機械的、
湿式、熱的)がある。湿式再生方法は、洗浄水に関連し
た廃棄問題と砂の乾燥に要するエネルギーコストのため
に、比較的好ましくない方法である。また熱的再生方法
は、この方法のエネルギーコストが高いために、比較的
好ましくない方法である。この反面、機械的再生方法は
最も経済的であるために、鋳物工業で最も一般的に用い
られており、普及している再生方法である。
Regeneration of sand is an important economic problem when making molds and cores from sand bound by a curable binder. To regenerate sand from a mold or core, after removing the casting, mechanically vibrate or decompose the used mold and core to break up the sand, destroy the lumps or agglomerates, and collect the sand. . Since the unburned component of the binder is present on the recovered sand surface, it is usually regenerated next. Three generally accepted methods for reclaiming recycled sand (mechanical,
Wet and thermal). The wet regeneration method is a relatively unfavorable method because of the waste problems associated with wash water and the energy costs of drying sand. The thermal regeneration method is also a relatively unfavorable method because of the high energy cost of this method. On the other hand, since the mechanical regeneration method is the most economical, it is the most commonly used and popular regeneration method in the foundry industry.

【0006】かようにして得られた再生砂において、水
溶性フェノール樹脂を粘結剤とし、有機エステルを硬化
剤とするバインダープロセスでは、十分な鋳型強度が得
られないという前述したごとき、本プロセス特有の欠点
が存在し、広く普及している酸硬化性フラン樹脂の場合
とは全く異なる現象であり、改良が強く望まれている。
最近再生砂を用いた鋳型の強度向上を目的として、粘結
剤中の樹脂固形分濃度を低くすることによる方法が特開
平1−262042号公報に、又再生砂を予めシラン溶液で前
処理する方法が特開平1−262043号公報に開示されてい
る。しかし、これらの方法は再生砂の強度を多少向上さ
せるものもあるが、満足な鋳型強度は得られない。
In the reclaimed sand thus obtained, a binder process using a water-soluble phenolic resin as a binder and an organic ester as a curing agent does not provide sufficient mold strength. This is a phenomenon which has a unique defect and is completely different from the case of the widely used acid-curable furan resin, and improvement is strongly desired.
Recently, for the purpose of improving the strength of a mold using reclaimed sand, a method of lowering the resin solid content concentration in the binder is disclosed in JP-A 1-262042, and reclaimed sand is pretreated with a silane solution in advance. The method is disclosed in JP-A 1-262043. However, although some of these methods improve the strength of reclaimed sand to some extent, satisfactory mold strength cannot be obtained.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記問題点
を解決すべく鋭意研究の結果、水溶性フェノール樹脂を
粘結剤とし、有機エステルを硬化剤として、耐火性粒状
材料を造型する鋳物用砂型の製造方法に用いられる粘結
剤組成物において、特定の金属元素を特定量含有する粘
結剤組成物を用いることにより、特に再生した耐火性粒
状材料(以下再生砂という)から造型された鋳型の強度
が大幅に向上することを見いだし、本発明を完成するに
到ったものである。即ち、本発明はフェノール類とアル
デヒドとを反応させる段階において、2価以上の金属イ
オン触媒を用いて酸性領域下で反応させ、その前の段階
及び/又は後の段階にアルカリ性領域下でアルカリ性触
媒で反応を行い、さらに反応中に金属粉末及び/又は合
金粉末を含有させて製造される水溶性フェノール樹脂を
含有することを特徴とするエステル硬化性鋳型製造用樹
脂組成物及び該樹脂組成物を使用することを特徴とする
鋳物砂型の製造方法を提供するものである。
As a result of intensive studies to solve the above problems, the inventors of the present invention mold a fire-resistant granular material using a water-soluble phenol resin as a binder and an organic ester as a curing agent. In a binder composition used in a method for producing a sand mold for casting, by using a binder composition containing a specific amount of a specific metal element, molding is particularly performed from a refractory granular material (hereinafter referred to as recycled sand) The inventors have found that the strength of the cast mold is significantly improved and have completed the present invention. That is, according to the present invention, in the step of reacting a phenol with an aldehyde, the reaction is carried out in an acidic region using a metal ion catalyst having a valence of 2 or more, and the alkaline catalyst is used in an alkaline region in the preceding stage and / or the subsequent stage. And a resin composition for producing an ester-curable template, which comprises a water-soluble phenolic resin produced by containing a metal powder and / or an alloy powder during the reaction, and the resin composition. The present invention provides a method for producing a foundry sand mold characterized by being used.

【0008】本発明を更に詳細に説明すると、本発明の
粘結剤組成物は、金属粉末及び/又は合金粉末として周
期律表IB〜VIII族から選ばれる一種又は二種以上を、水
溶性フェノール樹脂及び/又は有機エステルに、金属元
素として5〜50000ppm含有させることにより得られる。
To explain the present invention in more detail, the binder composition of the present invention comprises a metal powder and / or an alloy powder containing one or more selected from Group IB to VIII of the Periodic Table and a water-soluble phenol. It can be obtained by incorporating 5 to 50,000 ppm as a metal element into a resin and / or an organic ester.

【0009】本発明に使用される金属としては、IB族で
はCu,Ag,Au等、II族ではMg,Ca,Sr,Ba,Zn,Cd等、III 族
ではAl, Sc, Ga等、IV族ではTi, Zr, Sn等、 V族では
V, Bi等、VI族ではCr, Mo, W等、VII 族ではMn, Tc
等、VIII族ではFe, Co, Ni等が挙げられる。これらの金
属の中でも好ましくはII、III 、IV、VIII族の少なくと
も一種の金属を主成分とするものである。
The metals used in the present invention include Cu, Ag, Au, etc. in the group IB, Mg, Ca, Sr, Ba, Zn, Cd, etc. in the group II, Al, Sc, Ga, etc. in the group III, IV Ti, Zr, Sn, etc. in group C, V, Bi, etc. in group V, Cr, Mo, W, etc. in group VI, Mn, Tc in group VII
Etc. In the Group VIII, Fe, Co, Ni and the like can be mentioned. Among these metals, those containing at least one metal of Group II, III, IV, and VIII as a main component are preferable.

【0010】本発明に使用される金属及び/又は合金粉
末としては、Al粉,Zr粉,Zn粉,Ni粉,Fe粉,Mn粉,Cu
粉,Ti粉,Sn粉,ジュラルミン,マグナリウム,フェロ
マグネシウム,マグネシウムシリコン,フェロマンガン
等が挙げられるが、これらに限定されるものではない。
金属及び/又は合金粉末を用いる場合、その粒径は出来
るだけ細かいものが良く、通常平均粒径が 10000μm以
下、好ましくは2000μm以下が良い。10000 μm以上で
は再生砂での鋳型強度回復効果は不十分となる傾向があ
る。
The metal and / or alloy powder used in the present invention includes Al powder, Zr powder, Zn powder, Ni powder, Fe powder, Mn powder and Cu.
Powders, Ti powders, Sn powders, duralumin, magnarium, ferromagnesium, magnesium silicon, ferromanganese and the like can be mentioned, but not limited to these.
When the metal and / or alloy powder is used, its particle size should be as small as possible, and the average particle size is usually 10,000 μm or less, preferably 2000 μm or less. If it is 10000 μm or more, the effect of recovering the mold strength with reclaimed sand tends to be insufficient.

【0011】本発明で用いられる水溶性フェノール樹脂
は、有機エステルで硬化可能な樹脂であり、例えばフェ
ノール、クレゾール、レゾルシノール、3,5 −キシレノ
ール、ビスフェノールA、その他の置換フェノールを含
めたフェノール類を、大量のアルカリ性物質の水溶液の
中でホルムアルデヒド、アセトアルデヒド、フリルアル
デヒドなどのアルデヒド類又はこれらの混合物との反応
によって得られるものである。又、これらに尿素、メラ
ミン、シクロヘキサノン等のホルマリン縮合が可能なモ
ノマーを重量比で主たる構成単位とならない程度に共縮
合させてもよい。これらの水溶性フェノール樹脂の製造
の際に用いられる適当なアルカリ性触媒は、アルカリ金
属の水酸化物である水酸化ナトリウム、水酸化カリウ
ム、水酸化リチウム及びこれらの混合物であるが、水酸
化カリウムが最も好ましい。金属元素を含有する水溶性
フェノール樹脂は、この樹脂のいかなる製造段階におい
ても、金属元素を含有する金属及び/又は合金粉末を添
加することで得られる。即ち、7以下のpHで反応させる
時、及び/又はアルカリ性触媒を添加してから反応させ
る時に金属元素を含有する金属粉末及び/又は合金粉末
を溶解若しくは混合させることで得られるし、或は硬化
剤である有機エステルに対しても金属元素を含有する金
属及び/又は合金粉末を混合させても得られる。金属及
び/又は合金粉末の添加量としては、金属元素として5
〜50000ppm、好ましくは10〜30000ppmである。金属元素
の添加量が5ppm 未満では再生砂の鋳型強度向上が望ま
しいレベルに達せず、一方50000ppmを超えると樹脂と硬
化剤の安定性が悪くなり好ましくない。
The water-soluble phenolic resin used in the present invention is a resin curable with an organic ester, such as phenol, cresol, resorcinol, 3,5-xylenol, bisphenol A, and phenols including other substituted phenols. It is obtained by reacting with aldehydes such as formaldehyde, acetaldehyde, furyl aldehyde or a mixture thereof in an aqueous solution of a large amount of alkaline substance. Further, a formalin-condensable monomer such as urea, melamine, or cyclohexanone may be co-condensed with them to such an extent that they do not become the main constituent units in a weight ratio. Suitable alkaline catalysts used in the production of these water-soluble phenolic resins are the alkali metal hydroxides sodium hydroxide, potassium hydroxide, lithium hydroxide and mixtures thereof, with potassium hydroxide being Most preferred. The water-soluble phenol resin containing a metal element can be obtained by adding a metal and / or alloy powder containing a metal element at any stage of producing the resin. That is, it can be obtained by dissolving or mixing a metal powder and / or an alloy powder containing a metal element when the reaction is carried out at a pH of 7 or less and / or when the reaction is carried out after the addition of an alkaline catalyst, or it is cured. It can also be obtained by mixing a metal and / or alloy powder containing a metal element with the organic ester as the agent. The addition amount of the metal and / or alloy powder is 5 as the metal element.
˜50,000 ppm, preferably 10˜30,000 ppm. If the amount of the metal element added is less than 5 ppm, the improvement of the mold strength of the reclaimed sand will not reach the desired level, while if it exceeds 50,000 ppm, the stability of the resin and the curing agent will deteriorate, which is not preferable.

【0012】尚、粘結剤中の金属元素の定量について
は、一般に以下のように行う。 〔粘結剤中の金属元素の定量〕粘結剤を、充分混合攪拌
し、 100ml用白金皿に0.5 〜0.8g秤量する。これに、濃
硝酸10mlを添加し酸分解後、弱熱分解する。濃過塩素酸
を10ml添加し、白煙処理し濃過塩素酸の残量を 3mlとす
る。放冷後、HCl(1+1)10ml+H2O10mlを加え、加熱溶解す
る。これを濾過(No5C濾紙)し、希塩酸+温水にて洗浄
する。濾紙上に残った残渣は、30mlの白金るつぼ中、90
0 〜1000℃にて灰化後放冷し、ピロ硫酸カリウム2gを
加え 800℃にて融解する。融解物を抽出したものを、先
の濾液と合わせ、メスフラスコにて 100mlの溶液とした
後,ICP(誘導結合プラズマ発光分析)法により該金
属元素を定量する。
The metal element in the binder is generally quantified as follows. [Quantitative determination of metal element in binder] The binder is thoroughly mixed and stirred, and 0.5 to 0.8 g is weighed in a 100 ml platinum dish. To this, 10 ml of concentrated nitric acid was added, followed by acid decomposition and then mild thermal decomposition. Add 10 ml of concentrated perchloric acid and treat with white smoke to make the residual amount of concentrated perchloric acid 3 ml. After allowing to cool, 10 ml of HCl (1 + 1) +10 ml of H 2 O is added and dissolved by heating. This is filtered (No5C filter paper) and washed with dilute hydrochloric acid + warm water. The residue left on the filter paper is 90 ml in a 30 ml platinum crucible.
After ashing at 0 to 1000 ° C, let stand to cool, add 2 g of potassium pyrosulfate and melt at 800 ° C. The melted product is combined with the above filtrate to make a 100 ml solution in a volumetric flask, and then the metal element is quantified by ICP (Inductively Coupled Plasma Emission Spectroscopy).

【0013】かかる金属元素を含有する本発明の粘結剤
組成物を使用することにより、再生砂の強度が著しく回
復することは全く知られていなかった。他方、フェノー
ル類のフェノール核間のオルト位にベンジルエーテル結
合を形成せしめる触媒として金属イオンが知られてい
る。例えば特公昭47−50873 号公報、米国特許第348579
7 号、特公昭54−15797 号公報、特公昭60−23769 号公
報等に、第II族元素又は遷移元素が記載されている。
It has not been known at all that the strength of the reclaimed sand is remarkably recovered by using the binder composition of the present invention containing such a metal element. On the other hand, a metal ion is known as a catalyst for forming a benzyl ether bond at the ortho position between the phenol nuclei of phenols. For example, Japanese Examined Patent Publication No. 47-50873, U.S. Pat.
Group II elements or transition elements are described in Japanese Patent Publication No. 7, Japanese Patent Publication No. 54-15797, Japanese Patent Publication No. 60-23769, and the like.

【0014】また、特開平2−261815号公報には2価の
金属イオンの存在下pH7以下の酸性下でフェノール類と
ホルマリンを縮合反応させてベンジルエーテル型の樹脂
を得、次いで過剰のアルカリ下、未反応のホルマリンを
反応させ、フェノール核にメチロール化せしめることに
よりベンジルエーテル型の有機エステル硬化性水溶性レ
ゾール樹脂を得ている。該出願特許における金属イオン
の目的は、フェノール核同志のオルト位間に、ベンジル
エーテル結合を形成せしめる目的の触媒であり、かよう
な条件下で製造されたベンジルエーテル型の水溶性レゾ
ール樹脂は、アルカリ金属を合成触媒とした強アルカリ
条件下で製造されるフェノール核間の結合がメチレン型
結合をもつ公知の水溶性フェノール樹脂と比較して、強
度がでるとしたものである。この様に、2価以上の金属
イオン触媒を用いて酸性領域下で重合反応を行う事によ
ってベンジルエーテル結合を有するフェノール樹脂が得
られる。本発明では、更にその樹脂の製造段階(反応
前、反応中、及び/又は反応後)において金属粉末及び
/又は合金粉末を含有させる事によって鋳型の硬度を向
上させるものである。特に、再生砂や回収砂を用いた場
合に、その硬度増強効果を従来の粘結剤を用いた場合に
比べて著しく改善させるものである。
Further, in JP-A-2-261815, phenols and formalin are subjected to a condensation reaction in the presence of a divalent metal ion under an acidity of pH 7 or less to obtain a benzyl ether type resin, and then under an excess of alkali. By reacting unreacted formalin and converting the phenol nucleus into methylol, a benzyl ether type organic ester curable water-soluble resol resin is obtained. The purpose of the metal ion in the patent application is a catalyst for forming a benzyl ether bond between the ortho positions of the phenol nuclei, and the benzyl ether type water-soluble resol resin produced under such conditions is The strength is higher than that of a known water-soluble phenolic resin having a methylene type bond between phenol nuclei produced under strong alkaline conditions using an alkali metal as a synthetic catalyst. Thus, a phenol resin having a benzyl ether bond can be obtained by carrying out a polymerization reaction in the acidic region using a divalent or higher valent metal ion catalyst. In the present invention, the hardness of the mold is further improved by incorporating the metal powder and / or the alloy powder in the resin production stage (before the reaction, during the reaction, and / or after the reaction). In particular, when the recycled sand or the recovered sand is used, the hardness increasing effect is remarkably improved as compared with the case where the conventional binder is used.

【0015】本発明に用いられる有機エステルとしては
ラクトン類或は炭素数1〜10の一価又は多価アルコール
と炭素数1〜10の有機カルボン酸より導かれる有機エス
テルの単独若しくは混合物が用いられるが、自硬性鋳型
造型法ではγ−ブチロラクトン、プロピオンラクトン、
ε−カプロラクトン、ギ酸エチル、エチレングリコール
ジアセテート、エチレングリコールモノアセテート、ト
リアセチン等を用いるのが好ましく、ガス硬化性鋳型造
型法ではギ酸メチルを用いるのが好ましい。
As the organic ester used in the present invention, a lactone or an organic ester derived from a monohydric or polyhydric alcohol having 1 to 10 carbon atoms and an organic carboxylic acid having 1 to 10 carbon atoms is used alone or as a mixture. However, in the self-hardening molding method, γ-butyrolactone, propionolactone,
It is preferable to use ε-caprolactone, ethyl formate, ethylene glycol diacetate, ethylene glycol monoacetate, triacetin and the like, and it is preferable to use methyl formate in the gas curable molding method.

【0016】耐火性粒状材料としては石英質を主成分と
する珪砂、クロマイト砂、ジルコン砂、オリビン砂、ア
ルミナサンド等が挙げられる。本発明においてはこれら
の耐火性粒状材料は新砂、再生砂のいずれを用いること
もできるが、特に再生砂を用いた場合の鋳型強度向上効
果が顕著である。再生砂を使用する場合、再生砂は通常
の磨耗式或は焙焼式で得られるものが使用されるが、再
生砂を得る方法は特に限定されるものではない。
Examples of the refractory granular material include silica sand containing silica as a main component, chromite sand, zircon sand, olivine sand, alumina sand and the like. In the present invention, either new sand or reclaimed sand can be used as these refractory granular materials, but the effect of improving the mold strength is particularly remarkable when reclaimed sand is used. When the reclaimed sand is used, the reclaimed sand obtained by an ordinary abrasion type or roasting type is used, but the method for obtaining the reclaimed sand is not particularly limited.

【0017】本発明の粘結剤組成物中には、その他添加
剤として従来より公知であるシランカップリング剤を使
用することができる。その具体例としては、好ましいも
のとしてγ−アミノプロピルトリエトキシシランやγ−
(2−アミノエチル)アミノプロピルトリメトキシシラ
ン、γ−グリシドキシプロピルトリメトキシシラン等が
挙げられる。本発明においてはこのシランカップリング
剤を粘結剤組成物と併用するのが好ましい。本発明の粘
結剤組成物を用いて鋳物用砂型を自硬性鋳型造型法によ
って製造するにあたっては周知の方法が採用される。例
えば、再生砂 100重量部に、本発明に係わる粘結剤組成
物である水溶性フェノール樹脂水溶液を 0.4〜15重量
部、好ましくは 0.6〜5重量部及び硬化剤の有機エステ
ルを0.05〜9重量部、好ましくは 0.1〜5重量部を周知
の方法で混練し、従来の自硬性鋳型製造プロセスをその
まま利用して鋳型を製造することができる。
In the binder composition of the present invention, conventionally known silane coupling agents can be used as other additives. Specific examples thereof include γ-aminopropyltriethoxysilane and γ-aminopropyltriethoxysilane.
Examples include (2-aminoethyl) aminopropyltrimethoxysilane and γ-glycidoxypropyltrimethoxysilane. In the present invention, it is preferable to use this silane coupling agent together with the binder composition. A well-known method is adopted for producing a sand mold for casting by the self-hardening mold making method using the binder composition of the present invention. For example, to 100 parts by weight of reclaimed sand, 0.4 to 15 parts by weight, preferably 0.6 to 5 parts by weight, of an aqueous solution of a water-soluble phenolic resin, which is the binder composition according to the present invention, and 0.05 to 9 parts by weight of an organic ester of a curing agent are used. Parts, preferably 0.1 to 5 parts by weight, can be kneaded by a known method, and a conventional self-hardening mold manufacturing process can be used as it is to manufacture a mold.

【0018】[0018]

【実施例】以下、実施例をもって本発明を詳細に説明す
るが、本発明はこれらの実施例のみに限定されるもので
はない。 合成例1 攪拌機、還流コンデンサー、温度計を備えた四つ口フラ
スコに水 255重量部、フェノール 267重量部、92%パラ
ホルムアルデヒド 158重量部及び酢酸亜鉛2.7重量部、
金属・合金粉を表1に示した元素濃度になるように加
え、攪拌しながら湯浴上で加熱し85℃に保持し、16時間
かけて反応させた。その後、48%水酸化カリウム 292重
量部加え、樹脂溶液の粘度が25℃で 100cpになった時点
で冷却した後、γ−アミノプロピルトリエトキシシラン
を4重量部加えて、樹脂溶液(固形分約50%、重量平均
分子量約2300)を得た。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. Synthesis Example 1 255 parts by weight of water, 267 parts by weight of phenol, 158 parts by weight of 92% paraformaldehyde and 2.7 parts by weight of zinc acetate were placed in a four-necked flask equipped with a stirrer, a reflux condenser and a thermometer.
Metal / alloy powder was added so as to have the element concentrations shown in Table 1, heated with stirring in a hot water bath and kept at 85 ° C., and reacted for 16 hours. Then, 292 parts by weight of 48% potassium hydroxide was added, and when the viscosity of the resin solution reached 100 cp at 25 ° C, 4 parts by weight of γ-aminopropyltriethoxysilane was added, and the resin solution (solid content of about 50%, weight average molecular weight about 2300) was obtained.

【0019】合成例2 攪拌機、還流コンデンサー、温度計を備えた四つ口フラ
スコに水 255重量部、フェノール 267重量部、92%パラ
ホルムアルデヒド 158重量部及び酢酸亜鉛2.7重量部を
加え、攪拌しながら湯浴上で加熱し85℃に保持し、16時
間かけて反応させた。その後、48%水酸化カリウム 292
重量部、金属・合金粉を表2に示した元素濃度になるよ
うに加え、樹脂溶液の粘度が25℃で 100cpになった時点
で冷却した後、γ−アミノプロピルトリエトキシシラン
を4重量部加えて、樹脂溶液(固形分約50%、重量平均
分子量約2300)を得た。
Synthesis Example 2 255 parts by weight of water, 267 parts by weight of phenol, 158 parts by weight of 92% paraformaldehyde and 2.7 parts by weight of zinc acetate were added to a four-necked flask equipped with a stirrer, a reflux condenser and a thermometer, and stirred. The mixture was heated on a hot water bath and kept at 85 ° C., and reacted for 16 hours. Then 48% potassium hydroxide 292
By weight, metal and alloy powders were added so as to have the element concentrations shown in Table 2, and after cooling when the viscosity of the resin solution reached 100 cp at 25 ° C, 4 parts by weight of γ-aminopropyltriethoxysilane was added. In addition, a resin solution (solid content: about 50%, weight average molecular weight: about 2300) was obtained.

【0020】合成例3 攪拌機、還流コンデンサー、温度計を備えた四つ口フラ
スコに水 264重量部、フェノール 277重量部、48%水酸
化カリウム 292重量部加え、攪拌しながら湯浴上で加熱
し85℃に保持した。その後、92%パラホルムアルデヒド
163重量部を1時間かけて添加した。同温度で反応を続
け、樹脂溶液の粘度が25℃で 100cpになった時点で冷却
し、γ−アミノプロピルトリエトキシシランを4重量部
加え、樹脂溶液(固形分約50%、重量平均分子量約230
0)を得た。
Synthesis Example 3 To a four-necked flask equipped with a stirrer, a reflux condenser, and a thermometer, 264 parts by weight of water, 277 parts by weight of phenol, and 292 parts by weight of 48% potassium hydroxide were added, and the mixture was heated on a water bath while stirring. Hold at 85 ° C. Then 92% paraformaldehyde
163 parts by weight were added over 1 hour. The reaction is continued at the same temperature, cooled when the viscosity of the resin solution reaches 100 cp at 25 ° C, 4 parts by weight of γ-aminopropyltriethoxysilane is added, and the resin solution (solid content: about 50%, weight average molecular weight: about 50%) is added. 230
0) was obtained.

【0021】合成例4 攪拌機、還流コンデンサー、温度計を備えた四つ口フラ
スコに水 255重量部、フェノール 267重量部、92%パラ
ホルムアルデヒド 158重量部及び酢酸亜鉛2.7重量部加
え、攪拌しながら湯浴上で加熱し85℃に保持し、16時間
かけて反応させた。その後、48%水酸化カリウム 292重
量部加え、樹脂溶液の粘度が25℃で100cpになった時点
で冷却した後、γ−アミノプロピルトリエトキシシラン
を4重量部加えて、樹脂溶液(固形分約50%、重量平均
分子量約2300)を得た。
Synthesis Example 4 To a four-necked flask equipped with a stirrer, a reflux condenser and a thermometer, 255 parts by weight of water, 267 parts by weight of phenol, 158 parts by weight of 92% paraformaldehyde and 2.7 parts by weight of zinc acetate were added, and hot water was stirred. The mixture was heated on a bath and kept at 85 ° C., and reacted for 16 hours. After that, 292 parts by weight of 48% potassium hydroxide was added, and when the viscosity of the resin solution reached 100 cp at 25 ° C, 4 parts by weight of γ-aminopropyltriethoxysilane was added, and the resin solution (solid content of about 50%, weight average molecular weight about 2300) was obtained.

【0022】実施例1〜13 合成例1に準じて表1に示す金属・合金粉を添加し、金
属元素を含有する樹脂溶液を得、所定の方法に従って自
硬性抗圧力試験用テストピースをつくり、調製後の24時
間後の鋳型強度を測定した。 実施例14〜25 合成例2に準じて表2に示す金属・合金粉を添加し、金
属元素を含有する樹脂溶液を得、所定の方法に従ってガ
ス硬化性抗圧力試験用テストピースをつくり、調製後の
24時間後の鋳型強度を測定した。
Examples 1 to 13 The metal and alloy powders shown in Table 1 were added according to Synthesis Example 1 to obtain a resin solution containing a metal element, and a test piece for self-hardening pressure resistance test was prepared according to a predetermined method. The mold strength was measured 24 hours after the preparation. Examples 14 to 25 According to Synthesis Example 2, the metal / alloy powder shown in Table 2 was added to obtain a resin solution containing a metal element, and a gas-curable pressure resistant test piece was prepared and prepared according to a predetermined method. After
The mold strength after 24 hours was measured.

【0023】比較例1、5 合成例3に準じて樹脂溶液を得、所定の方法に従って自
硬性、ガス硬化性抗圧力試験用テストピースをつくり、
調製後の24時間後の鋳型強度を測定した。 比較例2、6 特開平1−262042号公報に記載の実施例に準じて水溶性
フェノール樹脂溶液(固形分40%)を得、所定の方法に
従って自硬性、ガス硬化性抗圧力試験用テストピースを
つくり、調製後の24時間後の鋳型強度を測定した。 比較例3、7 特開平1−262043号公報に記載の実施例によって砂を処
理した。即ち、再生砂100重量部に対して、予めγ−ア
ミノプロピルトリエトキシシランの40%水溶液0.024重
量部によって25℃において処理した後、所定の方法に従
って自硬性、ガス硬化性抗圧力試験用テストピースをつ
くり、調製後の24時間後の鋳型強度を測定した。 比較例4、8 特開平2−261815号公報に記載の実施例に則り、合成例
4に準じて樹脂溶液を得、所定の方法に従って自硬性、
ガス硬化性抗圧力試験用テストピースをつくり、調製後
の24時間後の鋳型強度を測定した。
Comparative Examples 1 and 5 Resin solutions were obtained according to Synthesis Example 3 and self-hardening and gas-curing test pieces for pressure resistance test were prepared according to a predetermined method.
The template strength was measured 24 hours after the preparation. Comparative Examples 2 and 6 A water-soluble phenolic resin solution (solid content: 40%) was obtained according to the examples described in JP-A 1-262042, and a self-hardening, gas-curable pressure-resistant test piece was tested according to a predetermined method. Was prepared and the mold strength was measured 24 hours after the preparation. Comparative Examples 3 and 7 Sand was treated according to the examples described in JP-A 1-262043. That is, with respect to 100 parts by weight of reclaimed sand, after being treated with 0.024 parts by weight of a 40% aqueous solution of γ-aminopropyltriethoxysilane at 25 ° C. in advance, self-hardening according to a predetermined method, a test piece for gas-curable coercive pressure test Was prepared and the mold strength was measured 24 hours after the preparation. Comparative Examples 4 and 8 Resin solutions were obtained according to Synthesis Example 4 according to the examples described in JP-A-2-261815, and self-hardening according to a predetermined method.
A test piece for gas-curable coercive pressure test was prepared, and the mold strength was measured 24 hours after the preparation.

【0024】鋳型強度の測定方法 自硬性鋳型造型法における鋳型強度は次のように評価
した。即ち、砂の種類がフリーマントル硅砂である再生
砂 100重量部に対し、トリアセチンを 0.375重量部、本
発明の実施例及び比較例の水溶性フェノール樹脂を1.5
重量部添加混練した混合物を50mmφ×50mmh のテストピ
ース用模型に充填し、24時間後の抗圧力を測定した。ガ
ス硬化性鋳型造型法における鋳型強度は次のように評価
した。即ち、砂の種類がフリーマントル珪砂である再生
砂 100重量部に対し、本発明の実施例及び比較例の水溶
性フェノール樹脂を 2.5重量部添加混練してなる混合物
を50mmφ×50mmh のガス硬化用テストピース模型に充填
した。この模型中に3.0重量部のガス状のギ酸メチルを
注入し、24時間後の抗圧力を測定した。
[0024]Mold strength measurement method   The mold strength in the self-hardening mold making method is evaluated as follows.
did. In other words, the type of sand is Fremantle silica sand
0.375 parts by weight of triacetin per 100 parts by weight of sand
The water-soluble phenolic resins of Examples and Comparative Examples of the invention were mixed with 1.5
Part by weight Add and knead the mixed mixture with a 50 mmφ × 50 mmh test pie.
It was filled in a space model and the coercive pressure was measured after 24 hours. Moth
The mold strength in the sclerosing mold molding method is evaluated as follows.
did. That is, the type of sand is Fremantle silica sand
For 100 parts by weight of sand, the water solubility of the examples and comparative examples of the present invention
Mixture made by adding 2.5 parts by weight of water-soluble phenolic resin
Is filled in a 50 mmφ x 50 mmh test piece model for gas curing.
did. 3.0 parts by weight of gaseous methyl formate was added to this model.
The infusion pressure was measured 24 hours after the injection.

【0025】再生砂の調製方法 フリーマントル硅砂の新砂 100重量部に対し、硬化剤
であるトリアセチン0.375重量部、γ−アミノプロピル
トリエトキシシラン0.5 重量%(対フェノール樹脂)を
含有する水溶性フェノール樹脂(固形分49%、重量平均
分子量2300)を 1.5重量部添加混練した混合物より造型
した鋳型を用い、FC−25(S/M=3.5)を鋳造し、回収した
砂をクラッシャーにかけ、日本鋳造製M型ロータリーク
レーマーを用いて再生(A再生、2パス)した。以上の
工程を5回繰り返して得られた再生砂を上記の鋳型強度
試験用の調製に用いた。
[0025]Method of preparing recycled sand   Hardener against 100 parts by weight of fresh sand of Fremantle silica
Triacetin 0.375 parts by weight, γ-aminopropyl
0.5% by weight of triethoxysilane (vs. phenolic resin)
Containing water-soluble phenolic resin (solid content 49%, weight average)
Molded from a mixture of 1.5 parts by weight of molecular weight 2300) and kneading
FC-25 (S / M = 3.5) was cast and recovered using the prepared mold.
Pour sand into the crusher, M-type rotary rack made in Japan
Reproduction (A reproduction, 2 passes) was performed using a Romer. More than
The reclaimed sand obtained by repeating the process 5 times was subjected to the above mold strength.
Used for test preparation.

【0026】実施例1〜25のテストピースの粒径と抗圧
力及び比較例1〜8のテストピースの抗圧力の測定結果
を、表1と表2に示す。
Tables 1 and 2 show the measurement results of the particle size and coercive force of the test pieces of Examples 1 to 25 and the coercive force of the test pieces of Comparative Examples 1 to 8.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】本発明の樹脂組成物及び鋳型製造方法を
用いることにより、再生した耐火性粒状材料から造型さ
れた鋳型の強度を大幅に向上させることができる。
By using the resin composition and the method for producing a mold of the present invention, the strength of a mold molded from a recycled refractory granular material can be greatly improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 勉 愛知県豊橋市富士見台6−2−1 花王富 士見寮   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tsutomu Tanaka             6-2-1 Fujimidai, Toyohashi City, Aichi Prefecture Kao Tomi             Shimi Dormitory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 フェノール類とアルデヒドとを反応させ
る段階において、2価以上の金属イオン触媒を用いて酸
性領域下で反応させ、その前の段階及び/又は後の段階
にアルカリ性領域下でアルカリ性触媒で反応を行い、さ
らに反応中に金属粉末及び/又は合金粉末を含有させて
製造される水溶性フェノール樹脂を含有することを特徴
とするエステル硬化性鋳型製造用樹脂組成物。
1. In the step of reacting a phenol with an aldehyde, the reaction is carried out in the acidic region using a metal ion catalyst having a valence of 2 or more, and the alkaline catalyst is used in the alkaline region in the preceding stage and / or the subsequent stage. A resin composition for producing an ester-curable mold, which comprises a water-soluble phenolic resin produced by reacting with a metal powder and / or an alloy powder during the reaction.
【請求項2】 金属粉末及び/又は合金粉末の金属元素
が周期律表IB〜VIII族から選ばれる一種又は二種以上で
ある請求項1記載の鋳型製造用樹脂組成物。
2. The resin composition for producing a mold according to claim 1, wherein the metal element of the metal powder and / or the alloy powder is one kind or two or more kinds selected from the groups IB to VIII of the periodic table.
【請求項3】 耐火性粒状材料が再使用を目的とする回
収砂又は再生砂が主体である請求項1記載の鋳型製造用
樹脂組成物。
3. The mold-forming resin composition according to claim 1, wherein the refractory granular material is mainly composed of recovered sand or recycled sand for the purpose of reuse.
【請求項4】 請求項1又は2記載のエステル硬化性鋳
型製造用樹脂組成物と有機エステルを用いて、耐火性粒
状材料を造型する鋳型製造方法。
4. A mold manufacturing method for molding a refractory granular material using the resin composition for manufacturing an ester-curable mold according to claim 1 and an organic ester.
【請求項5】 耐火性粒状材料が再使用を目的とする回
収砂又は再生砂が主体である請求項4記載の鋳型製造方
法。
5. The method for producing a mold according to claim 4, wherein the refractory granular material is mainly recovered sand or recycled sand for the purpose of reuse.
JP18095491A 1991-07-22 1991-07-22 Resin composition for producing curable mold and method for producing mold Expired - Lifetime JP2954397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18095491A JP2954397B2 (en) 1991-07-22 1991-07-22 Resin composition for producing curable mold and method for producing mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18095491A JP2954397B2 (en) 1991-07-22 1991-07-22 Resin composition for producing curable mold and method for producing mold

Publications (2)

Publication Number Publication Date
JPH0523784A true JPH0523784A (en) 1993-02-02
JP2954397B2 JP2954397B2 (en) 1999-09-27

Family

ID=16092184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18095491A Expired - Lifetime JP2954397B2 (en) 1991-07-22 1991-07-22 Resin composition for producing curable mold and method for producing mold

Country Status (1)

Country Link
JP (1) JP2954397B2 (en)

Also Published As

Publication number Publication date
JP2954397B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
JP5537067B2 (en) Mold manufacturing method
JPH0733464B2 (en) Modifier for aqueous base solution of phenolic resole resin
JP2665492B2 (en) Binder composition, composition for molding a mold containing the binder composition, and method for producing core or mold for casting using the binder composition
JP4198531B2 (en) Curable composition and foundry sand composition and mold obtained using the same
JP2954397B2 (en) Resin composition for producing curable mold and method for producing mold
JP2954395B2 (en) Resin composition for producing curable mold and method for producing mold
JP3092984B2 (en) Mold resin composition and method for producing mold
JP2954396B2 (en) Resin composition for producing curable mold and method for producing mold
JP3487778B2 (en) Mold manufacturing method
JP2954398B2 (en) Resin composition for producing ester-curable mold and method for producing mold
JP3092981B2 (en) Resin composition for mold, binder composition for mold, mold composition, and method for producing mold
JP2954402B2 (en) Resin composition for foundry sand
JP2898799B2 (en) Method for treating casting sand and method for producing sand mold for casting
WO2023054430A1 (en) Mold composition
JP3453485B2 (en) Method for treating casting sand and method for producing mold
JP3092983B2 (en) Casting sand mold manufacturing method
JP2898795B2 (en) Resin composition for producing curable mold and method for producing mold
US4281090A (en) Catechol resins for the shell process
JP5250301B2 (en) Mold manufacturing method
JP3092985B2 (en) Hardener composition for curable mold and method for producing mold
JP2999299B2 (en) Binder composition for producing curable mold and method for producing mold
JP3092982B2 (en) Resin composition for mold, binder composition for mold, composition for mold, and method for producing mold
JPH0550175A (en) Manufacture of casting sand mold
JP4398174B2 (en) Resin composition for mold and mold using the same
JP3330886B2 (en) Mold resin composition and method for producing mold

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100716