JPH05237303A - Gas-liquid contacting device - Google Patents

Gas-liquid contacting device

Info

Publication number
JPH05237303A
JPH05237303A JP4276392A JP4276392A JPH05237303A JP H05237303 A JPH05237303 A JP H05237303A JP 4276392 A JP4276392 A JP 4276392A JP 4276392 A JP4276392 A JP 4276392A JP H05237303 A JPH05237303 A JP H05237303A
Authority
JP
Japan
Prior art keywords
perforated plate
liquid
gas
small holes
perforated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4276392A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Yoshimatsu
幸祥 吉松
Hironobu Ueda
博信 上田
Keiji Omura
慶次 大村
Akio Yamamoto
昭夫 山本
Osamu Kita
修 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4276392A priority Critical patent/JPH05237303A/en
Publication of JPH05237303A publication Critical patent/JPH05237303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To provide a gas-liquid contacting device where vapor-liquid contact is properly maintained and pressure drop is small and it is hard for weeping to happen and which has a wide operating range by providing a structure where small holes are opened along the flow direction of liquid of a perforated plate and the small holes having a slant hole to the plate thickness direction is provided. CONSTITUTION:Since the small holes 6 are opened along the flow direction of liquid 3 on a perforated plate 2, the flow of an ascending gas 4 from below the perforated plate 2 turns in the direction along the flow direction of the liquid 3 on the way of pass through the perforated plate 2 and comes into contact with the liquid 3 and ascends. At this time, by small holes 6 in the shape of a slant hole, kinematic energy of the gas effectively acts force for the liquid 3 on the perforated plate to smoothly flow to prevent more residence of the liquid 3 than required, causing the thickness of liquid seal on the perforated plate 3 to be decreased. Therefore pressure drop is reduced, good gas-liquid contact is performed, weeping become unlikely to happen and a operating range is widened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】溢流管を有した気液接触装置(多
孔板)は構造が簡単なため、蒸留、精留、吸収等化学工
業の気液接触装置に幅広く使用されている。本発明は、
特に、空気を液化し、精留操作により空気から窒素、酸
素及びアルゴンを分離する装置に関するものである。
BACKGROUND OF THE INVENTION A gas-liquid contactor (perforated plate) having an overflow pipe has a simple structure and is widely used in a gas-liquid contactor in the chemical industry such as distillation, rectification and absorption. The present invention is
In particular, it relates to a device for liquefying air and separating nitrogen, oxygen and argon from the air by a rectification operation.

【0002】[0002]

【従来の技術】気液接触装置の従来の技術には、例え
ば、特開昭56−33005号公報記載の「気液接触装
置」、特公昭42−4568号公報記載の「液体と蒸気
とを接触させる棚段」等がある。多孔板上で気液接触し
ながら流れる液体は重力による自由流れであるため多孔
板上の液高さは多孔板の位置により分布がある。これら
の発明はこの分布を一定にするため、液高さの差異に応
じて多孔板を傾斜させて精留塔に取り付けることによ
り、液高さの分布をほぼ一定に保ち良好な気液接触を行
なわせるものである。あるいは、多孔板の上流の一部を
傾斜させ蒸気を多孔板の下流に吹き出させ、気液接触を
行なわせるものである。これら従来技術の多孔板の小孔
は、多孔板の水平方向に対して直角に開口され、多孔板
に対し垂直方向に上昇ガスが上昇する構造である。
2. Description of the Related Art Conventional techniques of gas-liquid contactors include, for example, "a gas-liquid contactor" described in JP-A-56-33005 and "a liquid and a vapor" described in JP-B-42-4568. There is a shelf to contact. " Since the liquid flowing on the perforated plate while contacting with the gas is a free flow due to gravity, the liquid height on the perforated plate has a distribution depending on the position of the perforated plate. In these inventions, in order to make this distribution constant, the perforated plate is inclined according to the difference in liquid height and attached to the rectification column to keep the liquid height distribution almost constant and to achieve good gas-liquid contact. It is something to do. Alternatively, a part of the upstream side of the perforated plate is inclined so that the vapor is blown out to the downstream side of the perforated plate to perform gas-liquid contact. The small holes of these conventional perforated plates have a structure that is opened at a right angle to the horizontal direction of the perforated plate and the ascending gas rises in the direction perpendicular to the perforated plate.

【0003】[0003]

【発明が解決しようとする課題】空気分離装置では、空
気を液化して精留を行なうため、大気圧状態の空気を空
気圧縮機等で約0.5MPaに圧縮する必要がある。一
方、製品として外部に回収される酸素ガスあるいは液体
酸素はほぼ大気圧の状態であるため、精留作用を行なわ
せるために精留塔に数十段組み込まれている多孔板の圧
力損失がそのまま空気圧縮機の消費電力に影響を与える
ため、空気圧縮機の吐出圧力が空気分離装置の性能を表
すと言っても過言ではない。多孔板を内蔵した精留塔の
能力を十分に発揮するには多孔板上の気液の流動を最良
にする必要がある。また、精留塔の圧力損失は、空気圧
縮機等の消費電力に大きく影響するため圧力損失は極力
小さくすることが望ましい。多孔板の小孔はパンチング
等により開口される。このときの圧力損失は、例えば、
文献「蒸留工学ハンドブック」等に記載されているよう
に乾き圧力損失、液シールによる圧力損失、表面張力に
よる圧力損失の和で推定される。それぞれの圧力損失を
低減するためには、多孔板の小孔の孔径を大きくする方
法、多孔板を傾斜させて液シールの厚さを小さくする方
法等がある。しかし、空気分離装置等に利用される多孔
板は高い精留効率を要求されるため、孔径を大きくする
ことはウイーピングの発生、気液の部分発泡を引き起こ
し、精留効率を低下せしめ、また、多孔板を傾斜させて
精留塔に組み込むには、その構造が難しく装置価格の上
昇を招く恐れがある。
In the air separation device, since air is liquefied for rectification, it is necessary to compress the air at atmospheric pressure to about 0.5 MPa with an air compressor or the like. On the other hand, the oxygen gas or liquid oxygen that is recovered as a product outside is at about atmospheric pressure, so the pressure loss of the perforated plate that is installed in the rectification column in order to perform the rectification action remains unchanged. Since it affects the power consumption of the air compressor, it is no exaggeration to say that the discharge pressure of the air compressor represents the performance of the air separation device. It is necessary to optimize the flow of gas and liquid on the perforated plate in order to fully exhibit the capability of the rectification column having the perforated plate. Further, the pressure loss of the rectification tower has a great influence on the power consumption of the air compressor and the like, and therefore it is desirable to minimize the pressure loss. The small holes of the perforated plate are opened by punching or the like. The pressure loss at this time is, for example,
It is estimated by the sum of the dry pressure loss, the pressure loss due to the liquid seal, and the pressure loss due to the surface tension, as described in the document "Distillation Engineering Handbook". In order to reduce each pressure loss, there are a method of increasing the diameter of the small holes of the perforated plate, a method of inclining the perforated plate to reduce the thickness of the liquid seal, and the like. However, since a perforated plate used in an air separation device or the like is required to have high rectification efficiency, increasing the pore size causes weeping, partial foaming of gas and liquid, and lowers rectification efficiency. If the perforated plate is tilted and incorporated into the rectification column, its structure is difficult, and there is a possibility that the cost of the device will increase.

【0004】本発明の目的は、多孔板上の気液の接触を
良好に保ち、圧力損失が小さく、かつ、ウイーピングを
起こしにくく精留塔の運転操作範囲の広い気液接触装置
を提供するものである。
An object of the present invention is to provide a gas-liquid contactor which maintains good gas-liquid contact on a perforated plate, has a small pressure loss, is less likely to cause weeping, and has a wide operating range of the rectification column. Is.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
には、圧力損失が小さく、ウイーピングを起こしにくい
多孔板を提供することにより達成される。本発明では、
パンチング、あるいは塑性加工等の手段で薄板に開口さ
れた多孔板の小孔が少なくとも多孔板の板厚に対して液
体の流れ方向に沿って開口設置され、あるいは、同一の
小孔で多孔板の下面と上面とで多孔板の垂直方向に位置
的差異を持たせ、少なくとも、多孔板の小孔の開口方向
が液体の流れ方向に沿った構造としたものである。すな
わち、多孔板の板厚方向に少なくとも液体の流れ方向に
沿って小孔が開口され、実質的に多孔板の小孔が多孔板
の垂直方向、すなわち、板厚方向に対して、斜孔の小孔
を有した構造とした多孔板としたものである。
The above object can be achieved by providing a perforated plate which has a small pressure loss and is less likely to cause weeping. In the present invention,
The small holes of the perforated plate, which are opened in the thin plate by means such as punching or plastic working, are installed along the flow direction of the liquid with respect to at least the plate thickness of the perforated plate, or the same small holes form the perforated plate. The lower surface and the upper surface have a positional difference in the vertical direction of the perforated plate, and at least the openings of the small holes of the perforated plate have a structure along the flow direction of the liquid. That is, small holes are opened in the plate thickness direction of the perforated plate at least along the flow direction of the liquid, and the small holes of the perforated plate are substantially perpendicular to the perforated plate, that is, with respect to the plate thickness direction. This is a perforated plate having a structure having small holes.

【0006】[0006]

【作用】多孔板の圧力損失を小さくする方法は前項で述
べたとおり、多孔板の小孔を大きくする方法、多孔板上
の液シールの厚さを小さくする方法等があるが、本発明
では特に多孔板上の液シールの厚さを小さくする方法に
関するものである。多孔板上で気体と液体が気液接触す
る場合、多孔板下方からの上昇ガスは空気圧縮機等で与
えられたエネルギー、つまり運動エネルギーを持って多
孔板を垂直に横ぎり上方へ上昇する。一方、多孔板上に
流入する液体は上方の多孔板の溢流管から該多孔板上に
流入し、重力による自然流れ、すなわち、多孔板上に生
じる液勾配により、多孔板を横ぎり、溢流管より下方の
多孔板へ流入する。気液接触は該多孔板上で、このガス
と液体とで行なわれる。すなわち、運動エネルギーを持
ったガスと、重力で自然に流れる液体とで気液接触が行
なわれる。この場合、多孔板上の液体の流れは液体の重
力による自由流れであるため、下方からの上昇ガスと気
液接触する場合、この上昇ガスの上方への流れが液体の
流れにガスがスクリーンとなり、液体が滑らかに多孔板
を流動するための障害となる。つまり、多孔板の小孔を
上昇するガスの障害により、液体が滑らかに多孔板を流
動できなく、必要以上に多孔板上に液体が滞留して多孔
板上の液シールが厚くなり、圧力損失の増加を招く結果
となり、多孔板でガスの運動エネルギーが有効に作用さ
れない。特公昭42−4568号公報においては、多孔
板の上流の一部を傾斜して設置し、下方からの蒸気の一
部を多孔板の下流に向かって吹き出させ気液接触するも
のであるが、多孔板に開口されている小孔は従来より行
われている多孔板に対して垂直に開口されている構造で
ある。また、該発明では、多孔板の上流の一部分を多孔
板とともに傾斜して蒸気を多孔板下流に向かって吹き出
させており、該部分での液体の流動は考慮されている
が、多孔板全体の流動に関しては考慮されていない。
As described in the previous section, there are methods of reducing the pressure loss of the perforated plate, such as a method of enlarging the small holes of the perforated plate and a method of reducing the thickness of the liquid seal on the perforated plate. In particular, it relates to a method for reducing the thickness of the liquid seal on the porous plate. When gas and liquid are in gas-liquid contact on the perforated plate, the rising gas from below the perforated plate has energy given by an air compressor or the like, that is, kinetic energy, and vertically crosses the perforated plate and rises upward. On the other hand, the liquid flowing into the perforated plate flows into the perforated plate from the overflow pipe of the upper perforated plate, crosses the perforated plate by the natural flow due to gravity, that is, the liquid gradient generated on the perforated plate, and overflows. It flows into the perforated plate below the flow tube. Gas-liquid contact is made with this gas and liquid on the perforated plate. That is, gas-liquid contact is performed between the gas having kinetic energy and the liquid that naturally flows due to gravity. In this case, the flow of the liquid on the perforated plate is a free flow due to the gravity of the liquid, so when it comes into gas-liquid contact with the rising gas from below, the upward flow of this rising gas causes the gas to become a screen on the liquid flow. , Is an obstacle for the liquid to smoothly flow through the perforated plate. In other words, due to the obstruction of the gas that rises up the small holes of the perforated plate, the liquid cannot flow smoothly through the perforated plate, the liquid stays on the perforated plate more than necessary, and the liquid seal on the perforated plate becomes thicker, resulting in pressure loss. As a result, the kinetic energy of gas is not effectively acted on the perforated plate. In Japanese Patent Publication No. 42-4568, a part of the upstream side of the perforated plate is installed so as to be inclined, and a part of vapor from below is blown out toward the downstream side of the perforated plate for gas-liquid contact. The small holes opened in the perforated plate have a structure in which they are opened vertically to the perforated plate which has been conventionally performed. Further, in the invention, a part of the upstream side of the perforated plate is inclined together with the perforated plate to blow out the vapor toward the downstream side of the perforated plate, and the flow of the liquid in the part is taken into consideration. No consideration is given to flow.

【0007】本発明では、多孔板上の液体の流動を多孔
板全体について考慮したものである。多孔板上の液体の
流れ方向に沿って小孔を開口し、実質的に上昇ガスを液
体の流れ方向に沿って上昇させることにより圧力損失を
減小させる作用の一部は、例えば、管路要素の抵抗係
数、すなわち、流体の分岐、合流管におけるエネルギー
特性を考慮することにより可能であり、一方、ガスの運
動エネルギーの一部により液体を流動させる力は、液体
を多孔板下流へ押し流す作用を提供する。この運動エネ
ルギーを多孔板全体に有効に作用させることにより圧力
損失を小さくすることができる。本発明での多孔板の小
孔が液体の流れ方向へ沿って開口され、実質的に斜孔の
形状の小孔を持った部分が、この運動エネルギーを有効
に作用させる効果を持つ。この斜孔の形状の小孔により
ガスの運動エネルギーが多孔板上の液体が滑らかに流れ
るための力に有効に作用し、必要以上の液体の滞留を防
止することができ、多孔板上の液シールの厚さを小さく
できる作用を持つ。すなわち、斜孔の形状の小孔が上昇
ガスの運動エネルギーを液体の滑らかな流れと、気液の
接触のエネルギーに有効に変える作用を持ち、圧力損失
が小さく、かつ、良好な気液の流れと、気液接触が行な
える気液接触装置が提供できる。また、多孔板から下降
する液体が溢流管を介さずに直接多孔板の小孔から下方
の多孔板上に落下するウイーピングは、精留効率に悪影
響を及ぼす。精留塔の運転操作範囲が広く取れるという
ことはウイーピングが起こりにくい多孔板を提供するこ
とにある。ウイーピングの有無は小孔の形状とともに多
孔板上の液シールの厚さにより定まる。本発明によれば
液シールの厚さが小さくできるため、ウイーピングが起
こりにくく運転操作範囲が広く取れるという作用も持
つ。
In the present invention, the flow of liquid on the perforated plate is considered for the entire perforated plate. Part of the action of reducing the pressure loss by opening small holes along the flow direction of the liquid on the perforated plate and substantially raising the rising gas along the flow direction of the liquid is, for example, a pipeline. This is possible by considering the resistance coefficient of the elements, that is, the energy characteristics of the fluid branching and merging pipes, while the force that causes the liquid to flow due to part of the kinetic energy of the gas is the action that pushes the liquid downstream of the perforated plate. I will provide a. By effectively applying this kinetic energy to the entire porous plate, the pressure loss can be reduced. The small holes of the perforated plate in the present invention are opened along the flow direction of the liquid, and the portion having the small holes substantially in the shape of the oblique hole has the effect of effectively acting this kinetic energy. Due to the small holes in the shape of the oblique holes, the kinetic energy of the gas effectively acts on the force for the liquid on the perforated plate to smoothly flow, and it is possible to prevent the liquid from staying more than necessary. It has the effect of reducing the thickness of the seal. That is, the small holes in the shape of oblique holes have the effect of effectively changing the kinetic energy of the rising gas into the smooth flow of liquid and the energy of contact between gas and liquid, with a small pressure loss and good gas-liquid flow. With this, it is possible to provide a gas-liquid contact device capable of performing gas-liquid contact. Moreover, the weeping in which the liquid descending from the perforated plate falls directly from the small holes of the perforated plate onto the lower perforated plate without passing through the overflow pipe, has a bad influence on the rectification efficiency. The fact that the operating range of the rectification column can be widened is to provide a perforated plate in which weeping does not easily occur. The presence or absence of weeping is determined by the shape of the small holes and the thickness of the liquid seal on the perforated plate. According to the present invention, since the thickness of the liquid seal can be reduced, weeping is less likely to occur and the operation range can be widened.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1及至図11に
より説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0009】多孔板を組み込んだ精留塔には多孔板上の
液体の流れ方向により、その形状が異なるが、ここでは
液体が多孔板上を横切って流れる構造を持つ精留塔につ
いて、その成分が空気の組成について述べる。図1は、
本発明の一実施例の多孔板を組み込んだ精留塔の透視図
を示す。図2は、本発明の一実施例の多孔板の断面図を
示す。図1において、多孔板2は精留塔1内に数十段組
み込まれている。多孔板2上には液体3が上方から、多
孔板2上では上流から下流に流れ、一方、下方からガス
4が上昇し、多孔板2上でガス4と液体3の気液接触が
行なわれ、空気の成分の分離が行なわれる。気液接触が
行なわれたガスは上昇して上方の多孔板2に流入する。
液体3は、堰5を介し溢流管6を通って下方の多孔板2
に流入する。この操作を数十段繰返し最終的に精留塔の
上方に窒素を、下方に酸素を分離する。この多孔板一
段、一段をガスが通過する際、圧力損失が発生し、この
圧力損失が空気圧縮機の負荷につながり、空気分離装置
の性能に影響を与える。図2は、本発明の第一の実施例
の多孔板の断面図を示す。図2で、液体3は多孔板2の
上流より多孔板上を流れ、ガス4は下方より多孔板に流
入する。多孔板2には小孔6が規則正しく開口され、ガ
ス4と、液体3は多孔板上で気液接触を行なう。小孔6
は、多孔板2上の液体の流れ方向に沿って開口された構
造と成しているため多孔板下方からの上昇ガスの流れ
は、は多孔板を通りぬける途中で液体の流れ方向に沿っ
た方向となり、液体と気液接触し上昇する。このため、
上昇ガスの持つ運動エネルギーの一部は多孔板上の液体
3を多孔板の上流から下流に向かって流動させる力に変
換される。このため、重力による自然流れである液体3
に液体を多孔板の下流方向に押し流す力が働くため多孔
板上に必要以上の液体の滞留ができず、圧力損失が少な
く安定した気液接触が可能となる。図3は、本発明の第
一の実施例の多孔板の小孔の詳細図を示す。開口部7
は、ほぼ三角形の形状と成し、その方向は液体の流れ方
向に沿っている。小孔6の上部には突起部10があり、
これらの小孔は、例えば塑性加工等で製作される。多孔
板下方からの上昇ガス4は小孔6から多孔板に流入し、
突起部10の内面11に沿って上昇し開口部7より流出
し、気液接触を行なう。図4に、本発明の第1の実施例
の多孔板の平面図を示す。本実施例では図3に示した開
口部を持つ小孔が規則正しく開口され、開口部は常に多
孔板上の液体の流れ方向3に沿った構造となっている。
図5に、本発明の第二の実施例の多孔板の断面図を示
す。本実施例では、多孔板2の小孔6の長手方向に直角
な断面は円形の形状であり、その開口方向は少なくとも
液体の流れ方向に沿って成されている。このため液体3
のと気液接触部の小孔の断面は楕円の形状である。すな
わち、円形の小孔を多孔板の板厚方向に液体の流れ方向
に沿って開口したものである。本実施例での効果は、本
発明の第一の実施例と同等であるが、本実施例によれ
ば、多孔板の上面に突起物が無く、液体を滑らかに流動
させることができるため、更に圧力損失が低減でき、良
好な気液接触ができる効果を得る。図6に、本発明の第
二の実施例の多孔板の平面図を示す。本実施例において
も小孔6が規則正しく開口され、開口方向は常に多孔板
上の液体の流れ方向に沿った構造となっている。開口部
は楕円である。本実施例での小孔はパンチング等により
開口できる。図7に、本発明の第三の実施例の多孔板の
断面図を示す。本実施例での多孔板2は、多孔板に対し
て垂直に開口された小孔6を持つ多孔板9と、小孔8を
持つ多孔板10とを少なくとも2枚、液体の流れ方向に
ずらして設置し、多孔板の小孔が実質的に液体の流れ方
向に沿って開口した構造である。本実施例での効果は、
本発明の第一及び第二の実施例と同等である。本実施例
では小孔が同じ形状の多孔板を重ねた構造であるが、小
孔の異なった多孔板を重ねて成しても効果は同等であ
る。また、多孔板と多孔板とを隙間を介して設置するこ
とも可能であり、これらの構造においても本特許となん
ら変わるものではない。また、本発明の第一から第三の
実施例の多孔板を組み合わせて、多孔板を構成すること
も可能である。図8に本発明の第三の実施例の多孔板の
平面図を示す。本実施例においても小孔6が規則正しく
開口され、開口方向は常に多孔板上の液体の流れ方向に
沿った構造となっている。
The shape of the rectification column incorporating the perforated plate differs depending on the flow direction of the liquid on the perforated plate. Here, the rectification column has a structure in which the liquid flows across the perforated plate. Describes the composition of air. Figure 1
The perspective view of the rectification column which incorporated the perforated plate of one Example of this invention is shown. FIG. 2 shows a cross-sectional view of a perforated plate according to one embodiment of the present invention. In FIG. 1, several tens of stages of the perforated plate 2 are incorporated in the rectification column 1. On the perforated plate 2, the liquid 3 flows from above, and on the perforated plate 2 from upstream to downstream, while the gas 4 rises from below, and the gas 4 and the liquid 3 come into gas-liquid contact with each other on the perforated plate 2. , Air components are separated. The gas contacted with gas and liquid rises and flows into the upper porous plate 2.
The liquid 3 passes through the weir 5, the overflow pipe 6, and the lower porous plate 2
Flow into. This operation is repeated for several tens of stages to finally separate nitrogen above the rectification column and oxygen below. When the gas passes through the perforated plate one step, a pressure loss occurs, and this pressure loss leads to a load on the air compressor, which affects the performance of the air separation device. FIG. 2 shows a sectional view of the perforated plate of the first embodiment of the present invention. In FIG. 2, the liquid 3 flows from the upstream side of the perforated plate 2 onto the perforated plate, and the gas 4 flows into the perforated plate from below. Small holes 6 are regularly opened in the perforated plate 2, and the gas 4 and the liquid 3 make gas-liquid contact on the perforated plate. Small hole 6
Has a structure that is opened along the flow direction of the liquid on the perforated plate 2, so that the flow of the rising gas from below the perforated plate is along the flow direction of the liquid while passing through the perforated plate. And comes into contact with the liquid and rises. For this reason,
A part of the kinetic energy of the rising gas is converted into a force that causes the liquid 3 on the porous plate to flow from the upstream side to the downstream side of the porous plate. Therefore, the liquid 3 which is a natural flow due to gravity
Since a force that pushes the liquid toward the downstream side of the perforated plate acts on the perforated plate, the liquid cannot be retained more than necessary on the perforated plate, and stable gas-liquid contact is possible with less pressure loss. FIG. 3 shows a detailed view of the small holes of the perforated plate of the first embodiment of the present invention. Opening 7
Has a substantially triangular shape, the direction of which is along the flow direction of the liquid. There is a protrusion 10 on the upper part of the small hole 6,
These small holes are manufactured by, for example, plastic working. The ascending gas 4 from below the perforated plate flows into the perforated plate through the small holes 6,
It rises along the inner surface 11 of the protrusion 10 and flows out of the opening 7 to make gas-liquid contact. FIG. 4 shows a plan view of the perforated plate according to the first embodiment of the present invention. In this embodiment, the small holes having the openings shown in FIG. 3 are regularly opened, and the openings are always arranged along the flow direction 3 of the liquid on the perforated plate.
FIG. 5 shows a sectional view of a perforated plate according to the second embodiment of the present invention. In this embodiment, the cross section of the small holes 6 of the porous plate 2 perpendicular to the longitudinal direction is circular, and the opening direction is at least along the liquid flow direction. Therefore, liquid 3
The cross section of the small hole at the gas-liquid contact portion is of an elliptical shape. That is, the circular small holes are opened in the plate thickness direction of the perforated plate along the flow direction of the liquid. The effect of this embodiment is equivalent to that of the first embodiment of the present invention, but according to this embodiment, since there is no protrusion on the upper surface of the porous plate, the liquid can be smoothly flowed, Further, pressure loss can be reduced, and good gas-liquid contact can be achieved. FIG. 6 shows a plan view of a perforated plate according to the second embodiment of the present invention. Also in this embodiment, the small holes 6 are regularly opened, and the opening direction is always along the flow direction of the liquid on the perforated plate. The opening is elliptical. The small holes in this embodiment can be opened by punching or the like. FIG. 7 shows a sectional view of a perforated plate according to the third embodiment of the present invention. In the perforated plate 2 in this embodiment, at least two perforated plates 9 each having a small hole 6 opened perpendicularly to the perforated plate and at least two perforated plates 10 having the small holes 8 are displaced in the liquid flow direction. It has a structure in which the small holes of the perforated plate are opened substantially along the flow direction of the liquid. The effect of this embodiment is
This is equivalent to the first and second embodiments of the present invention. Although the present embodiment has a structure in which perforated plates having the same small holes are stacked, the same effect can be obtained by stacking perforated plates having different small holes. Further, it is also possible to install the perforated plate and the perforated plate through a gap, and these structures are no different from those of the present patent. It is also possible to construct a perforated plate by combining the perforated plates of the first to third embodiments of the present invention. FIG. 8 shows a plan view of a perforated plate according to the third embodiment of the present invention. Also in this embodiment, the small holes 6 are regularly opened, and the opening direction is always along the flow direction of the liquid on the perforated plate.

【0010】本発明では、小孔は液体の流れ方向に沿っ
て開口された構造となっているが、その角度は多孔板に
対して、少なくとも0°〜90°であり、好ましくは3
0°〜60°である。一方、多孔板の上面、下面、ある
いは上下面の少なくとも一面において、小孔の端に小孔
より孔径の違う開口部を設けることにより、すなわち、
小孔の端に丸味、あるいは面取りを施すことにより、よ
り滑らかな気液の流動を行わせることができる。
In the present invention, the small holes have a structure opened along the flow direction of the liquid, and the angle is at least 0 ° to 90 ° with respect to the perforated plate, and preferably 3
It is 0 ° to 60 °. On the other hand, on at least one of the upper surface, the lower surface, or the upper and lower surfaces of the perforated plate, by providing an opening with a hole diameter different from that of the small hole at the end of the small hole,
By rounding or chamfering the ends of the small holes, a smoother gas-liquid flow can be achieved.

【0011】図9に本発明の第四の実施例の精留塔の断
面図を示す。本実施例では、本発明の第一から第三の実
施例の多孔板の精留塔への組込についての発明である。
図9において、液体は溢流管5より多孔板2の上流に流
入し、下方からの上昇ガス4と気液接触し、溢流管5よ
り下方の多孔板に流入する。本実施例での多孔板2の小
孔は多孔板に対して、斜孔と成っており、その開口部が
少なくとも液体の流れ方向に沿って開口されている。そ
の斜孔度、つまり多孔板の水平方向に対する傾きは、多
孔板の上流部が小さく下流部ほど大きく構成され、少な
くとも2種類以上の斜孔度の小孔で構成されていること
を特徴とする。本実施例によれば、斜孔度の異なる小孔
を組み合わせているため、多孔板上の液シールの厚さの
最も大きい多孔板の上流部で液体を流動させる力を大き
く、下流部では小さくすることができる。このため、多
孔板上の液シールの厚さをより均一にできるため圧力損
失が小さく、良好な気液接触を提供することができる。
図10に本発明の第五の実施例の精留塔の断面図を示
す。上昇ガス、液体の流れは第四の実施例と同様であ
る。本実施例では多孔板の上流部から下流部の方向、お
よびその方向に対する直角方向に少なくとも2種類以上
の斜孔度の小孔で構成されていることを特徴とする。本
実施例では、斜孔度の異なった小孔を最適な位置に設置
した多孔板を提供できるため、より多孔板上の液シール
の厚さをより均一にでき、最適な気液接触を提供するこ
とができる。なお、第四及び第五の実施例において、少
なくとも2種類以上の斜孔度の小孔で構成される多孔板
の少なくとも1種類以上は本発明の第一から第三の実施
例の多孔板を、また、少なくとも1種類以上は、多孔板
の水平方向に対する傾きが無い、つまり従来から使用さ
れている多孔板の水平方向に対して垂直に開口されてい
る多孔板を使用することもできる。
FIG. 9 shows a sectional view of a rectification column according to a fourth embodiment of the present invention. The present embodiment is an invention relating to the incorporation of the perforated plate of the first to third embodiments of the present invention into the rectification column.
In FIG. 9, the liquid flows into the perforated plate 2 from the overflow pipe 5, comes into gas-liquid contact with the rising gas 4 from below, and flows into the perforated plate below the overflow pipe 5. The small holes of the perforated plate 2 in the present embodiment are oblique holes with respect to the perforated plate, and the openings are opened at least along the flow direction of the liquid. The oblique porosity, that is, the inclination of the perforated plate with respect to the horizontal direction is characterized in that the upstream part of the perforated plate is smaller and the downstream part is larger, and is composed of at least two kinds of small holes with oblique porosity. .. According to the present embodiment, since the small holes having different obliqueness are combined, the force for flowing the liquid is large in the upstream part of the perforated plate having the largest thickness of the liquid seal on the perforated plate and small in the downstream part. can do. Therefore, since the thickness of the liquid seal on the perforated plate can be made more uniform, the pressure loss is small and good gas-liquid contact can be provided.
FIG. 10 shows a sectional view of a rectification column according to a fifth embodiment of the present invention. The flow of rising gas and liquid is the same as in the fourth embodiment. The present embodiment is characterized in that it is constituted by at least two kinds of small holes having oblique porosity in the direction from the upstream part to the downstream part of the perforated plate and in the direction perpendicular to the direction. In this embodiment, since it is possible to provide a perforated plate in which small holes with different oblique porosity are installed at optimal positions, it is possible to make the thickness of the liquid seal on the perforated plate more uniform and to provide optimum gas-liquid contact. can do. In the fourth and fifth embodiments, at least one kind of perforated plates composed of at least two kinds of small pores with oblique porosity is the same as the perforated plates of the first to third embodiments of the present invention. In addition, at least one kind of perforated plate having no inclination with respect to the horizontal direction of the perforated plate, that is, a perforated plate that is opened perpendicularly to the horizontal direction of the conventionally used perforated plate can be used.

【0012】本実施例によれば、多孔板上の液体の流れ
方向に沿って開口された小孔を持つ構造の多孔板とする
ことで、特に圧力損失が小さく、良好な気液接触が得ら
れ、かつ、運転操作の広い多孔板を提供することができ
る。図11に本発明による効果を圧力損失について例を
上げて説明する。本発明は上昇ガスに空気を、液体に水
を使用した水ー空気系での結果である。横軸に空気流
量、縦軸に圧力損失を示す。従来多孔板は、小孔が多孔
板の水平方向に対して直角に開口され、多孔板に対し垂
直方向に上昇ガスが上昇する構造のものである。実施例
1及び実施例2の本発明の多孔板は。斜孔度の異なった
小孔を持った構造のものである。本実施例より、本発明
による多孔板では圧力損失の低減が顕著であることがわ
かる。また、目視による発泡状態も良好であり、良好な
気液接触が得られた。
According to this embodiment, since the porous plate has the structure having the small holes opened along the flow direction of the liquid on the porous plate, the pressure loss is particularly small, and good gas-liquid contact can be obtained. In addition, it is possible to provide a perforated plate which has a wide driving operation. The effect of the present invention will be described with reference to FIG. 11 by taking an example of pressure loss. The present invention is the result of a water-air system using air as the rising gas and water as the liquid. The horizontal axis shows the air flow rate and the vertical axis shows the pressure loss. The conventional perforated plate has a structure in which small holes are opened at right angles to the horizontal direction of the perforated plate, and the ascending gas rises in the direction perpendicular to the perforated plate. The perforated plate of the present invention of Example 1 and Example 2. The structure has small holes with different obliqueness. From this example, it is understood that the reduction of pressure loss is remarkable in the porous plate according to the present invention. Further, the foaming state by visual observation was also good, and good gas-liquid contact was obtained.

【0013】[0013]

【発明の効果】本発明によれば、多孔板上の液体の流れ
方向に沿って開口された小孔を持つ構造の多孔板とする
ことにより、圧力損失が少なく良好な気液接触が得ら
れ、運転操作の広い多孔板を提供することができる効果
がある。
According to the present invention, a porous plate having a structure having small holes opened along the flow direction of the liquid on the porous plate can achieve good gas-liquid contact with less pressure loss. In addition, there is an effect that it is possible to provide a perforated plate that can be widely operated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の多孔板を組み込んだ精留塔
の透視図である。
FIG. 1 is a perspective view of a rectification column incorporating a perforated plate according to an embodiment of the present invention.

【図2】本発明の一実施例の多孔板の断面図である。FIG. 2 is a cross-sectional view of a perforated plate according to an embodiment of the present invention.

【図3】本発明の一実施例の多孔板の小孔の詳細図であ
る。
FIG. 3 is a detailed view of small holes of a perforated plate according to an embodiment of the present invention.

【図4】本発明の一実施例の多孔板の平面図である。FIG. 4 is a plan view of a perforated plate according to an embodiment of the present invention.

【図5】本発明の第二の実施例の多孔板の断面図であ
る。
FIG. 5 is a sectional view of a perforated plate according to a second embodiment of the present invention.

【図6】本発明の第二の実施例の多孔板の平面図であ
る。
FIG. 6 is a plan view of a perforated plate according to a second embodiment of the present invention.

【図7】本発明の第三の実施例の多孔板の断面図であ
る。
FIG. 7 is a cross-sectional view of a perforated plate according to a third embodiment of the present invention.

【図8】本発明の第三の実施例の多孔板の平面図であ
る。
FIG. 8 is a plan view of a perforated plate according to a third embodiment of the present invention.

【図9】本発明の第四の実施例の精留塔の断面図であ
る。
FIG. 9 is a sectional view of a rectification column according to a fourth embodiment of the present invention.

【図10】本発明の第五の実施例の精留塔の断面図であ
る。
FIG. 10 is a sectional view of a rectification column according to a fifth embodiment of the present invention.

【図11】本発明の効果を表す説明図である。FIG. 11 is an explanatory diagram showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1…精留塔、2…多孔板、3…液体、4…ガス、6…小
孔、7…開口部。
1 ... rectification column, 2 ... perforated plate, 3 ... liquid, 4 ... gas, 6 ... small holes, 7 ... openings.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 昭夫 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (72)発明者 喜多 修 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akio Yamamoto 794 Azuma Higashitoyo, Shimomatsu City, Yamaguchi Prefecture Inside the Kasado Plant, Hitachi Ltd. Company Hitachi Ltd. Kasado factory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】溢流管を備え、多数の小孔を有する多孔板
に、上方から液体を下降させ、下方からガスを上昇させ
て上昇ガスとなし、液体とガスとを接触させて精留操作
を行ない、ガスの成分を分離する気液接触装置におい
て、前記多孔板に小孔が規則的に開口され、該小孔を少
なくとも多孔板上の液体の流れ方向に沿って傾斜して設
けたことを特徴とする気液接触装置。
1. A rectifying process in which a liquid is lowered from above and a gas is raised from below to form an ascending gas in a perforated plate having an overflow pipe and having a large number of small holes, and the liquid and gas are brought into contact with each other to carry out rectification. In the gas-liquid contactor for performing operation to separate gas components, small holes are regularly formed in the porous plate, and the small holes are provided at least along the flow direction of the liquid on the porous plate. A gas-liquid contact device characterized in that
【請求項2】前記多孔板の小孔は、小孔と多孔板上面へ
の多孔板自体を変形させた突起物とから構成され、該小
孔は該多孔板上面でその開口部がほぼ三角形の形状とし
たことを特徴とする請求項1記載の気液接触装置。
2. The small holes of the perforated plate are composed of small holes and projections on the upper surface of the perforated plate which are deformed parts of the perforated plate itself, and the small holes have substantially triangular openings on the upper surface of the perforated plate. The gas-liquid contact device according to claim 1, wherein the gas-liquid contact device has a shape of.
【請求項3】前記多孔板の小孔が該小孔の長手方向に直
角な断面で円形であり、同一小孔で上面と下面とで位置
的変化を持ち、該開口部を楕円としたことを特徴とする
請求項1記載の気液接触装置。
3. The small holes of the perforated plate are circular in a cross section perpendicular to the longitudinal direction of the small holes, the same small hole has a positional change between the upper surface and the lower surface, and the opening is an ellipse. The gas-liquid contactor according to claim 1.
【請求項4】溢流管を備え、多数の小孔を有する多孔板
に、上方から液体を下降させ、下方からガスを上昇させ
て上昇ガスとなし、液体とガスとを接触させて精留操作
を行ない、ガスの成分を分離する気液接触装置におい
て、前記多孔板は、多孔板の水平方向に直角に開口した
小孔を持つ多孔板を少なくとも2枚以上上下方向に設置
し、該多孔板の開口部を多孔板上の液体の流れ方向にず
らして構成したことを特徴とする気液接触装置。
4. A perforated plate having an overflow pipe and having a large number of small holes, in which liquid is lowered from above and gas is raised from below to form an ascending gas, and the liquid and gas are brought into contact with each other to carry out rectification. In the gas-liquid contactor for separating gas components by performing an operation, the perforated plate has at least two perforated plates having small holes opened at right angles to the horizontal direction of the perforated plate and installed in the vertical direction. A gas-liquid contactor characterized in that the opening of the plate is displaced in the flow direction of the liquid on the perforated plate.
【請求項5】前記多孔板は、小孔の形状が異なった多孔
板を少なくとも2枚以上上下方向に設置し、該多孔板の
間に隙間を設けたことを特徴とする請求項1又は請求項
4記載の気液接触装置。
5. The perforated plate is characterized in that at least two perforated plates having different shapes of small holes are installed in the vertical direction, and a gap is provided between the perforated plates. The gas-liquid contact device described.
【請求項6】前記多孔板は、多孔板の上流部から下流
部、あるいは、その直角方向に多孔板の水平方向に直角
に開口した小孔を持つ多孔板、あるいは斜孔度が異なっ
た小孔を持つ多孔板を少なくとも2種類組み合わせて構
成したことを特徴とする請求項1及至請求項6記載の気
液接触装置。
6. The perforated plate is a perforated plate having small holes opened at right angles to the horizontal direction of the perforated plate in the upstream part to the downstream part of the perforated plate or in the direction perpendicular to the part, or small holes having different oblique porosity. 7. The gas-liquid contactor according to claim 1, wherein at least two kinds of perforated plates having holes are combined.
【請求項7】前記多孔板は、多孔板の上流部ほど小孔の
斜孔度を小さくしたことを特徴とする請求項6記載の気
液接触装置。
7. The gas-liquid contactor according to claim 6, wherein the perforated plate has a smaller degree of oblique porosity toward the upstream portion of the perforated plate.
【請求項8】前記上昇ガス及び液体が空気の成分であ
り、酸素、窒素、アルゴン等の空気の成分を分離するこ
とを特徴とする請求項1及至請求項7記載の気液接触装
置。
8. The gas-liquid contactor according to claim 1, wherein the rising gas and the liquid are components of air, and the components of air such as oxygen, nitrogen and argon are separated.
JP4276392A 1992-02-28 1992-02-28 Gas-liquid contacting device Pending JPH05237303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4276392A JPH05237303A (en) 1992-02-28 1992-02-28 Gas-liquid contacting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4276392A JPH05237303A (en) 1992-02-28 1992-02-28 Gas-liquid contacting device

Publications (1)

Publication Number Publication Date
JPH05237303A true JPH05237303A (en) 1993-09-17

Family

ID=12645021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4276392A Pending JPH05237303A (en) 1992-02-28 1992-02-28 Gas-liquid contacting device

Country Status (1)

Country Link
JP (1) JPH05237303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006199A1 (en) * 1986-04-09 1987-10-22 Sumitomo Rubber Industries, Ltd. Radial tire for high load with improved vibration damping performance
KR100375605B1 (en) * 2000-08-04 2003-03-10 경기엔지니어링주식회사 Cycloid Dual Flow Tray for wet scrubber of flue gas Desulfurization
CN107062706A (en) * 2016-12-27 2017-08-18 浙江青风环境股份有限公司 A kind of flooded evaporator and its application method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006199A1 (en) * 1986-04-09 1987-10-22 Sumitomo Rubber Industries, Ltd. Radial tire for high load with improved vibration damping performance
KR100375605B1 (en) * 2000-08-04 2003-03-10 경기엔지니어링주식회사 Cycloid Dual Flow Tray for wet scrubber of flue gas Desulfurization
CN107062706A (en) * 2016-12-27 2017-08-18 浙江青风环境股份有限公司 A kind of flooded evaporator and its application method

Similar Documents

Publication Publication Date Title
CN1201840C (en) Tray attachment apparatus
US8312738B2 (en) Integrated controlled freeze zone (CFZ) tower and dividing wall (DWC) for enhanced hydrocarbon recovery
KR0126614B1 (en) Distillation column utilizing structured packing having varying crimp angle
US5091119A (en) Liquid-gas contact device
KR20000076149A (en) Co-current contacting separation tray design and methods for using same
RU2246336C2 (en) A plate for gasses contact with liquids having a set of downpipes, a column using such plates and a method of rectification or absorption
EP0434826A4 (en) Method and apparatus for introducing a liquid feed into a vapor/liquid separation tower
JPH05237303A (en) Gas-liquid contacting device
KR20010049618A (en) Structured packing
CN1048644C (en) Air compounded packing column plate
JPH06154503A (en) Gas-liquid contact device
US7678286B2 (en) Small droplets recovery system
JPH05261203A (en) Gas-liquid contacting device
CN2441535Y (en) High performance inlet and outlet weir
JPH05200201A (en) Gas-liquid contact device
US20220219134A1 (en) Cross-corrugated packing made from metal foam
US3914352A (en) Bubble cap tray
CN1132648C (en) Double-flow injection float valve tray
JPH0663306A (en) Gas-liquid contact device
CN101636627A (en) Separation method using a column with a corrugated cross structure packing for separating a gaseous mixture
WO2004102095A1 (en) Distillation installation comprising columns with corrugated-crossed structured packings and method of increasing the capacity of a distillation installation
CN216499398U (en) Cross floating valve in petrochemical equipment tower
JPS62163701A (en) Gas-liquid contact device
CN212757285U (en) Tower tray with central liquid dropping box
JPS621402A (en) Gas-liquid contact device