JPH05235383A - Photoelectric material - Google Patents

Photoelectric material

Info

Publication number
JPH05235383A
JPH05235383A JP4081346A JP8134692A JPH05235383A JP H05235383 A JPH05235383 A JP H05235383A JP 4081346 A JP4081346 A JP 4081346A JP 8134692 A JP8134692 A JP 8134692A JP H05235383 A JPH05235383 A JP H05235383A
Authority
JP
Japan
Prior art keywords
temperature
substrate
thin film
photoelectric material
srtio3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4081346A
Other languages
Japanese (ja)
Inventor
Jun Takada
純 高田
Akihiko Nakajima
昭彦 中島
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4081346A priority Critical patent/JPH05235383A/en
Publication of JPH05235383A publication Critical patent/JPH05235383A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To apply SrTiO3 as a photoelectric material by irradiating SrTiO3 with light having a specified range of energy at a temperature below a fixed temperature and by generating photoconduction. CONSTITUTION:Since SrTiO3 markedly varies photoconductivity under 3-5eV ultraviolet rays at a temperature below 150K, it is applied for example as a temperature switch which detects this changed temperature. In the case of using this SrTiO3 as a substrate to manufacture a thin film by deposition at a high temperature no insulator generates in the interface between the substrate and the thin film, so that an electrical connection can be made between the substrate and the thin film and is utilized for an oxide thin film forming substrate or the like. It is doped with at least a kind of element selected from among dopable kinds of elements, that is, Nb, V, Ta or Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lw.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光電材料に関し、詳し
くは紫外線領域の光に対して150K以下の低温で光伝
導を生じる光電材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optoelectronic material, and more particularly to an optoelectronic material which exhibits photoconductivity with respect to light in the ultraviolet region at a low temperature of 150 K or less.

【0002】[0002]

【従来の技術】光伝導特性は、固体の非金属単体、硫化
物等の非常に多くの物質に見られる特性であり、例えば
CdSを用いた光伝導セルは光スイッチの感光部、光増
幅部の素子等に用いられている。そして、かかる光伝導
素子は、外部光電効果の限界波長以上の赤外線に対して
高い感度を有している点に特徴がある。
2. Description of the Related Art Photoconductivity is a property found in a large number of substances such as solid non-metal simple substances and sulfides. For example, a photoconductive cell using CdS is a photosensitive part of a light switch or an optical amplifier part. It is used for the element and so on. The photoconductive element is characterized in that it has high sensitivity to infrared rays having a wavelength longer than the limit wavelength of the external photoelectric effect.

【0003】一方、エネルギーギャップが比較的小さい
シリコンやゲルマニウムなどの半導体材料も光電材料と
して用いられており、これらは可視光や赤外光に対して
高い感度を有し、集積回路の作製技術を利用して薄膜化
が図れる点などに特徴がある。
On the other hand, semiconductor materials such as silicon and germanium, which have a relatively small energy gap, are also used as photoelectric materials, and these have high sensitivity to visible light and infrared light. It is characterized in that it can be used for thinning.

【0004】[0004]

【発明が解決しようとする課題】しかし、これら従来利
用されてきた光電材料は、主に可視光ないし赤外光に対
する分光特性を利用しているので、紫外光領域では使用
できない光電材料である。また、従来の光電材料を基板
として用いて、その上に高い温度(例えば500℃)で
デポジションして薄膜を作製する場合には、基板と薄膜
との界面に絶縁物が生じてしまい、基板と薄膜との間の
電気的接続を行うことができなかった。
However, these photoelectric materials that have been conventionally used are photoelectric materials that cannot be used in the ultraviolet region because they mainly utilize the spectral characteristics for visible light or infrared light. Moreover, when a conventional photoelectric material is used as a substrate and a thin film is formed on the substrate by deposition at a high temperature (for example, 500 ° C.), an insulator is generated at the interface between the substrate and the substrate, Electrical connection between the membrane and the membrane could not be made.

【0005】さらに、従来の光電材料は、その温度ドリ
フト特性のため、理想的には一定の周囲温度の場所で取
り扱われるのが好ましく、その温度ドリフトを抑えるよ
うに補償するのが一般的であり、温度変化による光伝導
特性の変化を積極的に電気特性として利用するという光
電材料は存在しなかった。まして、150K以下という
低温域での光電材料は何ら報告されていない。
Further, the conventional photoelectric material is ideally preferably handled at a place having a constant ambient temperature because of its temperature drift characteristic, and it is general to compensate so as to suppress the temperature drift. However, there is no photoelectric material that positively utilizes the change in the photoconductive property due to the temperature change as the electric property. Furthermore, no photoelectric material in a low temperature region of 150 K or less has been reported.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者らは、
構造相転移についての研究はすでになされている物質で
あるが(例えば、R.O.Bell and G.Ru
pprecht,Phys.Rev.129(196
3)90参照)、電気的には絶縁体であるために光電材
料としては全く顧みられていなかったSrTiOにつ
いての応用技術を新規に見い出したものである。
Therefore, the present inventors have
Studies on the structural phase transition have been conducted already (for example, RO Bell and G. Ru.
pprecht, Phys. Rev. 129 (196
3) 90), a new application technique for SrTiO 3, which has not been considered as a photoelectric material at all because it is an electrical insulator, has been newly found.

【0007】すなわち本発明に係る材料は、3eVから
5eVの範囲のエネルギーを有する光を150Kよりも
低温で照射して、光伝導を生じるSrTiOを光電材
料として応用することにある。
That is, the material according to the present invention is to apply light having energy in the range of 3 eV to 5 eV at a temperature lower than 150 K to apply SrTiO 3 which causes photoconduction, as a photoelectric material.

【0008】[0008]

【作用】SrTiOは、3〜5eVの紫外光に対し、
150Kよりも低温で光伝導性が大きく変化するので、
例えば、この変化温度を検出する温度スイッチとして利
用する。また、このSrTiOを基板として、この上
に高い温度でデポジションして薄膜を作製する場合に
は、基板と薄膜との界面に絶縁物が生じないので、基板
と薄膜との間の電気的接続を行うことができて、酸化物
薄膜形成用基板等に利用する。
The function of SrTiO 3 is 3-5 eV of ultraviolet light.
Since the photoconductivity changes greatly at temperatures lower than 150K,
For example, it is used as a temperature switch that detects this change temperature. Further, when this SrTiO 3 is used as a substrate and a thin film is formed on it by deposition at a high temperature, an insulator does not occur at the interface between the substrate and the thin film, so that the electrical property between the substrate and the thin film is It can be connected and is used as a substrate for oxide thin film formation.

【0009】[0009]

【実施例】以下、本発明の実施例について、図面を参照
して説明する。本発明に係る光電材料であるSrTiO
は、立方晶から正方晶へ構造相転移するペロブスカイ
ト構造を有する常誘電体である。この物質は約105K
以下の低温で正方晶、それ以上の温度で立方晶となる。
Embodiments of the present invention will be described below with reference to the drawings. SrTiO 3 which is a photoelectric material according to the present invention
Reference numeral 3 is a paraelectric material having a perovskite structure that undergoes a structural phase transition from cubic to tetragonal. This material is about 105K
It becomes tetragonal at the following low temperatures and becomes cubic at higher temperatures.

【0010】以下この物質についての実験例について説
明する。まず、実験に使用する試料は、ベルヌーイ法に
より作成したSrTiO単結晶(アースジュエリー社
製)を(100)面が表面となるようにサイズ幅2.5
mm、厚み0.5mm、長さ10mmで切り出したもの
を片面のみ鏡面仕上げし、電極として間隔1.5mmで
銅線を銀ペーストで固着したものを試料として準備し
た。このときのSrTiOの酸素欠損濃度は、10原
子%以下であることが特性上好ましい。
Experimental examples of this substance will be described below. First, the sample used in the experiment was made of SrTiO 3 single crystal (manufactured by Earth Jewelery Co., Ltd.) prepared by the Bernoulli method with a size width of 2.5 so that the (100) face was the surface.
A sample cut out with a thickness of 0.5 mm, a thickness of 0.5 mm and a length of 10 mm was mirror-finished on only one side, and electrodes were prepared by fixing copper wires with a silver paste at an interval of 1.5 mm as a sample. At this time, the oxygen deficiency concentration of SrTiO 3 is preferably 10 atomic% or less in view of characteristics.

【0011】この試料を冷凍機の銅の台に置きロータリ
ーポンプにて10mTorrまで真空引きした。しかる
のち、試料は500WのXeランプをモノクロメータに
より分光した。3.35eVの励起エネルギーを有する
光をサファイヤ窓を通して照射しながら、試料の温度を
低下させていった。この間、試料の温度を銀ペーストで
取り付けた熱電対でモニターした。
This sample was placed on a copper base of a refrigerator and evacuated to 10 mTorr by a rotary pump. After that, the sample was spectrally separated by a 500 W Xe lamp with a monochromator. The temperature of the sample was lowered while irradiating light having an excitation energy of 3.35 eV through the sapphire window. During this time, the temperature of the sample was monitored with a thermocouple attached with silver paste.

【0012】図1は3.35eVの励起光に対しての光
電流IPhの温度依存性を示しており、これによると1
20〜100K近くで低温に向かって光伝導が指数関数
的に急激に増加している。ここで、105KはSrTi
の構造相転移温度であり、それ以上では立方晶、そ
れ以下の温度では正方晶となることが知られているが、
ここに見られるような光伝導の急激な増加はこれまでに
報告例はなかったことである。なお、図1の特性は、温
度を漸次減少させて測定した場合と、漸次増加させて測
定した場合とでは同一の軌跡をとり、ヒステリシスは観
測されなかった。
FIG. 1 shows the temperature dependence of the photocurrent I Ph with respect to the excitation light of 3.35 eV.
The photoconductivity rapidly increases exponentially toward a low temperature near 20 to 100K. Here, 105K is SrTi
It is a structural phase transition temperature of O 3 , and it is known that a cubic crystal is formed at a temperature higher than that and a tetragonal crystal is formed at a temperature lower than that.
The rapid increase in photoconductivity seen here has never been reported before. In addition, the characteristic of FIG. 1 takes the same locus in the case where the temperature is gradually reduced and the temperature is gradually increased, and no hysteresis is observed.

【0013】このように、SrTiOが立方晶から正
方晶への構造相転移する温度近くでのIPhの急激な増
加がこの転移に関しているのであれば、このときに状態
密度の構造が変化していると考えられる。
Thus, if a sharp increase in I Ph near the temperature at which SrTiO 3 undergoes a cubic to tetragonal structural phase transition is related to this transition, then the structure of the density of states changes at this time. It is thought that

【0014】次に、図1に示した特性において、照射す
る光の強度による特性の変化について測定した。測定結
果を図2に示している。図2においては、グラフa,
b,cは照射する相対的な光の強度が夫々1.0,0.
1,0.01の場合である。同図からTC1,TC2
C3を、例えばIPh(T)曲線での遷移後の光電流
値の10%の温度であると定義すると、夫々115K,
111K,104Kとなる。なお、光の強度を強くする
ことはサンプルの温度を若干上昇させるかもしれないけ
れども、ここでのTの増加は熱的な効果だけとは考え
られない程度である。このように、光の強度を増加させ
ると転移温度は光の強度の増加に伴って漸次増加する予
想がされる。これは、光子の吸収によって、電子−ホー
ル対ができることが、SrTiO相転移に影響を与え
ているものと考えられる。
Next, in the characteristics shown in FIG. 1, changes in the characteristics due to the intensity of the irradiation light were measured. The measurement result is shown in FIG. In FIG. 2, graph a,
In b and c, the relative intensity of light to be irradiated is 1.0, 0.
This is the case of 1,0.01. From the figure, T C1 , T C2 ,
If T C3 is defined as, for example, the temperature of 10% of the photocurrent value after the transition on the I Ph (T) curve, 115 K, respectively.
It becomes 111K and 104K. Although increasing the light intensity may raise the temperature of the sample slightly, the increase in T C here is not considered to be a thermal effect. Thus, it is expected that when the light intensity is increased, the transition temperature gradually increases as the light intensity increases. It is considered that this is because the formation of electron-hole pairs by absorption of photons affects the SrTiO 3 phase transition.

【0015】さらに、温度を変化させたときの光伝導ス
ペクトルの変化について測定した。測定結果を図3に示
している。図3では、110K,113K,123K,
142Kの温度における3〜5eVの紫外領域での測定
を示している。前2者の温度での測定値は図2における
左軸で示す単位(μA)の値であり、後2者の温度での
測定値は右軸で示す単位(nA)での値である。
Further, the change in the photoconductivity spectrum when the temperature was changed was measured. The measurement result is shown in FIG. In FIG. 3, 110K, 113K, 123K,
It shows measurements in the UV region of 3-5 eV at a temperature of 142K. The measured values at the temperature of the former two are values in the unit (μA) shown on the left axis in FIG. 2, and the measured values at the temperature of the latter two are values in the unit (nA) shown on the right axis.

【0016】以上の図1ないし図3の測定結果から、3
〜5eVの範囲のエネルギーを有する光を150K以下
よりも低温でSrTiOへ照射することで、その伝導
性が急激に変化するとともに、周囲温度が決まればその
温度に特有の光伝導スペクトルを有することがわかる。
このような150K以下での光伝導スペクトルの変化
は、SrTiOの立方晶から正方晶への構造相転移と
関連しているものと考えられる。
From the above measurement results of FIGS. 1 to 3, 3
By irradiating SrTiO 3 with light having an energy in the range of ˜5 eV at a temperature lower than 150 K or lower, its conductivity changes rapidly and, if the ambient temperature is determined, it has a photoconductivity spectrum specific to that temperature I understand.
It is considered that such a change in the photoconductivity spectrum at 150 K or less is related to the structural phase transition of SrTiO 3 from cubic to tetragonal.

【0017】なお、上記150Kという数値は、図1な
いし図3の測定結果、及びドーピング可能な種々の元
素、即ちNb,V,Taの群又はSc,Y,La,C
e,Pr,Nd,Pm,Sm,Eu,Gd,Tb,D
y,Ho,Er,Tm,Yb,Luから選ばれた少なく
とも1種類の元素をドーピング(特に、そのドーピング
率を5原子%以下の濃度)した場合の実験例から規制さ
れた値である。また、このようなドーピングによりN型
またはP型の光電材料とすることができる。
It should be noted that the above-mentioned value of 150K is the measurement result of FIGS. 1 to 3 and various elements that can be doped, that is, the group of Nb, V, Ta or Sc, Y, La, C.
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
The value is regulated from an experimental example when at least one element selected from y, Ho, Er, Tm, Yb, and Lu is doped (in particular, the doping rate is 5 atomic% or less). Moreover, an N-type or P-type photoelectric material can be obtained by such doping.

【0018】[0018]

【発明の効果】以上述べたように、本発明によれば、3
〜5eVの紫外光に対し、150Kよりも低温で光伝導
性が大きく変化するので、この紫外光を一定にしておく
と、150K以下の温度を検出する温度スイッチとして
利用できる。また、逆に温度を一定にするとその温度に
特有の光伝導スペクトルが決まるので、3〜5eVまで
の紫外光による光変調素子、光発振素子等に利用でき
る。さらに、このSrTiOを基板としてこの上に高
い温度でデポジションして薄膜を作製する場合には、エ
ピタキシー成長ができるとともにSrTiOが高融点
の酸化物であるので、基板と薄膜との界面に絶縁物が生
じず、基板と薄膜との間の電気的接続を行うことができ
る酸化物薄膜形成用等の基板に利用できる。
As described above, according to the present invention, 3
Since the photoconductivity greatly changes at a temperature lower than 150 K for an ultraviolet light of up to 5 eV, if the ultraviolet light is kept constant, it can be used as a temperature switch for detecting a temperature of 150 K or lower. On the contrary, when the temperature is kept constant, the photoconductivity spectrum peculiar to the temperature is determined, so that it can be used for an optical modulator, an optical oscillating device, etc. using ultraviolet light of 3 to 5 eV. Furthermore, when this SrTiO 3 is used as a substrate and a thin film is formed on this by deposition at a high temperature, epitaxial growth is possible and SrTiO 3 is an oxide with a high melting point. It can be used as a substrate for forming an oxide thin film or the like, which does not generate an insulator and can make an electrical connection between the substrate and the thin film.

【図面の簡単な説明】[Brief description of drawings]

【図1】SrTiOについて、光電流と温度の関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between photocurrent and temperature for SrTiO 3 .

【図2】SrTiOについて、照射する光の強度によ
る光電流と温度の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the photocurrent and the temperature of SrTiO 3 depending on the intensity of the irradiation light.

【図3】SrTiOについて、温度を変化させたとき
の光伝導スペクトルの変化を示すグラフである。
FIG. 3 is a graph showing changes in photoconductivity spectrum of SrTiO 3 when temperature is changed.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 3eVから5eVの範囲のエネルギーを
有する光を150Kよりも低温でSrTiOへ照射
し、光伝導を生じることを特徴とした光電材料。
1. A photoelectric material characterized by irradiating SrTiO 3 with light having an energy in the range of 3 eV to 5 eV at a temperature lower than 150 K to cause photoconduction.
【請求項2】 Nb,V,Taの群から選ばれた少なく
とも1種類の元素をドーピングしたことを特徴とする請
求項1記載の光電材料。
2. The photoelectric material according to claim 1, which is doped with at least one element selected from the group consisting of Nb, V and Ta.
【請求項3】 ドーピング率が5原子%以下の濃度であ
ることを特徴とする請求項2記載の光電材料。
3. The photoelectric material according to claim 2, wherein the doping ratio is 5 atomic% or less.
【請求項4】 Sc,Y,La,Ce,Pr,Nd,P
m,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luの群から選ばれた少なくとも1種類の元
素をドーピングしたことを特徴とする請求項1記載の光
電材料。
4. Sc, Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
The photoelectric material according to claim 1, which is doped with at least one element selected from the group consisting of m, Yb, and Lu.
【請求項5】 ドーピング率が5原子%以下の濃度であ
ることを特徴とする請求項4記載の光電材料。
5. The photoelectric material according to claim 4, wherein the doping rate is 5 atomic% or less.
【請求項6】 SrTiOの酸素欠損濃度が10原子
%以下であることを特徴とする請求項1記載の光電材
料。
6. The photoelectric material according to claim 1, wherein the oxygen deficiency concentration of SrTiO 3 is 10 atomic% or less.
JP4081346A 1992-02-18 1992-02-18 Photoelectric material Pending JPH05235383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4081346A JPH05235383A (en) 1992-02-18 1992-02-18 Photoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4081346A JPH05235383A (en) 1992-02-18 1992-02-18 Photoelectric material

Publications (1)

Publication Number Publication Date
JPH05235383A true JPH05235383A (en) 1993-09-10

Family

ID=13743809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4081346A Pending JPH05235383A (en) 1992-02-18 1992-02-18 Photoelectric material

Country Status (1)

Country Link
JP (1) JPH05235383A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003094268A2 (en) * 2002-05-03 2003-11-13 Battelle Memorial Institute Cerium-modified doped strontium titanate composition for solid oxide fuel cell anodes and electrodes for other electrochemical devices
CN102509743A (en) * 2012-01-04 2012-06-20 吉林大学 Ultraviolet detector based on titanium dioxide/strontium titanate heterojunction and preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003094268A2 (en) * 2002-05-03 2003-11-13 Battelle Memorial Institute Cerium-modified doped strontium titanate composition for solid oxide fuel cell anodes and electrodes for other electrochemical devices
WO2003094268A3 (en) * 2002-05-03 2004-06-03 Battelle Memorial Institute Cerium-modified doped strontium titanate composition for solid oxide fuel cell anodes and electrodes for other electrochemical devices
US7670711B2 (en) 2002-05-03 2010-03-02 Battelle Memorial Institute Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
US7838141B2 (en) 2002-05-03 2010-11-23 Battelle Memorial Institute Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
CN102509743A (en) * 2012-01-04 2012-06-20 吉林大学 Ultraviolet detector based on titanium dioxide/strontium titanate heterojunction and preparation method

Similar Documents

Publication Publication Date Title
Zhou et al. High gain broadband photoconductor based on amorphous Ga 2 O 3 and suppression of persistent photoconductivity
Wang et al. Piezoelectric effect enhanced flexible UV photodetector based on Ga2O3/ZnO heterojunction
Liu et al. Fabrication and characterization of ZnO film based UV photodetector
Amalnerkar Photoconducting and allied properties of CdS thick films
Abdul Muhsien et al. Synthesis of SnO 2 nanostructures employing Nd: YAG laser
Zinzuvadiya et al. Optoelectronic response of (111) oriented CeO2 films for UV photodetector
Schottmiller Photoconductivity in tetragonal and orthorhombic lead monoxide layers
Makhlouf et al. Fabrication, temperature dependent current-voltage characteristics and photoresponse properties of Au/α-PbO2/p-Si/Al heterojunction photodiode
Liu et al. Synergetic effect of photoconductive gain and persistent photocurrent in a high-photoresponse Ga 2 O 3 deep-ultraviolet photodetector
Muhsien et al. Preparation and characterization of p-Ag2O/n-Si heterojunction devices produced by rapid thermal oxidation
Feng et al. Performance of metal-semiconductor-metal structured diamond deep-ultraviolet photodetector with a large active area
Liu et al. Characterization of vertical Au/β-Ga2O3 single-crystal Schottky photodiodes with MBE-grown high-resistivity epitaxial layer
Ma et al. A high performance solar-blind detector based on mixed–phase Zn 0.45 Mg 0.55 O alloy nanowires network
Zhao et al. High sensitivity X-ray detector based on a 25 µm-thick ZnO film
Stavarache et al. Photo-sensitive Ge nanocrystal based films controlled by substrate deposition temperature
Morales–Morales et al. Study of zinc oxide/porous silicon interface for optoelectronic devices
Ashraf et al. Photoconductivity in Tl4S3 layered single crystals
Wang et al. Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Ordoñez-Pimentel et al. Light-driven motion of charged domain walls in isolated ferroelectrics
Cai et al. Visible-blind UV detector based on water-gated thin film transistor with In2O3 channel grown by metal–organic chemical vapor deposition
JPH05235383A (en) Photoelectric material
Abd El-Mongy et al. A comparison of the physical properties of CdTe single crystal and thin film
Skotheim et al. Photovoltaic properties of Au–merocyanine–TiO2 sandwich cells. I. Dark electrical properties and transient effects
González-Flores et al. Ultraviolet, visible and near infrared photoresponse of SiO2/Si/SiO2 multilayer system into a MOS capacitor
RU207743U1 (en) SOLAR BLIND UV DETECTOR