JPH05234698A - Accelerating tube - Google Patents

Accelerating tube

Info

Publication number
JPH05234698A
JPH05234698A JP4036394A JP3639492A JPH05234698A JP H05234698 A JPH05234698 A JP H05234698A JP 4036394 A JP4036394 A JP 4036394A JP 3639492 A JP3639492 A JP 3639492A JP H05234698 A JPH05234698 A JP H05234698A
Authority
JP
Japan
Prior art keywords
electrode
accelerating
tube
accelerating tube
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4036394A
Other languages
Japanese (ja)
Other versions
JP2615300B2 (en
Inventor
Yoshinobu Miyake
善信 三宅
Kenichi Inoue
憲一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Kobe Steel Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd, Kobe Steel Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP4036394A priority Critical patent/JP2615300B2/en
Publication of JPH05234698A publication Critical patent/JPH05234698A/en
Application granted granted Critical
Publication of JP2615300B2 publication Critical patent/JP2615300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To proper suppress flashover on a dielectric vacuum surface, and to increase evacuation rate of an accelerating tube, and to absorb generated secondary ions the low stages of accelerating energy. CONSTITUTION:In an accelerating tube formed by sandwiching an insulating ring 14 by a positive electrode flat plate electrode 10 and a negative electrode flat plate electrode 12, the positive electrode flat plate electrode 10 is provided with a cylindrical electrode 10A faced to the vacuum surface 10A of the insulating ring 14 and protruded from the positive electrode flat plate electrode 10 toward the negative electrode flat plate electrode 12. In addition, in a multi-stage electrode direct current accelerating tube formed by alternately superimposing insulating rings, and accelerating tube partition electrodes for acceleration in which holes for beam transmission are punched, a hole for evacuation is punched in each accelerating partition electrode at the peripheral part of the hole for beam transmission. Each accelerating tube partition electrode is superimposed to align the hole for evacuation with the beam accelerating axial direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はイオン又は電子ビームを
真空雰囲気内で加速する加速管に係り、特に大電流ビー
ムを強電場加速するコンパクトなイオン注入器、電子線
照射器を実現ならしめる直流加速管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an accelerating tube for accelerating an ion or electron beam in a vacuum atmosphere, and in particular, a direct current for realizing a compact ion implanter and an electron beam irradiator for accelerating a large current beam in a strong electric field. Regarding the accelerator tube.

【0002】[0002]

【従来の技術】一般に、この種の加速管は金属製平板電
極と誘電体リング(絶縁リング)とを交互に重ね合わせ
て構成され、その内部は高真空が保持されている。ま
た、金属製平板電極には、荷電粒子ビームを加速するた
めに、誘電体リングの中心軸と同軸上にビーム通過用孔
が穿設されている。尚、このビーム通過用孔は、加速管
の真空排気用孔としての役割も兼ねている。
2. Description of the Related Art Generally, an accelerating tube of this type is constructed by alternately stacking metal plate electrodes and dielectric rings (insulating rings), and a high vacuum is maintained inside the accelerating tubes. In addition, a beam passage hole is formed in the metal plate electrode coaxially with the center axis of the dielectric ring in order to accelerate the charged particle beam. The beam passage hole also serves as a vacuum exhaust hole for the acceleration tube.

【0003】長大加速管においては、専用の真空排気用
孔がビーム通過用孔の周囲に穿設されているものもあ
る。従来の加速管が維持できる加速管軸方向の電位勾配
の上限は、2MV/m(200万ボルト/m)であっ
た。この上限は、加速ビーム電流強度が大きい程、また
加速管が長くなり加速電圧が高くなる程、小さくなる傾
向にある。これは加速管内で、その使用方法に付随して
種々のローディングが発生し易くなるからである。
In some large-sized accelerating tubes, a dedicated vacuum exhaust hole is provided around the beam passage hole. The upper limit of the potential gradient in the axis direction of the acceleration tube that can be maintained by the conventional acceleration tube is 2 MV / m (2 million volts / m). This upper limit tends to decrease as the intensity of the accelerating beam current increases, and as the accelerating tube becomes longer and the accelerating voltage becomes higher. This is because various types of loading are likely to occur in the accelerator tube depending on how it is used.

【0004】このローディングの種類は、次のものが主
たるのもである。 (1)誘電体真空沿面フラッシオーバー (2)電子ローディング (3)Paschen Breakdown(パッシェン・ブレークダウ
ン) (4)正負イオン交換ローディング 〔誘電体真空沿面フラッシオーバー〕図18乃至図20
は従来の加速管における平板電極及び誘電体リングの代
表例を示す図である。これらの図面において、1はアノ
ード電極、2はカソード電極、3は誘電体リングであ
る。
The types of loading are mainly as follows. (1) Dielectric vacuum creeping flashover (2) Electron loading (3) Paschen Breakdown (4) Positive and negative ion exchange loading [Dielectric vacuum creeping flashover] Figs. 18 to 20
FIG. 4 is a diagram showing a typical example of a plate electrode and a dielectric ring in a conventional acceleration tube. In these drawings, 1 is an anode electrode, 2 is a cathode electrode, and 3 is a dielectric ring.

【0005】誘電体真空沿面フラッシオーバーは、カソ
ード電極2と誘電体リング3と真空とが接するトリプル
ポイントTから電子が電界放射によって引き出され、誘
電体真空沿面上を叩きながら、その過程で誘電体真空沿
面から更に2次電子及び中性ガスを発生しながらアノー
ド電極1に向かう電子雪崩によってもたらされる誘電体
真空沿面上にガス放電である(H.Craig Miller,"Surfac
e Flashover ofInsulators",IEEE Transactions Electr
ical Insulation,Vol.24 No.5,1989,及びこの中の引用
文献参照)。
In the dielectric vacuum creeping flashover, electrons are extracted by electric field emission from a triple point T where the cathode electrode 2, the dielectric ring 3 and the vacuum are in contact with each other, striking the dielectric vacuum creeping surface, and in that process Gas discharge is generated on the surface of the dielectric vacuum caused by an electron avalanche toward the anode electrode 1 while further generating secondary electrons and neutral gas from the surface of the vacuum (H. Craig Miller, "Surfac
e Flashover of Insulators ", IEEE Transactions Electr
ical Insulation, Vol. 24 No. 5, 1989, and the references cited therein).

【0006】図19はトリプルポイントTに作用する外
部電場の大きさを小さくすべく、カソード電極2のコー
ナ近くにカソード電極2からアノード電極1に向かって
突出したシールド電極2Aを設けた従来の電子雪崩抑止
策を示している。 〔電子ローディング及びPaschen Breakdown〕高電圧直
流加速管においては、加速電圧が高くなると加速管電圧
保持能力の関係から、加速電圧に比例して加速管長を長
くしなければならない。このとき、加速管内真空度は、
加速管長に逆比例して低下する。加速管内真空度と加速
管長を掛け合わせて積分した量が、Paschen の法則で定
まる一定値を超えると、加速管内残留ガス中で電子の雪
崩的増殖が発生し、加速管内ガス放電による加速電圧崩
壊へとつながる。
FIG. 19 shows a conventional electron in which a shield electrode 2A protruding from the cathode electrode 2 toward the anode electrode 1 is provided near the corner of the cathode electrode 2 in order to reduce the magnitude of the external electric field acting on the triple point T. It shows avalanche deterrence measures. [Electron Loading and Paschen Breakdown] In a high voltage DC accelerating tube, the accelerating tube length must be increased in proportion to the accelerating voltage due to the relationship of the accelerating tube voltage holding ability when the accelerating voltage becomes higher. At this time, the vacuum degree in the acceleration tube is
It decreases in inverse proportion to the accelerating pipe length. When the integrated value obtained by multiplying the vacuum degree in the accelerating tube by the accelerating tube length exceeds a certain value determined by Paschen's law, avalanche multiplication of electrons occurs in the residual gas in the accelerating tube and the accelerating voltage collapse due to gas discharge in the accelerating tube. Leads to

【0007】荷電粒子ビームを加速中、加速管内残留ガ
スとそのビーム粒子の衝突で2次電子が作られる。この
2次電子は加速管内の電場で加速され、最後に何処かの
電極か又はビームダクトに衝突し、そこから制動X線を
出す。加速管内真空度が悪いと、この2次電子電流強度
は加速ビーム電流強度を上回る場合も起こる。そのとき
発生する制動X線の量も甚だしく、加速器からの対人用
放射線遮蔽設備が大がかりなものとなる。また、制動X
線の加速器高電圧ターミナルを取り巻く絶縁ガスの電離
による電離電流が、加速器発電電流能力を上回る場合も
ある。
During the acceleration of the charged particle beam, secondary electrons are produced by the collision between the residual gas in the accelerating tube and its beam particles. The secondary electrons are accelerated by the electric field in the accelerating tube, and finally collide with some electrode or the beam duct, and emit a braking X-ray from there. If the degree of vacuum in the accelerating tube is poor, the secondary electron current intensity may exceed the accelerating beam current intensity. The amount of braking X-rays generated at that time is also great, and the radiation shielding equipment for humans from the accelerator becomes large-scale. Also, braking X
In some cases, the ionization current due to the ionization of the insulating gas surrounding the accelerator high voltage terminal of the line exceeds the accelerator generated current capacity.

【0008】以上が電子ローディングを惹き起こす機構
の主なものであり、またそのときに共通して現れる現象
である。 〔正負イオン交換ローディング〕正負イオン交換ローデ
ィングは、加速管内で電位差のある電極間で正負の2次
イオンがそれら電極を叩いたとき、そこで2次イオン放
出係数が或る閾値を超えると、その2次イオン電流が雪
崩的に増加して起こる放電現象である(J.L.Mackibben,
Los Alamos Scientific Laaboratory Report LA-5376-M
S,1973, 及びこの中の引用文献)。
The above is the main mechanism that causes electron loading, and is a phenomenon that commonly appears at that time. [Positive / Negative Ion Exchange Loading] Positive / negative ion exchange loading means that when positive / negative secondary ions hit these electrodes between electrodes having a potential difference in the accelerating tube and the secondary ion emission coefficient exceeds a certain threshold, the This is a discharge phenomenon that occurs when the secondary ion current increases like an avalanche (JLMackibben,
Los Alamos Scientific Laaboratory Report LA-5376-M
S, 1973, and references therein).

【0009】2次イオン放出係数は電極を叩くイオンの
エネルギーに依存しているため、正負イオン交換ローデ
ィングは、加速管電圧が或る値に達した所で突如として
発生する。この2次イオンの種は、電極表面に付着した
汚染物質が主たるものである。従って、加速管内真空度
を高めれば、汚染物質の電極表面への付着量も低減でき
る。
Since the secondary ion emission coefficient depends on the energy of the ions striking the electrode, the positive and negative ion exchange loading suddenly occurs when the acceleration tube voltage reaches a certain value. The secondary ion species are mainly pollutants attached to the electrode surface. Therefore, if the vacuum degree in the acceleration tube is increased, the amount of contaminants attached to the electrode surface can be reduced.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前述し
た誘電体真空沿面フラッシオーバーの抑止のために、図
19に示したようにシールド電極2Aを置いた場合、絶
縁リング3は目標とする2MV/mの電位勾配には長時
間耐え得ないことがわかった。また、電子ローディング
及びPaschen Breakdown は、加速管内真空度を良くして
やれば止めることができる。加速管内真空度を良くする
一番単純なやり方として、加速管のビーム通過用孔を大
きくしてやればよい。しかし、この場合にはビーム通過
用孔を経由して、加速管内電極間で正負イオン交換路に
自由度が増加し、所謂マイクロディスチャージがより低
い加速電圧で点火するようになる。
However, when the shield electrode 2A is placed as shown in FIG. 19 in order to suppress the above-mentioned dielectric vacuum creeping flashover, the insulating ring 3 has a target 2 MV / m. It was found that it could not withstand the electric potential gradient of. Further, electron loading and Paschen Breakdown can be stopped by improving the vacuum degree in the acceleration tube. The simplest way to improve the degree of vacuum in the acceleration tube is to enlarge the beam passage hole of the acceleration tube. However, in this case, the degree of freedom is increased in the positive and negative ion exchange paths between the electrodes in the accelerating tube via the beam passage hole, so that so-called micro discharge is ignited at a lower accelerating voltage.

【0011】一方、この正負イオン交換ローディングを
止めるために、従来の加速管設計方法では、平板電極に
穿設する加速用のビーム通過用孔は極力小さくし、且つ
複数の真空排気用孔をビーム通過用孔の周囲に穿設して
いる。但し、このとき真空排気用孔を経由して正負イオ
ン交換放電が点火し易くなるため、真空排気用孔の位置
は加速管軸を中心にして誘電体リング円周方向に少しず
つ角度がずらされている。
On the other hand, in order to stop the positive and negative ion exchange loading, in the conventional accelerating tube designing method, the accelerating beam passage hole formed in the flat plate electrode is made as small as possible, and a plurality of evacuating holes are formed in the beam. It is provided around the passage hole. However, at this time, since the positive and negative ion exchange discharges are easily ignited via the vacuum exhaust hole, the position of the vacuum exhaust hole is slightly shifted in the circumferential direction of the dielectric ring about the acceleration tube axis. ing.

【0012】この角度のずれが大きい程、その放電も生
起しにくいが、加速管内真空排気速度が低下するため、
前述した電子ローディングやその他のローディングが発
生し易くなるという問題がある。更に、加速管内真空度
を良くしても、汚染物質がそれによって完全に除去でき
るわけではないので、加速管の電位勾配と電圧の維持に
は限界があり、従来は電位勾配が2MV/mが実用上の
上限であった。また、その上限は、加速電圧と加速ビー
ム電流強度の増加とともに減少していくことも経験され
ている。これは、加速ビームと加速管内残留ガスの衝突
で生じた活性ガスが加速管内電極に付着し、容易にそこ
から離脱しないことが一因となっていることが考えられ
る。特に活性ガスはビーム軸上で作られるため、加速電
極のビーム通過用孔周辺部に付着する確率が大きい。ま
た、その場所は正負イオン交換ローディング時の2次荷
電粒子の出発及び終着点となっているため、正負イオン
交換ローディングの難易に大きく影響する所である。
The larger the deviation of this angle, the less likely the electric discharge will occur, but the vacuum evacuation speed in the accelerating tube will decrease.
There is a problem that the above-mentioned electronic loading and other loadings are likely to occur. Furthermore, even if the vacuum degree in the acceleration tube is improved, contaminants cannot be completely removed by it, so that there is a limit in maintaining the potential gradient and voltage of the acceleration tube, and the potential gradient of 2 MV / m is conventionally used. It was a practical upper limit. It is also experienced that the upper limit decreases with increasing accelerating voltage and accelerating beam current intensity. It is considered that this is partly because the active gas generated by the collision between the acceleration beam and the residual gas in the acceleration tube adheres to the electrode in the acceleration tube and is not easily separated from the electrode. In particular, since the active gas is produced on the beam axis, it has a high probability of adhering to the periphery of the beam passage hole of the acceleration electrode. Further, since the place is the starting point and the ending point of the secondary charged particles at the time of positive and negative ion exchange loading, it is a place that greatly affects the difficulty of positive and negative ion exchange loading.

【0013】本発明はこのような事情に鑑みてなされた
もので、良好に誘電体真空沿面フラッシオーバーを抑止
することができ、また加速管内真空排気速度を大きくす
ることができ、更に発生した2次イオンをその加速エネ
ルギーが低い段階で吸収することができる加速管を提供
することを目的とする。
The present invention has been made in view of such circumstances, and it is possible to satisfactorily suppress the dielectric vacuum creeping flashover, and to increase the vacuum evacuation speed in the acceleration tube. It is an object of the present invention to provide an accelerating tube capable of absorbing secondary ions at a stage where the acceleration energy is low.

【0014】[0014]

【課題を解決するための手段】本発明は前記目的を達成
するために、正極性平板電極及び負極性平板電極によっ
て絶縁リングを挟んで成る加速管において、前記絶縁リ
ングの真空沿面に対向し、且つ前記正極性平板電極から
前記負極性平板電極に向かって突出する円筒電極を前記
正極性平板電極に設けたことを特徴としている。
In order to achieve the above object, the present invention provides an acceleration tube having an insulating ring sandwiched between a positive electrode plate electrode and a negative electrode plate electrode, facing the vacuum creeping surface of the insulating ring, A cylindrical electrode protruding from the positive electrode plate electrode toward the negative electrode plate electrode is provided on the positive electrode plate electrode.

【0015】また、ビーム通過用孔が穿設された加速用
の加速管仕切電極と絶縁リングとが交互に重ね合わされ
て成る多段電極直流加速管において、各加速管仕切電極
のビーム通過用孔の周辺部に真空排気用孔を穿設し、そ
の真空排気用孔がビーム加速軸方向に揃うように各加速
管仕切電極を重畳することを特徴としている。更に、真
空排気用孔に達しない外径を有するとともに前記ビーム
通過用孔よりも大きな内径を有し、且つ各加速管仕切電
極間の隙間よりも高さが小さい円筒電極を、その円筒電
極の中心軸がビーム加速軸と一致するように各加速管仕
切電極に設け、且つ/又は絶縁リングよりも内側に位置
する各加速管仕切電極を円錐台状に折り曲げて突出さ
せ、そのテーパー部又は平板部に真空排気用孔を穿設す
ることを特徴としている。
Further, in a multi-stage electrode DC accelerating tube in which an accelerating tube partition electrode for accelerating having a beam passage hole and an insulating ring are alternately stacked, a beam passage hole of each accelerating tube partition electrode is formed. It is characterized in that a hole for vacuum evacuation is formed in the peripheral portion, and the electrodes for accelerating tubes are superposed so that the holes for vacuum evacuation are aligned in the beam acceleration axis direction. Furthermore, a cylindrical electrode having an outer diameter that does not reach the vacuum exhaust hole, an inner diameter larger than the beam passage hole, and a height smaller than the gap between the acceleration tube partitioning electrodes is formed. Each acceleration tube partition electrode is provided so that its central axis coincides with the beam acceleration axis, and / or each acceleration tube partition electrode located inside the insulating ring is bent into a truncated cone shape and protrudes, and its tapered portion or flat plate It is characterized in that a hole for evacuation is formed in the portion.

【0016】[0016]

【作用】本発明によれば、絶縁リングの真空沿面に対向
し、且つ前記正極性平板電極から負極性平板電極に向か
って突出する円筒電極を正極性平板電極に設けるように
している。これにより、トリプルポイントで作りだされ
た電子はアノード電位にある円筒電極に引きつけられ、
それに向かって加速されるため、絶縁リング真空沿面上
での電子雪崩放電は惹き起こし難くなり、誘電体真空沿
面フラッシオーバー電圧は向上する。
According to the present invention, the cylindrical electrode facing the vacuum surface of the insulating ring and projecting from the positive plate electrode toward the negative plate electrode is provided on the positive plate electrode. As a result, the electrons created at the triple point are attracted to the cylindrical electrode at the anode potential,
Since it accelerates toward it, electron avalanche discharge on the vacuum surface of the insulating ring is less likely to occur, and the flashover voltage on the dielectric vacuum surface is improved.

【0017】また、各加速管仕切電極のビーム通過用孔
の周辺部に真空排気用孔を穿設し、その真空排気用孔が
ビーム加速軸方向に揃うように各加速管仕切電極を重畳
するようにしている。これにより、加速管内真空排気速
度を大きくすることができる。更に、真空排気用孔に達
しない外径を有するとともに前記ビーム通過用孔よりも
大きな内径を有し、且つ各加速管仕切電極間の隙間より
も高さが小さい円筒電極を、その円筒電極の中心軸がビ
ーム加速軸と一致するように各加速管仕切電極に設け、
且つ/又は絶縁リングよりも内側に位置する各加速管仕
切電極を円錐台状に折り曲げて突出させ、そのテーパー
部又は平板部に真空排気用孔を穿設するようにしてい
る。これにより、加速管軸と平行でない傾斜電場が形成
され、この傾斜電場により2次イオンをビーム加速軸方
向から大きく軌道をずらせることができ、2次イオンの
加速エネルギーが低い段階で加速管内電極に当ててそこ
で吸収させることができる。
Further, a vacuum exhaust hole is formed in the peripheral portion of the beam passage hole of each acceleration tube partition electrode, and the acceleration tube partition electrodes are superposed so that the vacuum exhaust hole is aligned in the beam acceleration axis direction. I am trying. As a result, the vacuum evacuation speed in the acceleration tube can be increased. Furthermore, a cylindrical electrode having an outer diameter that does not reach the vacuum exhaust hole, an inner diameter larger than the beam passage hole, and a height smaller than the gap between the acceleration tube partitioning electrodes is formed. Provided on each acceleration tube partition electrode so that the central axis coincides with the beam acceleration axis,
And / or each accelerating tube partitioning electrode located inside the insulating ring is bent into a truncated cone shape and protruded, and a vacuum exhaust hole is formed in the tapered portion or the flat plate portion. As a result, a tilted electric field that is not parallel to the axis of the accelerating tube is formed, and the tilted electric field can cause the secondary ions to largely deviate from the beam accelerating axis direction. It can be applied to and absorbed there.

【0018】[0018]

【実施例】以下添付図面に従って本発明に係る加速管の
好ましい実施例を詳述する。図1は本発明に係る加速管
の平板電極及び誘電体リングの第1実施例を示す要部断
面である。同図に示すように、この加速管は、正極性平
板電極(アノード電極)10と負極性平板電極(カソー
ド電極)12とによって絶縁リング14を挟んで構成さ
れており、アノード電極10には絶縁リング14の真空
沿面14Aに対向し、且つアノード電極10からカソー
ド電極12に向かって突出する円筒電極10Aが一体的
に形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of an accelerating tube according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a main part showing a first embodiment of a flat plate electrode and a dielectric ring of an accelerating tube according to the present invention. As shown in the figure, the accelerating tube is configured by sandwiching an insulating ring 14 between a positive plate electrode (anode electrode) 10 and a negative plate electrode (cathode electrode) 12, and the anode electrode 10 is insulated. A cylindrical electrode 10A that faces the vacuum surface 14A of the ring 14 and that projects from the anode electrode 10 toward the cathode electrode 12 is integrally formed.

【0019】上記構成の加速管によれば、トリプルポイ
ントTの場所での外部電場の作用は強くなるが、トリプ
ルポイントTで作り出される電子はアノード電位にある
円筒電極10Aに引きつけられ、それに向かって加速さ
れて行くため、絶縁リング14の真空沿面14A上での
電子雪崩放電は惹き起こされ難くなる。そのため、誘電
体真空沿面フラッシオーバー電圧は向上し、実験によれ
ば、この向上率は従来の数倍に及んだ。
According to the accelerating tube having the above-mentioned structure, the action of the external electric field at the location of the triple point T becomes stronger, but the electrons produced at the triple point T are attracted to the cylindrical electrode 10A at the anode potential and toward it. Because of acceleration, electron avalanche discharge on the vacuum creeping surface 14A of the insulating ring 14 is hard to be induced. Therefore, the dielectric vacuum creeping flashover voltage was improved, and according to the experiment, the improvement rate was several times that of the conventional one.

【0020】図2乃至図6はそれぞれ第2実施例乃至第
6実施例を示す要部断面図である。尚、図1と共通する
部分には同一の符号を付し、その詳細な説明は省略す
る。図2に示す第2実施例は、絶縁リング16の形状が
上記第1実施例と相違している。即ち、この絶縁リング
16はその縦断面形状が台形で、テーパー状の真空沿面
16Aを有している。
2 to 6 are sectional views showing the essential parts of the second to sixth embodiments, respectively. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. In the second embodiment shown in FIG. 2, the shape of the insulating ring 16 is different from that of the first embodiment. That is, the insulating ring 16 has a trapezoidal vertical cross-section and has a tapered vacuum creeping surface 16A.

【0021】図3に示す第3実施例は、カソード電極1
8の形状が上記第1実施例と相違している。即ち、この
カソード電極18は、カソードコーナー部電極にアノー
ド電極10と反対方向に段差が設けられている。この構
成のカソード電極18によれば、トリプルポイントTか
ら発生した電子を、上記第1、第2実施例の場合よりも
更に強い外部電場が円筒電極10Aに誘い込むように作
用する。そのため、誘電体真空沿面フラッシオーバー電
圧は、第1、第2実施例のそれよりも向上する。
The third embodiment shown in FIG. 3 is a cathode electrode 1.
The shape of 8 is different from that of the first embodiment. That is, the cathode electrode 18 has a step at the cathode corner electrode in the direction opposite to the anode electrode 10. According to the cathode electrode 18 having this structure, an external electric field stronger than that in the first and second embodiments acts to attract electrons generated from the triple point T to the cylindrical electrode 10A. Therefore, the dielectric vacuum creeping flashover voltage is higher than that of the first and second embodiments.

【0022】図4に示す第4実施例は、縦断面形状が台
形の絶縁リング16が用いられており、この絶縁リング
16の形状のみが上記第3実施例と相違している。図5
及び図6に示す第5実施例及び第6実施例は、それぞれ
アノード電極20の形状、特にアノード電極20に固定
された円筒電極20Aの形状が第3実施例及び第4実施
例と相違している。即ち、これらの円筒電極20Aはそ
の先端がナイフエッジ状に形成されている。
In the fourth embodiment shown in FIG. 4, an insulating ring 16 having a trapezoidal vertical cross section is used, and only the shape of this insulating ring 16 is different from the third embodiment. Figure 5
Also, the fifth and sixth embodiments shown in FIG. 6 differ from the third and fourth embodiments in the shape of the anode electrode 20, especially the shape of the cylindrical electrode 20A fixed to the anode electrode 20. There is. That is, the tip of each of the cylindrical electrodes 20A is formed in a knife edge shape.

【0023】図7及び図8はそれぞれ各円筒電極を含む
要部拡大図であり、各円筒電極の形状と2次イオンの軌
道の特徴の相違を模式的に描いている。円筒電極10A
と20Aとを比較すると、円筒電極先端とカソード電極
間の距離を固定した場合、先端が丸みをもった円筒電極
10Aでは、その電極先端とカソード電極18間での正
負イオン交換生起確率は、両電極の対面面積が、先端が
ナイフエッジ対平板電極の場合よりも大きいことに加
え、2次イオンの電極間隙外帚払効果も小さいので、電
極間交換放電が生起しやすい。故に、平板対先端の丸い
円筒電極10A間の真空絶縁能力は、その先端がナイフ
エッジ状の円筒電極20Aの場合よりも低下する。
FIG. 7 and FIG. 8 are enlarged views of a main part including each cylindrical electrode, and schematically show the difference in the shape of each cylindrical electrode and the feature of the trajectory of secondary ions. Cylindrical electrode 10A
20A, when the distance between the cylindrical electrode tip and the cathode electrode is fixed, in the cylindrical electrode 10A having a rounded tip, the positive and negative ion exchange occurrence probabilities between the electrode tip and the cathode electrode 18 are both Since the facing area of the electrodes is larger than that in the case of the knife edge-to-plate electrode and the effect of removing secondary ions from the outside of the electrode gap is small, an inter-electrode exchange discharge is likely to occur. Therefore, the vacuum insulation ability between the flat plate and the rounded cylindrical electrode 10A at the tip is lower than that in the case where the tip is a knife electrode 20A.

【0024】尚、円筒電極20Aの先端は片刃である
が、図9に示すように円筒電極20Bのようにその先端
を両刃としてもよい。図10は本発明に係る加速管の第
7実施例を示す平面面であり、図11は図10の11−
11線に沿う断面図である。この加速管は、加速管仕切
電極30と絶縁リング32とが交互に重ね合わされて成
る多段電極直流加速管であり、各加速管仕切電極30
は、その中央部に荷電粒子ビーム34を加速するための
ビーム通過用孔30Bが穿設されるとともに、ビーム通
過用孔30Bの周辺部に4つの真空排気用孔30Cが穿
設されている。
Although the tip of the cylindrical electrode 20A is a single-edged blade, the tip may be double-edged as in the cylindrical electrode 20B as shown in FIG. FIG. 10 is a plane view showing a seventh embodiment of the acceleration tube according to the present invention, and FIG.
It is sectional drawing which follows the 11th line. This accelerating tube is a multi-stage electrode DC accelerating tube in which accelerating tube partitioning electrodes 30 and insulating rings 32 are alternately stacked, and each accelerating tube partitioning electrode 30
The beam passage hole 30B for accelerating the charged particle beam 34 is formed in the central portion thereof, and four vacuum exhaust holes 30C are formed in the peripheral portion of the beam passage hole 30B.

【0025】また、各段の加速管仕切電極30は、真空
排気用孔30Cがビーム加速軸方向に揃うように、即
ち、円周方向の角度ずれが生じないように重畳されてい
る。更に、加速管仕切電極30には前述したような円筒
電極30Aが固定されている。上記構成の加速管によれ
ば、円筒電極30Aが周囲電場を歪ませ、真空排気用孔
30C周辺に、加速管軸と平行でない軸対称傾斜電場が
作られる。
Further, the accelerating tube partitioning electrodes 30 in each stage are overlapped so that the vacuum exhaust holes 30C are aligned in the beam accelerating axis direction, that is, no angular deviation in the circumferential direction occurs. Further, the cylindrical electrode 30A as described above is fixed to the acceleration tube partitioning electrode 30. According to the accelerating tube configured as described above, the cylindrical electrode 30A distorts the ambient electric field, and an axisymmetric tilted electric field that is not parallel to the accelerating tube axis is created around the vacuum exhaust hole 30C.

【0026】このように真空排気用孔30C周辺に傾斜
電場を作用させると、真空排気用孔30Cを同位相で重
ねたときに発生し易くなる真空排気用孔30Cを通して
のローディングは、生起し難くなる。これは、その真空
排気用孔30Cを通過して正負電位差のある加速管電極
間で加速された2次電子,正負イオンの軌道が傾斜電場
の作用で大きく加速管軸方向から曲げられ、それら荷電
粒子の電極間飛程が小さくなるからである。平均飛程が
小さくなれば、イオンの電極表面衝突エネルギーも小さ
くなり、2次イオンや電子の生成効率が減少するから各
種ローディングも生起し難くなる。尚、図11には等電
位線及び或る電極から出発した2次荷電粒子の軌道が模
式的に示されている。
When an inclined electric field is applied to the periphery of the vacuum exhaust hole 30C in this manner, loading through the vacuum exhaust hole 30C, which tends to occur when the vacuum exhaust holes 30C are superposed in phase, is unlikely to occur. Become. This is because the orbits of secondary electrons and positive and negative ions that have passed through the vacuum evacuation hole 30C and are accelerated between the accelerating tube electrodes having a positive and negative potential difference are largely bent from the axis direction of the accelerating tube due to the action of the inclined electric field. This is because the inter-electrode range of particles is reduced. If the average range becomes smaller, the collision energy of ions on the electrode surface becomes smaller, and the efficiency of generating secondary ions and electrons decreases, so that various types of loading are less likely to occur. Incidentally, FIG. 11 schematically shows the equipotential lines and the trajectories of the secondary charged particles starting from a certain electrode.

【0027】図12は本発明に係る加速管の第8実施例
を示す平面面であり、図13は図12の13−13線に
沿う断面図である。尚、第7実施例と共通する部分には
同符号を付し、その詳細な説明は省略する。図12及び
図13に示す第8実施例は、加速管仕切電極36の形状
が上記第7実施例と相違している。即ち、この加速管仕
切電極36は、絶縁リング32よりも内側の電極部分が
円錐台状に折り曲げられて凹型に形成されている。尚、
真空排気用孔36Cは加速管仕切電極36のテーパー部
36Dよりも外側に穿設されている。
FIG. 12 is a plan view showing an eighth embodiment of the accelerating tube according to the present invention, and FIG. 13 is a sectional view taken along line 13-13 of FIG. The same parts as those of the seventh embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. The eighth embodiment shown in FIGS. 12 and 13 differs from the seventh embodiment in the shape of the acceleration tube partitioning electrode 36. That is, the accelerating tube partitioning electrode 36 is formed in a concave shape by bending the electrode portion inside the insulating ring 32 into a truncated cone shape. still,
The vacuum exhaust hole 36C is provided outside the tapered portion 36D of the acceleration tube partitioning electrode 36.

【0028】このように加速管仕切電極36を凹型に折
り曲げることにより、真空排気用孔36Cの周辺部に軸
対称傾斜電場を作ることができ、上記円筒電極30Aを
設けた場合と同様な効果が得られる。図14乃至図15
はそれぞれ本発明に係る加速管の第9実施例乃至第11
実施例を示す断面面である。尚、前述した実施例と共通
する部分には同符号を付し、その詳細な説明は省略す
る。
By bending the accelerating tube partitioning electrode 36 in a concave shape in this way, an axisymmetric tilted electric field can be created in the peripheral portion of the vacuum exhaust hole 36C, and the same effect as when the cylindrical electrode 30A is provided is obtained. can get. 14 to 15
Are the ninth to eleventh embodiments of the accelerating tube according to the present invention.
It is a section surface showing an example. The same parts as those in the above-described embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

【0029】図14に示す第9実施例は、加速管仕切電
極38に固定する円筒電極38Aの位置が図11に示し
た第7実施例と相違している。即ち、この加速管仕切電
極38に固定した円筒電極38Aは、真空排気用孔30
Cに達しない外径を有するとともにビーム通過用孔30
Bよりも大きな内径を有している。この位置の設けられ
た円筒電極38Aは、真空排気用孔30Cの周辺部のみ
ならず、ビーム通過用孔30Bの周辺部にも軸対称傾斜
電場を作ることができる。
The ninth embodiment shown in FIG. 14 is different from the seventh embodiment shown in FIG. 11 in the position of the cylindrical electrode 38A fixed to the acceleration tube partitioning electrode 38. That is, the cylindrical electrode 38A fixed to the accelerating tube partitioning electrode 38 is provided with the vacuum exhaust hole 30.
Beam passing hole 30 having an outer diameter not reaching C
It has an inner diameter larger than B. The cylindrical electrode 38A provided at this position can create an axisymmetric tilted electric field not only in the peripheral portion of the vacuum exhaust hole 30C but also in the peripheral portion of the beam passing hole 30B.

【0030】図14に示すように、円筒電極38Aが周
囲電場を歪ませ、真空排気用孔30C周辺及びビーム通
過用孔30Bで作られた電子及び負イオンを、対向する
アノードに誘い込み、そこで吸収する。そうすることに
より正負イオン交換ローディングを支える正負イオン電
流ループの内、負イオン電流ループを断ち切るため、正
負イオン交換ローディングは持続しない。尚、図17は
図14と同構造のもので、電子の軌道計算結果を軌跡に
して計算機で描いたものである。また、同図は真空排気
用孔の或る電極の部位から出発した2次電子も、加速管
内で高エネルギーに加速される前に、その真空排気用孔
に作用する傾斜電場の作用で加速管内電極に受け止めら
れることを示している。
As shown in FIG. 14, the cylindrical electrode 38A distorts the ambient electric field and attracts the electrons and negative ions formed around the vacuum exhaust hole 30C and the beam passage hole 30B to the opposing anode, where they are absorbed. To do. By doing so, of the positive and negative ion current loops that support the positive and negative ion exchange loadings, the negative ion current loops are cut off, so the positive and negative ion exchange loadings do not continue. Note that FIG. 17 has the same structure as FIG. 14, and is drawn by a computer by using the electron orbit calculation result as a locus. Also, in the figure, the secondary electrons that started from a certain electrode part of the vacuum exhaust hole are also accelerated in the acceleration tube by the action of the gradient electric field acting on the vacuum exhaust hole before being accelerated to high energy in the acceleration tube. It is shown that it can be received by the electrode.

【0031】図15に示す第10実施例は、加速管仕切
電極40の絶縁リング32よりも内側の電極部分が円錐
台状に折り曲げられて凹型に形成されており、図13に
示した第8実施例と近似しているが、加速管仕切電極4
0のテーパー部40Dに真空排気用孔40Cを穿設する
ようにした点で相違する。図16に示す第11実施例
は、加速管仕切電極42の絶縁リング32よりも内側の
電極部分が円錐台状に折り曲げられて凹型に形成され、
且つ図14に示し第9実施例と同様な円筒電極42Aが
設けられており、これにより傾斜電場の作用が更に強く
なるように構成されている。
In the tenth embodiment shown in FIG. 15, the electrode portion inside the insulating ring 32 of the accelerating tube partitioning electrode 40 is bent into a truncated cone shape to form a concave shape, and the eighth embodiment shown in FIG. Although similar to the embodiment, the acceleration tube partitioning electrode 4
The difference is that a vacuum exhaust hole 40C is formed in the taper portion 40D of 0. In the eleventh embodiment shown in FIG. 16, the electrode portion inside the insulating ring 32 of the acceleration tube partitioning electrode 42 is bent into a truncated cone shape to form a concave shape.
Further, a cylindrical electrode 42A similar to that of the ninth embodiment shown in FIG. 14 is provided so that the action of the gradient electric field is further strengthened.

【0032】尚、この加速管仕切電極42の電極構造に
よれば、絶縁リング32は電極に遮られて加速ビームか
ら視覚的には全く見えない。このことは、加速ビームに
付随した紫外線、軟X線から高電位勾配下にある絶縁リ
ング32を保護する意味で重要である。さて、図1に示
した加速管と従来の図18に示した加速管について、電
極間の印加電圧を徐々に高めてゆき、最初のスパーク電
圧を調べた。
According to the electrode structure of the accelerating tube partitioning electrode 42, the insulating ring 32 is blocked by the electrodes and is not visible at all from the accelerating beam. This is important in protecting the insulating ring 32 under a high potential gradient from ultraviolet rays and soft X-rays associated with the acceleration beam. Now, with respect to the acceleration tube shown in FIG. 1 and the conventional acceleration tube shown in FIG. 18, the applied voltage between the electrodes was gradually increased, and the initial spark voltage was examined.

【0033】使用した絶縁リングは内径×高さ=140
×100mmのボロシリケートガラスで、円筒電極は外径
×高さ=110×90mmのSUS304製であった。円
筒電極のカソードに対面する部分は尖らし、ナイフエッ
ジとした。絶縁リング内の真空度は10-6Torr台であっ
た。最初の誘電体真空沿面放電電圧は、円筒電極が無い
場合は35〜40KVであったが、円筒電極を装着する
と300KVまで上昇した。
The insulating ring used is inner diameter × height = 140
The borosilicate glass was 100 mm × 100 mm, and the cylindrical electrode was made of SUS304 having an outer diameter × height = 110 × 90 mm. The portion of the cylindrical electrode facing the cathode was sharpened to form a knife edge. The degree of vacuum in the insulating ring was on the order of 10 −6 Torr. The initial dielectric vacuum creeping discharge voltage was 35 to 40 KV without the cylindrical electrode, but increased to 300 KV when the cylindrical electrode was attached.

【0034】多段電極加速管についての実験は、図14
に示す構造のものを使用し、ヘリウムビーム3μAを6
00KVで長日時にわたって加速しながら、1日当たり
のスパーク回数を測定した。円筒電極を除去すると、ス
パーク回数は1日当たり数回〜10回であったが、円筒
電極を装着すると、0であった。尚、実験に使用した絶
縁リングの内径×高さは、60×9mmであり、加速管長
は250mmであった。この円筒電極挿入に顕著な効果
は、それによる真空排気用孔周辺の傾斜電場発現と、ビ
ーム通過用孔周辺部から誕生した電子及び負イオンを加
速管軸から帚払する軸対称な電場の発現に帰せられるこ
とが、この実験結果の示唆するところである。
The experiment on the multi-stage electrode accelerating tube is shown in FIG.
Use the structure shown in, and set the helium beam 3 μA to 6
The number of sparks per day was measured while accelerating at 00 KV for a long time. When the cylindrical electrode was removed, the number of sparks was several to 10 times per day, but when the cylindrical electrode was attached, it was 0. The insulating ring used in the experiment had an inner diameter × height of 60 × 9 mm and an accelerating tube length of 250 mm. The remarkable effect of this cylindrical electrode insertion is that it produces a tilted electric field around the vacuum exhaust hole and an axisymmetric electric field that scatters the electrons and negative ions generated from the periphery of the beam passage hole from the accelerating tube axis. The result of this experiment suggests that it can be attributed to.

【0035】[0035]

【発明の効果】以上説明したように本発明に係る加速管
によれば、絶縁リングの真空沿面に対向する円筒電極を
正極性平板電極に設けるようにしたため、良好に誘電体
真空沿面フラッシオーバーを抑止することができる。ま
た、加速管軸と平行でない軸対称傾斜電場を形成するよ
うにしたため、この傾斜電場により2次イオンをビーム
加速軸方向から大きく軌道をずらせることができ、2次
イオンの加速エネルギーが低い段階で加速管内電極に当
ててそこで吸収させることができる。これにより真空排
気用孔経由の正負イオン交換ローディングの出現を抑止
することができ、真空排気用孔を円周方向に同位相に並
べることが可能になる。この場合、同じ内径の絶縁リン
グを使用した加速管どうしで比べると、真空排気速度を
格段に向上させることができ、従来インプランター加速
管で問題となっていた加速ビームと残留ガス衝突で生成
加速される雑イオンビームと主イオンビームの比率を小
さくすることができる。更に、真空排気速度の向上によ
り、従来よりも長い加速管の使用が許され、その分だけ
加速電圧も高くできる。尚、強電場加速管はビームの加
速光学系が単純になり、歪みの少ないビームができる。
As described above, according to the acceleration tube of the present invention, the cylindrical electrode facing the vacuum surface of the insulating ring is provided on the positive plate electrode, so that the dielectric vacuum surface flashover is satisfactorily achieved. Can be deterred. Further, since an axisymmetric tilted electric field which is not parallel to the axis of the accelerating tube is formed, the tilted electric field can cause the secondary ions to largely deviate from the beam accelerating axis direction. Can be applied to the electrode in the acceleration tube and absorbed there. This makes it possible to suppress the appearance of positive and negative ion exchange loadings through the evacuation hole, and it becomes possible to arrange the evacuation holes in the same phase in the circumferential direction. In this case, the vacuum evacuation speed can be significantly improved compared to other accelerating tubes that use insulating rings with the same inner diameter, and the acceleration beam generated by the residual gas collision, which has been a problem with the conventional implanter accelerating tube, is accelerated. It is possible to reduce the ratio of the coarse ion beam and the main ion beam that are generated. Furthermore, the improvement of the evacuation speed allows the use of an accelerating tube longer than before, and the accelerating voltage can be increased accordingly. Incidentally, the strong electric field accelerating tube has a simple beam accelerating optical system, and a beam with little distortion can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明に係る加速管の平板電極及び誘電
体リングの第1実施例を示す要部断面図である。
FIG. 1 is a sectional view of an essential part showing a first embodiment of a plate electrode and a dielectric ring of an accelerating tube according to the present invention.

【図2】図2は本発明に係る加速管の平板電極及び誘電
体リングの第2実施例を示す要部断面である。
FIG. 2 is a cross-sectional view of essential parts showing a second embodiment of the plate electrode and the dielectric ring of the accelerating tube according to the present invention.

【図3】図3は本発明に係る加速管の平板電極及び誘電
体リングの第3実施例を示す要部断面である。
FIG. 3 is a cross-sectional view of the essential parts showing a third embodiment of the plate electrode and the dielectric ring of the accelerating tube according to the present invention.

【図4】図4は本発明に係る加速管の平板電極及び誘電
体リングの第4実施例を示す要部断面である。
FIG. 4 is a cross-sectional view of an essential part showing a fourth embodiment of the plate electrode and the dielectric ring of the accelerating tube according to the present invention.

【図5】図5は本発明に係る加速管の平板電極及び誘電
体リングの第5実施例を示す要部断面である。
FIG. 5 is a cross-sectional view of an essential part showing a fifth embodiment of a flat plate electrode and a dielectric ring of an accelerating tube according to the present invention.

【図6】図6は本発明に係る加速管の平板電極及び誘電
体リングの第6実施例を示す要部断面である。
FIG. 6 is a cross-sectional view of an essential part showing a sixth embodiment of the plate electrode and the dielectric ring of the accelerating tube according to the present invention.

【図7】図7は図1乃至図4に示した円筒電極を含む要
部拡大図である。
FIG. 7 is an enlarged view of a main part including the cylindrical electrode shown in FIGS. 1 to 4.

【図8】図8は図5及ぶ図6に示した円筒電極を含む要
部拡大図である。
FIG. 8 is an enlarged view of a main part including the cylindrical electrode shown in FIGS. 5 and 6;

【図9】図9は図8に示した円筒電極の他の実施例を示
す要部拡大図である。
9 is an enlarged view of an essential part showing another embodiment of the cylindrical electrode shown in FIG.

【図10】図10は本発明に係る加速管の第7実施例を
示す平面面である。
FIG. 10 is a plan view showing a seventh embodiment of the acceleration tube according to the present invention.

【図11】図11は図10の11−11線に沿う断面図
である。
11 is a cross-sectional view taken along line 11-11 of FIG.

【図12】図12は本発明に係る加速管の第8実施例を
示す平面面である。
FIG. 12 is a plan view showing an eighth embodiment of the acceleration tube according to the present invention.

【図13】図13は図12の13−13線に沿う断面図
である。
13 is a sectional view taken along line 13-13 of FIG.

【図14】図14は本発明に係る加速管の第9実施例を
示す断面図である。
FIG. 14 is a sectional view showing a ninth embodiment of the accelerating tube according to the present invention.

【図15】図15は本発明に係る加速管の第10実施例
を示す断面図である。
FIG. 15 is a sectional view showing a tenth embodiment of the accelerating tube according to the present invention.

【図16】図16は本発明に係る加速管の第11実施例
を示す断面図である。
FIG. 16 is a sectional view showing an eleventh embodiment of the acceleration tube according to the present invention.

【図17】図17は図14に模式的に描いた加速管及び
この加速管での電子の軌跡を計算機で描いた図である。
FIG. 17 is a drawing in which a computer draws the acceleration tube schematically shown in FIG. 14 and the electron trajectory in the acceleration tube.

【図18】図18は従来の加速管の平板電極及び誘電体
リングの第1例を示す断面図である。
FIG. 18 is a sectional view showing a first example of a plate electrode and a dielectric ring of a conventional accelerating tube.

【図19】図19は従来の加速管の平板電極及び誘電体
リングの第2例を示す断面図である。
FIG. 19 is a sectional view showing a second example of the plate electrode and the dielectric ring of the conventional accelerating tube.

【図20】図20は従来の加速管の平板電極及び誘電体
リングの第3例を示す断面図である。
FIG. 20 is a cross-sectional view showing a third example of the plate electrode and the dielectric ring of the conventional accelerating tube.

【符号の説明】[Explanation of symbols]

10、20…正極性平板電極(アノード電極) 12、18…負極性平板電極(カソード電極) 10A、20A、20B、30A、38A、42A…円
筒電極 14、16、32…絶縁リング 14A、16A…真空沿面 30、36、38、40、42…加速管仕切電極 30B…ビーム通過用孔 30C、36C、40C…真空排気用孔 34…荷電粒子ビーム 36D、40D…テーパー部
10, 20 ... Positive plate electrode (anode electrode) 12, 18 ... Negative plate electrode (cathode electrode) 10A, 20A, 20B, 30A, 38A, 42A ... Cylindrical electrode 14, 16, 32 ... Insulating ring 14A, 16A ... Vacuum surface 30, 36, 38, 40, 42 ... Accelerator tube partitioning electrode 30B ... Beam passage hole 30C, 36C, 40C ... Vacuum exhaust hole 34 ... Charged particle beam 36D, 40D ... Tapered portion

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 正極性平板電極及び負極性平板電極によ
って絶縁リングを挟んで成る加速管において、 前記絶縁リングの真空沿面に対向し、且つ前記正極性平
板電極から前記負極性平板電極に向かって突出する円筒
電極を前記正極性平板電極に設けたことを特徴とする加
速管。
1. An accelerating tube formed by sandwiching an insulating ring between a positive electrode plate electrode and a negative electrode plate electrode, facing a vacuum creeping surface of the insulating ring and from the positive electrode plate electrode toward the negative electrode plate electrode. An accelerating tube characterized in that a protruding cylindrical electrode is provided on the positive plate electrode.
【請求項2】 前記円筒電極は、前記負極性平板電極に
向かって突出した先端部がナイフエッジ状に形成されて
いることを特徴とする請求項1の加速管。
2. The accelerating tube according to claim 1, wherein the cylindrical electrode has a knife edge-shaped tip portion projecting toward the negative plate electrode.
【請求項3】 ビーム通過用孔が穿設された加速用の加
速管仕切電極と絶縁リングとが交互に重ね合わされて成
る多段電極直流加速管において、 各加速管仕切電極のビーム通過用孔の周辺部に真空排気
用孔を穿設し、その真空排気用孔がビーム加速軸方向に
揃うように各加速管仕切電極を重畳することを特徴とす
る加速管。
3. A multi-stage direct current accelerating tube comprising an accelerating tube partition electrode for accelerating and a ring for accelerating the beam, and an insulating ring, which are alternately stacked. An accelerating tube, characterized in that a vacuum exhaust hole is provided in the peripheral portion, and the respective acceleration tube partition electrodes are superposed so that the vacuum exhaust hole is aligned in the beam acceleration axis direction.
【請求項4】 ビーム通過用孔が穿設された加速用の加
速管仕切電極と絶縁リングとが交互に重ね合わされて成
る多段電極直流加速管において、 前記絶縁リングよりも小さな外径を有するとともに前記
ビーム通過用孔よりも大きな内径を有し、且つ各加速管
仕切電極間の隙間よりも高さが小さい円筒電極を、その
円筒電極の中心軸がビーム加速軸と一致するように各加
速管仕切電極に固定したことを特徴とする加速管。
4. A multi-stage electrode DC accelerating tube in which an accelerating tube partitioning electrode for accelerating a beam passage hole and insulating rings are alternately stacked, having an outer diameter smaller than that of the insulating ring. A cylindrical electrode having an inner diameter larger than that of the beam passage hole and having a height smaller than the gap between the acceleration tube partitioning electrodes is arranged so that the central axis of the cylindrical electrode coincides with the beam acceleration axis. An acceleration tube characterized by being fixed to a partition electrode.
【請求項5】 ビーム通過用孔が穿設された加速用の加
速管仕切電極と絶縁リングとが交互に重ね合わされて成
る多段電極直流加速管において、 各加速管仕切電極のビーム通過用孔の周辺部に真空排気
用孔を穿設し、その真空排気用孔がビーム加速軸方向に
揃うように各加速管仕切電極を重畳するとともに、前記
絶縁リングよりも小さな外径を有するとともに前記ビー
ム通過用孔よりも大きな内径を有し、且つ各加速管仕切
電極間の隙間よりも高さが小さい円筒電極を、その円筒
電極の中心軸がビーム加速軸と一致するように各加速管
仕切電極に固定したことを特徴とする加速管。
5. A multi-stage direct current accelerating tube in which an accelerating tube partitioning electrode for accelerating a beam passing hole and insulating rings are alternately stacked, wherein a beam passing hole of each accelerating tube partitioning electrode is formed. A vacuum exhaust hole is formed in the peripheral portion, and each accelerating tube partitioning electrode is overlapped so that the vacuum exhaust hole is aligned with the beam accelerating axis direction and has an outer diameter smaller than that of the insulating ring and allows the beam to pass therethrough. A cylindrical electrode having an inner diameter larger than that of the working hole and a height smaller than the gap between the respective acceleration tube partitioning electrodes is attached to each acceleration tube partitioning electrode so that the central axis of the cylindrical electrode coincides with the beam acceleration axis. Accelerator tube characterized by being fixed.
【請求項6】 前記円筒電極は負極性電位側の加速管仕
切電極に向かって突出し、その突出した先端部がナイフ
エッジ状に形成されていることを特徴とする請求項4又
は5の加速管。
6. The accelerating tube according to claim 4, wherein the cylindrical electrode projects toward the accelerating tube partitioning electrode on the negative potential side, and the projecting tip portion is formed in a knife edge shape. ..
【請求項7】 ビーム通過用孔が穿設された加速用の加
速管仕切電極と絶縁リングとが交互に重ね合わされて成
る多段電極直流加速管において、 前記絶縁リングよりも内側に位置する各加速管仕切電極
を円錐台状に折り曲げて突出させ、そのテーパー部又は
平板部に真空排気用孔を穿設し、その真空排気用孔がビ
ーム加速軸方向に揃うように各加速管仕切電極を重畳す
ることを特徴とする加速管。
7. A multi-stage electrode DC accelerating tube in which an accelerating tube partition electrode for accelerating having a beam passage hole and an insulating ring are alternately stacked, wherein each accelerating member positioned inside the insulating ring. Bend the tube partition electrode into a truncated cone shape and project it, and make a hole for vacuum exhaust in the tapered part or flat plate part, and superimpose each acceleration tube partition electrode so that the hole for vacuum exhaust is aligned with the beam acceleration axis direction. Accelerator tube characterized by.
【請求項8】 前記真空排気用孔に達しない外径を有す
るとともに前記ビーム通過用孔よりも大きな内径を有
し、且つ各加速管仕切電極間の隙間よりも高さが小さい
円筒電極を、その円筒電極の中心軸がビーム加速軸と一
致するように各加速管仕切電極に固定したことを特徴と
する請求項7の加速管。
8. A cylindrical electrode having an outer diameter that does not reach the vacuum exhaust hole, an inner diameter that is larger than the beam passage hole, and a height that is smaller than the gap between the acceleration tube partition electrodes. The accelerating tube according to claim 7, which is fixed to each accelerating tube partitioning electrode so that the central axis of the cylindrical electrode coincides with the beam accelerating axis.
JP4036394A 1992-02-24 1992-02-24 Accelerator tube Expired - Fee Related JP2615300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4036394A JP2615300B2 (en) 1992-02-24 1992-02-24 Accelerator tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4036394A JP2615300B2 (en) 1992-02-24 1992-02-24 Accelerator tube

Publications (2)

Publication Number Publication Date
JPH05234698A true JPH05234698A (en) 1993-09-10
JP2615300B2 JP2615300B2 (en) 1997-05-28

Family

ID=12468641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4036394A Expired - Fee Related JP2615300B2 (en) 1992-02-24 1992-02-24 Accelerator tube

Country Status (1)

Country Link
JP (1) JP2615300B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068140A (en) * 2012-12-24 2013-04-24 江苏达胜加速器制造有限公司 Electronic load restraining type high-voltage accelerating tube
JP2014053202A (en) * 2012-09-07 2014-03-20 Japan Atomic Energy Agency High potential gradient type single-gap acceleration tube
JP2015530719A (en) * 2012-09-28 2015-10-15 シーメンス アクティエンゲゼルシャフト High voltage electrostatic field generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271972A (en) * 1975-12-12 1977-06-15 Hitachi Ltd Acceleration tube
JPS6412369U (en) * 1987-07-13 1989-01-23
JPH04141998A (en) * 1990-09-29 1992-05-15 Shimadzu Corp Acceleration tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271972A (en) * 1975-12-12 1977-06-15 Hitachi Ltd Acceleration tube
JPS6412369U (en) * 1987-07-13 1989-01-23
JPH04141998A (en) * 1990-09-29 1992-05-15 Shimadzu Corp Acceleration tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053202A (en) * 2012-09-07 2014-03-20 Japan Atomic Energy Agency High potential gradient type single-gap acceleration tube
JP2015530719A (en) * 2012-09-28 2015-10-15 シーメンス アクティエンゲゼルシャフト High voltage electrostatic field generator
US9847740B2 (en) 2012-09-28 2017-12-19 Siemens Aktiengesellschaft High voltage electrostatic generator
CN103068140A (en) * 2012-12-24 2013-04-24 江苏达胜加速器制造有限公司 Electronic load restraining type high-voltage accelerating tube

Also Published As

Publication number Publication date
JP2615300B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
US5215703A (en) High-flux neutron generator tube
EP0185074B1 (en) Radial geometry electron beam controlled switch utilizing wire-ion-plasma electron source and such a source
US5899666A (en) Ion drag vacuum pump
US3793550A (en) Electrode configuration for particle acceleration tube
JP3156763B2 (en) Electrode voltage application method and apparatus for cold cathode mounted electron tube
JPH05234698A (en) Accelerating tube
US3718836A (en) Multipactor ion generator
JPH0213900A (en) Sealed high beam flux neutron tube
US4939425A (en) Four-electrode ion source
US3042824A (en) Improved vacuum pumps
JP2713692B2 (en) Ion implantation equipment
JPH08124514A (en) High voltage isolator
JPH06196296A (en) Accelerating tube
RU2757210C1 (en) Wave plasma source of electrons
EP0095879B1 (en) Apparatus and method for working surfaces with a low energy high intensity ion beam
JPH10275566A (en) Ion source
US3532917A (en) Getter ion pump employing high frequency electric field between two electrodes one of which is secondary emissive
JPH0668961B2 (en) Fast atom beam source
JP3341497B2 (en) High frequency type charged particle accelerator
JPH088097A (en) Electrostatic ion accelerator
JP3586095B2 (en) Ion engine
JPS5947423B2 (en) Solid surface analysis device
US3324659A (en) Electrostatic thrustor with improved insulators
JPH0724204B2 (en) Ion source
JPH08236030A (en) Negative ion source

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees