JPH05234557A - Electron beam quantity measuring device - Google Patents

Electron beam quantity measuring device

Info

Publication number
JPH05234557A
JPH05234557A JP6982592A JP6982592A JPH05234557A JP H05234557 A JPH05234557 A JP H05234557A JP 6982592 A JP6982592 A JP 6982592A JP 6982592 A JP6982592 A JP 6982592A JP H05234557 A JPH05234557 A JP H05234557A
Authority
JP
Japan
Prior art keywords
electron
electron beam
sample
diffracted
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6982592A
Other languages
Japanese (ja)
Inventor
Norie Yaguchi
紀恵 矢口
Takeo Ueno
武夫 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP6982592A priority Critical patent/JPH05234557A/en
Publication of JPH05234557A publication Critical patent/JPH05234557A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure the measurement of crystallinity, and set the optimal exposure quantity for the diffracted electron beams at the time of photographing a diffraction image of the electron beam by providing a transmitted electron beam measuring element, a diffracted electron beam quantity measuring element and a current meter. CONSTITUTION:In a body 1 of an electron microscope, electron beams 3 generated from an electron gun 2 are incident on the sample 5 placed under a convergent lens 4. The electron beams 6 transmitted through the sample 5 without receiving the influence of the sample 5 and the electron beams 7 diffracted and scattered by the sample 5 among the electron beams 3 from an electron beam diffraction image 9 on the rear focal surface of an objective lens 8, and the electron beams 6 are incident on a transmitted electron beam quantity measuring element 11 through an image-formation lens 10, and the electron beams 7 are incident on a diffracted electron beam quantity measuring element 12 through the image-formation lens 10. Current meters 13, 14 are connected to each measuring element 11, 12 to read the flowing current, and the output thereof is transmitted to a computing circuit 15 or an exposure meter 17 to perform the predetermined computing, and a computed value is displayed on a display unit 16. Crystallinity of the sample 5 is thereby grasped as a numeric value, and the appropriate exposure quantity at the time of photographing a diffraction image of electron beam can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透過形電子顕微鏡の電
子線量測定装置に係り、特に、試料の結晶性の測定や露
出計の性能向上などに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron dose measuring device for a transmission electron microscope, and more particularly to measuring the crystallinity of a sample and improving the performance of an exposure meter.

【0002】[0002]

【従来の技術】従来の装置では、試料の影響を受けずに
透過した電子線量と、試料によって回折または散乱した
電子線量を分離して測定することは配慮されていなかっ
た。従って、試料の結晶性を調べる場合は、試料から得
られる電子線回折像を観察し、その回折像の模様を観察
者が肉眼で観察して判断していた。そのため、観察者に
よって、または観察した時によってその結晶性の判断に
は差が生じ、結果は抽象的なものでしかなかった。さら
に、結晶性の差が非常に小さい場合は、その差を見極め
るのは難しくあいまいな結果しか得られなかった。ま
た、電子線回折像の撮影の際に、全透過電子線量を測定
していたため、例えば、回折電子線だけに最適なフィル
ム露光量の設定は不可能であった。
2. Description of the Related Art In a conventional apparatus, it has not been considered to separately measure an electron dose transmitted without being influenced by a sample and an electron dose diffracted or scattered by the sample. Therefore, when investigating the crystallinity of a sample, the electron beam diffraction image obtained from the sample was observed, and the observer visually judged the pattern of the diffraction image. Therefore, the judgment of the crystallinity varies depending on the observer or the time of observation, and the result is only abstract. Furthermore, when the difference in crystallinity was very small, it was difficult to determine the difference, and only ambiguous results were obtained. Moreover, since the total transmitted electron dose was measured when the electron beam diffraction image was taken, it was impossible to set the optimum film exposure amount only for the diffracted electron beam, for example.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、試料
の結晶性を測定する点について配慮がされておらず、試
料の結晶性を判断するのに観察者による差及び観察する
時による差が生じ結晶性を確定できないという問題があ
った。
The above-mentioned prior art does not consider the point of measuring the crystallinity of the sample, and there are differences between the observer and the observer in judging the crystallinity of the sample. There was a problem that the crystallinity occurred and the crystallinity could not be determined.

【0004】また、電子線回折像撮影の際の回折電子線
の最適露光量の設定についても配慮がされておらず、撮
影者が見当をつけて露光量を設定したり、条件を変えて
何枚も撮影しなければならず無駄が多かった。
Further, no consideration is given to the setting of the optimum exposure amount of the diffracted electron beam at the time of photographing the electron beam diffraction image, so that the photographer can set the exposure amount by changing the conditions. I had to take a lot of pictures, which was a lot of waste.

【0005】本発明の目的は、試料の結晶性を数値でと
らえ、具体的に把握することにより、結晶性の測定をよ
り確実にすることにある。また、電子線回折像の撮影の
際、最適露光量を回折電子線に対し適切に設定すること
にある。
An object of the present invention is to make the crystallinity measurement more reliable by grasping the crystallinity of the sample numerically and grasping it concretely. Further, when the electron beam diffraction image is taken, the optimum exposure amount is set appropriately for the diffracted electron beam.

【0006】[0006]

【課題を解決するための手段】上記目的は、試料の影響
を受けずに透過した電子線量を測定する透過電子線量測
定子と電流計、また、試料により回折、散乱した電子線
量を測定する回折電子線量測定子とその電流計を設ける
ことにより、それぞれの電子線量を同時に、別々に測定
し、目的に応じてそれらを演算処理し、または、そのま
ま露出計の入力として用いることによって達成される。
[Means for Solving the Problems] The above objects are a transmission electron dose measuring element and an ammeter for measuring an electron dose transmitted without being influenced by a sample, and a diffraction for measuring an electron dose diffracted and scattered by the sample. By providing the electron dosimeter and its ammeter, the respective electron doses are simultaneously measured separately, and they are arithmetically processed according to the purpose, or they are directly used as the input of the exposure meter.

【0007】[0007]

【作用】試料を透過した電子線量を測定するために、試
料側から見て、電子線回折像の結像位置の後方に透過電
子線量測定子と回折電子線量測定子を設置する。各測定
子の位置に目的とする電子線が入るようにするために
は、結像レンズで電子線回折像の拡大率を調整するとい
う操作で行なわれ、この操作は、通常の像の観察の際行
なわれており実施上の問題はない。各測定子に入射した
電子線量は、それぞれ別個の電流計により測定される。
各測定値は、目的により演算回路または、露出計に入力
される。例えば、試料の結晶性を測定する場合は、各測
定値は演算回路に入り、その比を算出し、表示部で表示
する。一般に結晶性が高い物質の電子線回折像は、回折
点の輝度が高いが、結晶性が低い物質の電子線回折像
は、輝度が低い。ここで、試料を透過した電子線量を
A、試料により回折,散乱した電子線量をBとすると、
B/Aの値が、大きい程結晶性が高く、その値が小さい
程結晶性が低いので、比率を数値で表示することによっ
て明確に試料の結晶性を把握できる。
In order to measure the electron dose transmitted through the sample, the transmission electron dose measuring element and the diffracted electron dose measuring element are installed behind the image formation position of the electron beam diffraction image when viewed from the sample side. In order to make the target electron beam enter the position of each probe, it is performed by the operation of adjusting the magnification of the electron beam diffraction image with the imaging lens. There is no problem in implementation. The electron dose incident on each probe is measured by a separate ammeter.
Each measured value is input to an arithmetic circuit or an exposure meter depending on the purpose. For example, when measuring the crystallinity of a sample, each measured value enters an arithmetic circuit, calculates the ratio, and displays it on the display unit. Generally, an electron beam diffraction image of a substance having high crystallinity has high brightness at a diffraction point, but an electron beam diffraction image of a substance having low crystallinity has low brightness. Here, when the electron dose transmitted through the sample is A and the electron dose diffracted and scattered by the sample is B,
The larger the value of B / A, the higher the crystallinity, and the smaller the value, the lower the crystallinity. Therefore, the crystallinity of the sample can be clearly understood by displaying the ratio as a numerical value.

【0008】また、電子線回折像の撮影に際しては、各
測定値は露出計に入力される。測定者は、透過電子線を
基準として撮影するか、または回折電子線を基準とする
かその目的により、測定値A,Bの一方を選択して露出
計に入力することができる。これにより、電子線回折像
の撮影の際の最適露光量を容易に設定することができ
る。
Further, when the electron beam diffraction image is taken, each measured value is input to the exposure meter. The measurer can select one of the measurement values A and B and input it to the exposure meter by taking an image with the transmitted electron beam as the reference or with the diffracted electron beam as the reference or depending on the purpose. This makes it possible to easily set the optimum exposure amount when the electron beam diffraction image is taken.

【0009】[0009]

【実施例】以下、本発明の一実施例を図1により説明す
る。1は、電子顕微鏡の鏡体である。鏡体1内において
電子銃2から発せられた電子線3は、収束レンズ4の下
方に置かれた試料5に入射する。電子線3のうち試料5
の影響を受けずに透過した電子線6と試料5により回
折,散乱した電子線7は、対物レンズ8の後焦点面に電
子線回折像9を形成する。その電子線回折像9は、結像
レンズ10に拡大され前記透過電子線6は、透過電子線
量測定子11に入射し、前記回折電子線7は、回折電子
線量測定子12に入射する。前記透過電子線量測定子1
1に電流計13が、前記回折電子線量測定子12に電流
計14が接続され各々に流れる電流を読み取る。電流計
13,14の出力は演算回路15、または、露出計17
に伝達される。電流計13で読み取った値をA、電流計
14で読み取った値をBとしたとき、演算回路15で
は、B/Aという演算が行なわれ、その値は、表示部1
6に表示される。図2は、非晶質の試料の電子線回折像
の一例、図3は、結晶質試料の電子線回折像の一例であ
る。図2の場合、透過電子線量Aに対する回折電子線量
Bの割合は非常に小さい。一方図3の場合、Aに対する
Bの割合は大きくなる。このように、B/Aの値によっ
て、結晶性を測定することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. Reference numeral 1 is a mirror body of an electron microscope. The electron beam 3 emitted from the electron gun 2 in the mirror body 1 is incident on the sample 5 placed below the converging lens 4. Sample 5 of electron beam 3
The electron beam 6 that has been transmitted without being affected by and the electron beam 7 that is diffracted and scattered by the sample 5 forms an electron beam diffraction image 9 on the back focal plane of the objective lens 8. The electron beam diffraction image 9 is enlarged by the imaging lens 10, the transmitted electron beam 6 is incident on the transmitted electron dose probe 11, and the diffracted electron beam 7 is incident on the diffracted electron dose probe 12. The transmitted electron dosimeter 1
An ammeter 13 is connected to 1 and an ammeter 14 is connected to the diffracted electron dose measuring element 12 to read the current flowing through each element. The outputs of the ammeters 13 and 14 are the calculation circuit 15 or the exposure meter 17
Be transmitted to. When the value read by the ammeter 13 is A and the value read by the ammeter 14 is B, the operation circuit 15 performs an operation of B / A, and the value is displayed by the display unit 1.
6 is displayed. FIG. 2 is an example of an electron diffraction image of an amorphous sample, and FIG. 3 is an example of an electron diffraction image of a crystalline sample. In the case of FIG. 2, the ratio of the diffracted electron dose B to the transmitted electron dose A is very small. On the other hand, in the case of FIG. 3, the ratio of B to A becomes large. Thus, the crystallinity can be measured by the value of B / A.

【0010】あるいは、電子線回折像を撮影する際、透
過電子線6を基準に撮影するか回折電子線7を基準に撮
影するかにより、電流値A,Bのうちどちらか一方を露
出計17の入力とする。A,Bどちらかに対応した適正
露光量を露出計17が決定する。これにより、測定者
は、必要とする電子線回折像を確実に撮影できる。
Alternatively, when an electron diffraction image is taken, either the current value A or B is determined by the exposure meter 17 depending on whether the transmission electron beam 6 or the diffraction electron beam 7 is used as a reference. And input. The exposure meter 17 determines an appropriate exposure amount corresponding to either A or B. This allows the measurer to reliably capture the required electron beam diffraction image.

【0011】[0011]

【発明の効果】本発明によれば、透過電子線量に対する
回折電子線量の比から、試料の結晶性を数値で把握する
ことができる。また、透過電子線量と回折電子線量を別
々に測定することにより、電子線回折像撮影の際、適正
露光量を知ることができる。
According to the present invention, the crystallinity of a sample can be understood numerically from the ratio of the diffracted electron dose to the transmitted electron dose. Further, by separately measuring the transmitted electron dose and the diffracted electron dose, it is possible to know the proper exposure amount when the electron beam diffraction image is photographed.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の電子顕微鏡及び電子線量測定装置を
示す図である。
FIG. 1 is a diagram showing an electron microscope and an electron dose measuring apparatus according to an embodiment.

【図2】非晶質試料の電子線回折像の一例を示す図であ
る。
FIG. 2 is a diagram showing an example of an electron diffraction image of an amorphous sample.

【図3】結晶質試料の電子線回折像の一例を示す図であ
る。
FIG. 3 is a diagram showing an example of an electron diffraction image of a crystalline sample.

【符号の説明】[Explanation of symbols]

1…電子顕微鏡鏡体、2…電子銃、3…電子線、4…収
束レンズ、5…試料、6…透過電子線、7…回折電子
線、8…対物レンズ、9…電子線回折像、10…結像レ
ンズ、11…透過電子線量測定子、12…回折電子線量
測定子、13…電流計、14…電流計、15…演算回
路、16…表示部、17…露出計。
DESCRIPTION OF SYMBOLS 1 ... Electron microscope body, 2 ... Electron gun, 3 ... Electron beam, 4 ... Converging lens, 5 ... Sample, 6 ... Transmission electron beam, 7 ... Diffraction electron beam, 8 ... Objective lens, 9 ... Electron diffraction image, 10 ... Imaging lens, 11 ... Transmission electron dose measuring element, 12 ... Diffraction electron dose measuring element, 13 ... Ammeter, 14 ... Ammeter, 15 ... Arithmetic circuit, 16 ... Display part, 17 ... Exposure meter.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月18日[Submission date] December 18, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の電子顕微鏡及び電子線量測定装置を
示す図である。
FIG. 1 is a diagram showing an electron microscope and an electron dose measuring apparatus according to an embodiment.

【図2】非晶質試料の電子線回折像の写真である。FIG. 2 is a photograph of an electron diffraction image of an amorphous sample.

【図3】結晶質試料の電子線回折像の写真である。FIG. 3 is a photograph of an electron diffraction image of a crystalline sample.

【符号の説明】 1…電子顕微鏡鏡体、2…電子銃、3…電子線、4…収
束レンズ、5…試料、6…透過電子線、7…回折電子
線、8…対物レンズ、9…電子線回折像、10…結像レ
ンズ、11…透過電子線量測定子、12…回折電子線量
測定子、13…電流計、14…電流計、15…演算回
路、16…表示部、17…露出計。
[Explanation of Codes] 1 ... Electron microscope mirror body, 2 ... Electron gun, 3 ... Electron beam, 4 ... Converging lens, 5 ... Sample, 6 ... Transmission electron beam, 7 ... Diffraction electron beam, 8 ... Objective lens, 9 ... Electron beam diffraction image, 10 ... Imaging lens, 11 ... Transmission electron dose gauge, 12 ... Diffraction electron dose gauge, 13 ... Ammeter, 14 ... Ammeter, 15 ... Arithmetic circuit, 16 ... Display section, 17 ... Exposure Total.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電子線を試料に照射するための収束レンズ
系と試料から出てくる電子線を拡大するための結像レン
ズを備えた透過形電子顕微鏡において、試料の影響を受
けずに透過した電子線量と試料によって回折または散乱
した電子線量の両者を、同時に、別々に測定する機能を
備えたことを特徴とする電子線量測定装置。
1. A transmission electron microscope equipped with a converging lens system for irradiating a sample with an electron beam and an imaging lens for enlarging an electron beam emitted from the sample, wherein the sample is transmitted without being affected by the sample. An electron dose measuring device having a function of simultaneously and separately measuring both the electron dose that was performed and the electron dose that was diffracted or scattered by the sample.
JP6982592A 1992-02-19 1992-02-19 Electron beam quantity measuring device Pending JPH05234557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6982592A JPH05234557A (en) 1992-02-19 1992-02-19 Electron beam quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6982592A JPH05234557A (en) 1992-02-19 1992-02-19 Electron beam quantity measuring device

Publications (1)

Publication Number Publication Date
JPH05234557A true JPH05234557A (en) 1993-09-10

Family

ID=13413925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6982592A Pending JPH05234557A (en) 1992-02-19 1992-02-19 Electron beam quantity measuring device

Country Status (1)

Country Link
JP (1) JPH05234557A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285780B2 (en) 2003-07-09 2007-10-23 Carl Zeiss Nts Gmbh Detector system for a scanning electron microscope and a scanning electron microscope incorporating said detector system
WO2011046093A1 (en) * 2009-10-15 2011-04-21 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and film thickness measurement method
WO2014061690A1 (en) * 2012-10-18 2014-04-24 株式会社 日立ハイテクノロジーズ Electron microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285780B2 (en) 2003-07-09 2007-10-23 Carl Zeiss Nts Gmbh Detector system for a scanning electron microscope and a scanning electron microscope incorporating said detector system
WO2011046093A1 (en) * 2009-10-15 2011-04-21 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and film thickness measurement method
JP2011086470A (en) * 2009-10-15 2011-04-28 Hitachi High-Technologies Corp Charged particle beam device and method of measuring film thickness
US8680465B2 (en) 2009-10-15 2014-03-25 Hitachi High-Technologies Corporation Charged particle beam apparatus and film thickness measurement method
WO2014061690A1 (en) * 2012-10-18 2014-04-24 株式会社 日立ハイテクノロジーズ Electron microscope

Similar Documents

Publication Publication Date Title
US7158609B2 (en) X-ray crystal orientation measuring method and X-ray crystal orientation measuring apparatus
US3565568A (en) Method and apparatus for ascertaining geometric deviations from an ideal surface by optical means
JPS6339908B2 (en)
JP3921275B2 (en) Apparatus for measuring the luminosity and chromaticity of an object
EP0402244A2 (en) Method for calibrating a radiological system and for measuring equivalent thickness of an object
US3074312A (en) Exposure meter
JPH05234557A (en) Electron beam quantity measuring device
US7265343B2 (en) Apparatus and method for calibration of an optoelectronic sensor and for mensuration of features on a substrate
US4264210A (en) Dot percentage measuring device
EP0587985B1 (en) Method and apparatus for the controle of illumination for fluorescence micro-photography
EP0873496B1 (en) Test equipment for colour printing with CCD camera and framegrabber
US4371265A (en) Dot percentage measuring device
JPH0229983B2 (en)
JP3333940B2 (en) Apparatus and method for calibrating apparatus for measuring layer thickness using X-rays
Fürth et al. The Fuerth microphotometer and its application in physics
Campbell et al. Data Preparation for Quantitative High-Resolution Electron Microscopy
JPH03230670A (en) Picture reader and bone measuring device
JPH01219529A (en) Method and device for stress measurement
Buhr et al. Intercomparison of visual diffuse transmission density measurements
Baker Automatic recording instrument for measuring optical transfer functions
JP3282580B2 (en) Laser diffraction / scattering particle size distribution analyzer
Silvester et al. A method for the routine evaluation of dry mass from electron micrographs
JPH08242401A (en) Measuring method for size of optical focus of radioactive ray generating tube
Wroblewski et al. Mapping in real and reciprocal space
JPH1137956A (en) Structure-inspecting instrument by transmission x-rays