JPH0523382B2 - - Google Patents

Info

Publication number
JPH0523382B2
JPH0523382B2 JP10725785A JP10725785A JPH0523382B2 JP H0523382 B2 JPH0523382 B2 JP H0523382B2 JP 10725785 A JP10725785 A JP 10725785A JP 10725785 A JP10725785 A JP 10725785A JP H0523382 B2 JPH0523382 B2 JP H0523382B2
Authority
JP
Japan
Prior art keywords
light
paper
amount
closed loop
basis weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10725785A
Other languages
Japanese (ja)
Other versions
JPS61265555A (en
Inventor
Seiichiro Kyobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP60107257A priority Critical patent/JPS61265555A/en
Publication of JPS61265555A publication Critical patent/JPS61265555A/en
Publication of JPH0523382B2 publication Critical patent/JPH0523382B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • G01N21/3559Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content in sheets, e.g. in paper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets
    • G01N2021/8609Optical head specially adapted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets
    • G01N2021/8663Paper, e.g. gloss, moisture content

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はシート状の紙の水分量を測定する装置
に関し、更に詳しくは、紙の種類に関係なく、ま
た同一種類の紙の場合であつても坪量による影響
を受けることなく、常に同一感度で測定が行なえ
る紙の水分測定装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a device for measuring the moisture content of sheet-like paper, and more specifically, it relates to a device for measuring the moisture content of sheet-like paper, and more specifically, it is applicable regardless of the type of paper or even in the case of the same type of paper. This invention relates to a paper moisture measuring device that can always perform measurements with the same sensitivity without being affected by basis weight.

<従来の技術> 紙の水分量は、例えば抄紙機または塗工機にお
いて紙の品質を維持する上で重要な管理項目とな
つている。
<Prior Art> The moisture content of paper is an important control item in maintaining the quality of paper, for example in paper machines or coating machines.

第9図及び第10図は紙の水分量を測定する為
の従来装置であつて、第9図は一回透過方式の水
分量測定装置を示し、第10図は多重散乱方式の
水分量測定装置を示す。
Figures 9 and 10 are conventional devices for measuring the moisture content of paper. Figure 9 shows a single transmission method moisture content measurement device, and Figure 10 shows a multiple scattering method moisture content measurement device. Show the device.

第9図において、1,2は被測定体である紙3
を挟んで対向配置された一対のヘツドで、上側の
ヘツド1は照射部を、下側のヘツド2は検出部を
構成する。
In Fig. 9, 1 and 2 are paper 3 which is the object to be measured.
A pair of heads are arranged opposite to each other with the upper head 1 constituting an irradiating section, and the lower head 2 constituting a detecting section.

照射部1内において、4は光源で、ここからの
光はレンズ5により平行光線にされ、回転フイル
タ6に与えられる。回転フイルタ6には二種類の
光学フイルタ6a,6bが設けられており、光学
フイルタ6aによつて、水分によつて吸収されな
いスペクトル帯域(例えば波長1.95μm)の基準
光を発生させ、光学フイルタ6bによつて、水分
量に応じて吸収されるスペクトル帯域(例えば
1.80μm)の測定光を発生させる。
In the irradiation unit 1, numeral 4 denotes a light source, and the light from this source is converted into parallel rays by a lens 5 and applied to a rotary filter 6. The rotary filter 6 is provided with two types of optical filters 6a and 6b.The optical filter 6a generates reference light in a spectral band (for example, wavelength 1.95 μm) that is not absorbed by moisture, and the optical filter 6b spectral bands that are absorbed depending on the water content (e.g.
1.80μm) measurement light is generated.

これら基準光と測定光とは、回転フイルタ6の
回転に従い、照射窓7から紙3へ時分割的に照射
される。
These reference light and measurement light are time-divisionally irradiated onto the paper 3 from the irradiation window 7 as the rotary filter 6 rotates.

紙3を透過した光は入射窓8より検出部2内に
入り、集光レンズ9で集光された後光検出器10
によつて検出される。11は演算器で、検出器1
0から時分割的に与えられた測定光に基づく測定
信号Mと基準光に基づく基準信号Rとをホールド
し、M/Rなる演算を行なう。信号M,Rの比を
とることによつて、光源4並びに光検出器10の
特性の変化を打消し、温度変動による影響を補償
した信号を得る。
The light transmitted through the paper 3 enters the detection section 2 through the entrance window 8, and is focused by the condenser lens 9, then passes through the light detector 10.
detected by. 11 is a computing unit, detector 1
A measurement signal M based on the measurement light given in a time-division manner from 0 and a reference signal R based on the reference light are held and a calculation M/R is performed. By taking the ratio of the signals M and R, changes in the characteristics of the light source 4 and the photodetector 10 are canceled out, and a signal is obtained that compensates for the effects of temperature fluctuations.

しかしながら、このような1回透過方式の場
合、紙質によつて感度が変わり、表面での散乱の
少ない紙質の場合、水分感度が大幅に低下する欠
点があつた。第11図はこの状態を示す特性図
で、縦軸f(MW)は装置出力を表わし、横軸
MWは水分量を表わす。尚、f(MW)は、 f(MW)=Z+S・(M/R) ……(1) なる関係式で表わされ、零点調整用のバイアスZ
と演算器11の出力(M/R)にスバン調整用の
係数Sを掛け合わせたものとの和で表わすことが
出来る。
However, in the case of such a single transmission method, the sensitivity varies depending on the paper quality, and in the case of a paper quality that causes little scattering on the surface, there is a drawback that the moisture sensitivity decreases significantly. Figure 11 is a characteristic diagram showing this state, where the vertical axis f (MW) represents the device output and the horizontal axis
MW represents water content. In addition, f(MW) is expressed by the relational expression f(MW)=Z+S・(M/R)...(1), and the bias Z for zero point adjustment is
and the output (M/R) of the arithmetic unit 11 multiplied by a coefficient S for Subang adjustment.

図中、曲線GPは機械パルプを主原料とするGP
紙で、光を良く散乱する紙質の場合を表わし、曲
線CGPは機械パルプと化学パルプとが半々の
CGP紙で、光の散乱が少ない紙質の場合を表わ
し、曲線SPは光の散乱が更に少ないSP(サルフ
アイド・パルプ)紙の場合を表わす。
In the figure, the curve GP is a GP whose main raw material is mechanical pulp.
This represents the case of paper with a quality that scatters light well, and the curve CGP shows the case where mechanical pulp and chemical pulp are 50/50.
This represents the case of CGP paper with less light scattering, and the curve SP represents the case of SP (sulfide pulp) paper with even less light scattering.

このように、水分感度は紙質によつて異なり、
テイツシユ・ペーパーのような光の散乱が非常に
少ないSP紙の場合、感度が大幅に低下する欠点
があつた。
In this way, moisture sensitivity varies depending on the paper quality.
SP paper, such as Tateshiyu paper, which scatters very little light, had the disadvantage of significantly lower sensitivity.

これに対し、特公昭58−7938号により第10図
に示すような散乱方式の水分量測定装置が提案さ
れている。図中、第9図における要素と同じ要素
には同一符号を付し、これらについての説明は省
略する。12は光源4からの光を断続する回転体
で、この部分には第9図におけるような光学フイ
ルタは設けられていない。照射部1の照射窓7と
検出部2の入射窓8とは互いにずれて設けられて
おり、照射部1と検出部2の対向面には反射膜1
3,14が設けられている。照射部1からの断続
光は、反射膜13,14間で乱反射され、検出部
2へ導かれる。
In contrast, Japanese Patent Publication No. 58-7938 proposes a scattering type moisture content measuring device as shown in FIG. In the figure, the same elements as those in FIG. 9 are given the same reference numerals, and explanations thereof will be omitted. Reference numeral 12 denotes a rotating body that cuts off the light from the light source 4, and an optical filter as shown in FIG. 9 is not provided in this part. The irradiation window 7 of the irradiation section 1 and the entrance window 8 of the detection section 2 are provided offset from each other, and a reflective film 1 is provided on the opposing surface of the irradiation section 1 and the detection section 2.
3 and 14 are provided. The intermittent light from the irradiation section 1 is diffusely reflected between the reflective films 13 and 14 and guided to the detection section 2.

入射窓8からの光は光分割器15で2分され、
一方は、M信号系、即ち、光学フイルタ16、レ
ンズ17を経て光検出器18に導かれ、他方は、
R信号系、即ち、光学フイルタ19、レンズ20
を経て光検出器21に導かれる。光検出器18,
21からの信号は演算器22に加えられ、M/R
なる演算が行なわれる。
The light from the entrance window 8 is split into two by a light splitter 15,
One is guided to the photodetector 18 via the M signal system, that is, the optical filter 16 and the lens 17, and the other is
R signal system, that is, optical filter 19, lens 20
The light is guided to the photodetector 21 through the. photodetector 18,
The signal from 21 is applied to arithmetic unit 22, and M/R
The following calculation is performed.

このような散乱方式の場合、紙3を挟み反射膜
13,14間で光が多重反射される為、光路長が
長くとれ、感度が上がり紙質の影響を受けにくく
なる利点がある。
In the case of such a scattering method, since light is multiple-reflected between the reflective films 13 and 14 with the paper 3 in between, there are advantages that the optical path length can be long, the sensitivity is increased, and the reflection is less affected by the paper quality.

しかしながら、このような方式による場合、同
一種類の紙質でも、坪量によつて水分感度が微妙
に変化する。第12図はこの状態を示す特性図
で、縦軸f(MW)は装置出力を表わし、横軸
MPは水分率を表わす。曲線BW1は坪量90g/
m2の場合を表わし、曲線BW2は坪量60g/m2
場合を表わし、曲線BW3は坪量30g/m2の場合
を表わす。
However, when such a method is used, the moisture sensitivity slightly changes depending on the basis weight even for the same type of paper. Figure 12 is a characteristic diagram showing this state, where the vertical axis f (MW) represents the device output and the horizontal axis
MP represents moisture content. Curve BW1 has a basis weight of 90g/
m 2 , curve BW2 represents the case where the basis weight is 60 g/m 2 , and curve BW3 represents the case where the basis weight is 30 g/m 2 .

このように、水分感度が坪量によつて変わる
為、従来装置では水分計の他に坪量計を併設し
て、この坪量計から得られる信号を用いて坪量に
よる影響を除去していた。
In this way, the moisture sensitivity changes depending on the basis weight, so in conventional equipment, a basis weight meter is installed in addition to the moisture meter, and the signal obtained from this basis weight meter is used to remove the influence of the basis weight. Ta.

更に、紙3を挟んで反射膜13,14が設けら
れており、これらの表面は紙3からの紙粉によつ
て汚れ易く、紙粉が表面にむらに付着したり、或
はこれら反射膜のうちの一方に偏つて付着した場
合、これによる誤差を充分補償することが出来な
かつた。
Further, reflective films 13 and 14 are provided with the paper 3 in between, and the surfaces of these films are easily stained by paper dust from the paper 3, and the paper dust may adhere unevenly to the surface, or these reflective films may If it adheres to one of the two sides, it is not possible to sufficiently compensate for the error caused by this.

<発明が解決しようとする問題点> 本発明が解決しようとする技術的課題は、紙質
の影響を受けず、前記散乱方式における如く、坪
量信号を用いて補償を行なう必要がなく、前記反
射面の汚れの問題が根本的に発生しない紙の水分
量測定装置を実現することにある。
<Problems to be Solved by the Invention> The technical problems to be solved by the present invention are that it is not affected by paper quality, does not require compensation using a basis weight signal as in the above-mentioned scattering method, and The object of the present invention is to realize a paper moisture content measuring device that fundamentally does not cause the problem of surface stains.

<問題点を解決するための手段> 本発明の構成は、水分量に応じて吸収されるス
ペクトル帯域の測定光と、水分によつて吸収され
ないスペクトル帯域の基準光とを時分割的に照射
する光源と、この光源から導かれた光を内部反射
面で反射させ、シート状の紙を挟んで光の閉ルー
プを形成する手段と、前記光の閉ループ内に設け
られた反射光量可変手段と、前記光の閉ループ外
に設けられ、前記反射光量可変手段を経て前記光
の閉ループ内の光が与えられる光検出手段とを備
え、この光検出手段で検出される前記基準光が一
定になるように前記反射量可変手段を制御し、前
記測定光に基づく測定信号と前記基準光に基づく
基準信号とより前記紙と水分量に関連した信号を
得るようにした。
<Means for Solving the Problems> The configuration of the present invention is to time-divisionally irradiate measuring light in a spectral band that is absorbed according to the amount of water and reference light in a spectral band that is not absorbed by water. a light source, a means for reflecting the light guided from the light source on an internal reflective surface to form a closed loop of light with a sheet of paper in between, a means for varying the amount of reflected light provided within the closed loop of light; and a light detection means provided outside the closed loop of light, to which the light within the closed loop of light is applied via the reflected light amount variable means, and the reference light detected by the light detection means is fixed. The reflection amount variable means is controlled to obtain a signal related to the paper and moisture content from a measurement signal based on the measurement light and a reference signal based on the reference light.

<作用> 前記の技術手段は次のように作用する。即ち、
テイツシユペーパー、コンデンサーペーパーのよ
うな光の散乱が極めて少ない紙質の場合、水分感
度は低く、光を良く散乱する紙質の場合、水分感
度は本来的に高い。一方、同一種類の紙質で坪量
のみ異なる場合、坪量の小さな薄い紙では水分感
度は低く、坪量の大きな厚い紙では水分感度は本
来的に高い。本発明装置はこのような点に着目し
て構成されている。
<Operation> The technical means described above operates as follows. That is,
Paper types that scatter light very little, such as Tateshi paper and condenser paper, have low moisture sensitivity, while paper types that scatter light well have inherently high moisture sensitivity. On the other hand, when the same type of paper differs only in basis weight, thin paper with a small basis weight has low moisture sensitivity, while thick paper with a large basis weight has inherently high moisture sensitivity. The device of the present invention is constructed with attention to such points.

即ち、光の散乱の少ない紙質の場合、前記反射
光量可変手段は前記光検出手段の出力に基づき前
記光の閉ループ内の反射光量を増大させるように
制御され、紙への入射光量を増やして水分感度を
高める。
That is, in the case of a paper quality that causes little light scattering, the reflected light amount variable means is controlled to increase the amount of reflected light in the closed loop of light based on the output of the light detection means, increasing the amount of light incident on the paper to reduce moisture. Increase sensitivity.

光を良く散乱する紙質の場合、前記反射光量可
変手段は前記光の閉ループ内の反射光量を少なく
するように制御され、紙への入射光量を減らし
て、光の散乱の少ない紙質の場合と同程度の水分
感度を実現する。
In the case of a paper quality that scatters light well, the reflected light amount variable means is controlled to reduce the amount of reflected light in the closed loop of light, reducing the amount of light incident on the paper to the same level as in the case of a paper quality that does not scatter light well. Achieving a degree of moisture sensitivity.

一方、同一種類の紙質で、坪量の小さな薄い紙
の場合透過光は多く、前記反射光量可変手段は前
記光検出手段の出力に基づき前記光の閉ループ内
の反射光量を増大させるように制御され、紙への
入射光量を増やして水分感度を高める。
On the other hand, in the case of thin paper of the same type of paper with a small basis weight, a large amount of transmitted light is transmitted, and the reflected light amount variable means is controlled to increase the amount of reflected light within the closed loop of light based on the output of the light detection means. , increasing the amount of light incident on the paper to increase moisture sensitivity.

坪量の大きな紙の場合透過光は少なく、前記反
射光量可変手段は前記光の閉ループ内の反射光量
を少なくするように制御され、紙への入射光量を
減らして、坪量の小さな紙の場合と同程度の水分
感度を実現する。
In the case of paper with a large basis weight, the transmitted light is small, and the reflected light amount variable means is controlled to reduce the amount of reflected light in the closed loop of light, reducing the amount of light incident on the paper, and in the case of paper with a small basis weight. Achieves moisture sensitivity similar to that of

<実施例> 以下図面に従い本発明の実施例を説明する。第
1図は本発明実施例装置と断面略図、第2図は第
1図においてA−A面に沿つて切り取つた断面図
である。図中、第9図及び第10図における要素
の同じ要素には同一符号が付されている。検出部
を構成する上側のヘツド23と下側のヘツド24
とは紙3を挟んで対向配置されている。
<Examples> Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view of an apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the plane A--A in FIG. In the figures, the same elements as in FIGS. 9 and 10 are given the same reference numerals. Upper head 23 and lower head 24 forming the detection section
and are placed opposite to each other with the paper 3 in between.

25は上側ヘツド23と下側ヘツド24に夫々
形成された光の通路で、内部壁面は鏡面に仕上げ
られている。上側ヘツド23の光の通路25には
窓25a,25bが設けられ、これらに対向し
て、下側ヘツド24の光の通路25には窓25
c,25dが夫々設けられている。
Reference numeral 25 denotes light passages formed in the upper head 23 and lower head 24, respectively, and the inner wall surfaces thereof are finished in a mirror finish. Windows 25a and 25b are provided in the light path 25 of the upper head 23, and windows 25a and 25b are provided in the light path 25 of the lower head 24, opposite to these.
c and 25d are provided, respectively.

上側ヘツド23の光の通路25には基準光と測
定光とを交互に光の通路内に導く為の小さな照射
窓25eが設けられ、更にこの光の通路の内部反
射面の一部には反射光量可変手段26が設けられ
ている。
The light path 25 of the upper head 23 is provided with a small irradiation window 25e for alternately guiding the reference light and measurement light into the light path, and a part of the internal reflection surface of this light path is provided with a reflection window 25e. A light quantity variable means 26 is provided.

第3図並びに第4図はこの入射光量可変手段の
具体例を示す斜視図である。第3図の場合、複数
のスリツトが設けられた二枚の鏡26a,26b
を重ね合せ、一方側の鏡26bを矢印B1方向に
動かし、スリツト部分と鏡面部分の面積が変更出
来るようになつている。第4図に示すものは、半
円の二枚の鏡26c,26dを重ね合せ、一方側
の鏡26dを矢印B2方向に回転させて鏡面部分
の面積を変え、反射光量を変更するようになつて
いる。
3 and 4 are perspective views showing specific examples of this incident light amount variable means. In the case of FIG. 3, two mirrors 26a and 26b are provided with a plurality of slits.
The areas of the slit portion and the mirror surface portion can be changed by superimposing the mirrors 26b on one side in the direction of arrow B1. In the device shown in Fig. 4, two semicircular mirrors 26c and 26d are overlapped, and one mirror 26d is rotated in the direction of arrow B2 to change the area of the mirror surface and change the amount of reflected light. ing.

27は光の通路25の外側、入射光量可変手段
26の背後に配置された積分球で、入射光量可変
手段26を通過した光を平均化する。積分球27
で平均化された光は光検出器28で検出される。
尚、積分球27の代わりに、オパールのような散
乱素子を使用して平均化しても良い。
An integrating sphere 27 is placed outside the light path 25 and behind the incident light amount variable means 26, and averages the light that has passed through the incident light amount variable means 26. integrating sphere 27
The averaged light is detected by a photodetector 28.
Note that instead of the integrating sphere 27, a scattering element such as an opal may be used for averaging.

29はサンプル・ホールド回路で、照射窓25
eより時分割的に与えられる測定光と基準光とに
同期して、測定光に基づく測定信号Mと基準光に
基づく基準信号Rとをホールドし、これらを中央
演算処理装置(CPU)に与えて装置出力を発生
させる一方、基準光に基づく基準信号Rを制御回
路30に与えている。
29 is a sample/hold circuit, and the irradiation window 25
In synchronization with the measurement light and reference light given in a time-sharing manner from e, a measurement signal M based on the measurement light and a reference signal R based on the reference light are held, and these are given to a central processing unit (CPU) A reference signal R based on the reference light is provided to the control circuit 30.

このようは構成で、照射窓25eから導かれた
光は光の通路25内において矢印で示すように反
射され、紙3を挟んで光の閉ループが形成され
る。この光の閉ループ内の光の一部は反射光量可
変手段26並びに積分球27を経て光検出器28
に与えられる。制御回路30にはサンプル・ホー
ルド回路29から基準信号Rが与えられており、
この信号の値が一定になるように反射光量可変手
段26が制御される。
With this configuration, the light guided from the irradiation window 25e is reflected within the light path 25 as shown by the arrow, and a closed loop of light is formed with the paper 3 in between. A part of the light in this closed loop passes through the reflected light amount variable means 26 and the integrating sphere 27, and then passes through the photodetector 28.
given to. A reference signal R is given to the control circuit 30 from the sample and hold circuit 29,
The reflected light amount variable means 26 is controlled so that the value of this signal is constant.

ところで、テイツシユペーパー、コンデンサー
ペーパーのような光の散乱が極めて少ない紙質の
場合、水分感度は低く、光を良く散乱する紙質の
場合、水分感度は本来的に高い。一方、同一種類
の紙質で坪量のみ異なる場合、坪量の小さな薄い
紙では水分感度は低く、坪量の大きな厚い紙では
水分感度は本来的に高い。
By the way, in the case of a paper quality that scatters very little light, such as tissue paper or condenser paper, the moisture sensitivity is low, and in the case of a paper quality that scatters light well, the moisture sensitivity is inherently high. On the other hand, when the same type of paper differs only in basis weight, thin paper with a small basis weight has low moisture sensitivity, while thick paper with a large basis weight has inherently high moisture sensitivity.

光の散乱の少ない紙質の場合、前記光の閉ルー
プ内の光の量は増大する。これにより光検出器2
8で検出される光の量も増大するが、基準信号R
が一定になるように反射光量可変手段26が制御
され、光検出器28へ入射する光の量が絞られ
る。この結果、前記光の閉ループ内の反射光量が
増大し、紙3への入射光量を増やして水分感度を
高める。
For paper types that scatter less light, the amount of light in the closed loop of light increases. As a result, the photodetector 2
The amount of light detected at 8 also increases, but the reference signal R
The reflected light amount variable means 26 is controlled so that the amount of reflected light is constant, and the amount of light incident on the photodetector 28 is narrowed down. As a result, the amount of reflected light in the closed loop of light increases, increasing the amount of light incident on the paper 3 and increasing moisture sensitivity.

光を良く散乱する紙の場合、前記光の閉ループ
内の光の量は少なくなり、光検出器28で検出さ
れる基準記号Rの値は小さくなる。これに基づ
き、反射光量可変手段26は光検出器28で検出
される基準記号Rが一定値になるように制御さ
れ、前記光の閉ループ内の反射光量が少なくする
ように制御される。この結果、紙3への入射光量
は減るが、光を良く散乱する紙質の場合、水分感
度は本来的に高い為、前記光の散乱の少ない紙質
の場合と同程度の水分感度が実現される。
In the case of paper that scatters light well, the amount of light in the closed loop of light will be small and the value of the reference symbol R detected by photodetector 28 will be small. Based on this, the reflected light amount variable means 26 is controlled so that the reference symbol R detected by the photodetector 28 is a constant value, and the amount of reflected light within the closed loop of light is controlled to be reduced. As a result, the amount of light incident on the paper 3 decreases, but since the paper quality that scatters light well has inherently high moisture sensitivity, the same level of moisture sensitivity as the paper quality that scatters less light is achieved. .

一方、同一種類の紙質で、坪量の小さな薄い紙
の場合透過光は多く、前記光の閉ループ内の光の
量は増大する。これにより、光検出器28で検出
される光の量も増大するが、基準記号Rが一定に
なるように反射光量可変手段26が制御され、光
検出器28へ入射する光の量が絞られる。この結
果、前記光の閉ループ内の反射光量が増大し、紙
3への入射光量を増やして水分感度を高める。
On the other hand, in the case of thin paper of the same type of paper with a small basis weight, a large amount of transmitted light is transmitted, and the amount of light in the closed loop of light increases. As a result, the amount of light detected by the photodetector 28 also increases, but the reflected light amount variable means 26 is controlled so that the reference symbol R remains constant, and the amount of light incident on the photodetector 28 is narrowed down. . As a result, the amount of reflected light in the closed loop of light increases, increasing the amount of light incident on the paper 3 and increasing moisture sensitivity.

坪量の大きな紙の場合、透過光は少なく、前記
光の閉ループ内の光の量は少なくなる。光検出器
28で検出される基準信号Rの値は小さくなり、
反射光量可変手段26は光検出器28で検出され
る基準信号Rが一定値になるように制御され、前
記光の閉ループ内の反射光量が少なくするように
制御される。この結果、紙3への入射光量は減る
が、坪量の大きな厚い紙では水分感度は本来的に
高い為、前記坪量の小さな薄い紙の場合と同程度
の水分感度が実現される。
For paper with a higher basis weight, less light will be transmitted and the amount of light in the closed loop of light will be less. The value of the reference signal R detected by the photodetector 28 becomes smaller,
The reflected light amount variable means 26 is controlled so that the reference signal R detected by the photodetector 28 has a constant value, and is controlled so that the amount of reflected light within the closed loop of the light is reduced. As a result, although the amount of light incident on the paper 3 is reduced, since thick paper with a large basis weight inherently has high moisture sensitivity, moisture sensitivity comparable to that of thin paper with a small basis weight is achieved.

第5図及び第6図は本発明の他の実施例装置を
示す。第5図は実施例装置の断面略図、第6図は
第5図においてC−C面に沿つて切り取つた断面
図である。図中、第1図及び第2図における要素
と同じ要素には同一符号が付されている。本実施
例装置の場合、上側ヘツド23と下側ヘツド24
の対向面に長方形の窓25e,25fが設けら
れ、紙3を挟んで光の閉ループが形成されてい
る。
5 and 6 show another embodiment of the present invention. FIG. 5 is a schematic sectional view of the embodiment device, and FIG. 6 is a sectional view taken along the C--C plane in FIG. In the figure, the same elements as those in FIGS. 1 and 2 are given the same reference numerals. In the case of the device of this embodiment, the upper head 23 and the lower head 24
Rectangular windows 25e and 25f are provided on opposing surfaces of the paper 3 to form a closed loop of light with the paper 3 in between.

このような構成によつても、第1図及び第2図
に示した本発明実施例装置と同様な作用効果が得
られる。
Even with such a configuration, the same effects as the apparatus according to the embodiment of the present invention shown in FIGS. 1 and 2 can be obtained.

<発明の効果> 本発明によれば、測定すべき紙の種類に関係な
く同一感度で水分量の測定が出来、更に同一種類
の紙の場合において坪量による影響を受けること
がなく、従来装置のように水分量の測定の際に坪
量信号を用いて保障する必要がなく、水分計単体
で水分量の測定が行なえる。
<Effects of the Invention> According to the present invention, the moisture content can be measured with the same sensitivity regardless of the type of paper to be measured, and even when the paper is of the same type, it is not affected by the basis weight, making it possible to measure moisture content with the same sensitivity. There is no need to use a basis weight signal to ensure moisture content when measuring moisture content, as in

更にまた、本発明の方式は、従来の散乱方式の
ように紙3を挟んで反射膜を設け、これら反射膜
の間で多重反射させるものと異なる為、従来装置
で問題とされていつた反射膜の汚れの問題が根本
的に発生しない 第7図及び第8図は本発明実施例装置の効果を
示す特性図である。第7図で示すように紙の種類
に関係なく同一特性が得られ、また第8図で示す
ように同一種類の紙で坪量だけが異なるような場
合でも、同一特性が得られる。
Furthermore, the method of the present invention differs from the conventional scattering method in which a reflective film is provided with a sheet of paper 3 interposed and multiple reflections are performed between these reflective films. 7 and 8 are characteristic diagrams showing the effects of the apparatus according to the present invention. As shown in FIG. 7, the same characteristics can be obtained regardless of the type of paper, and as shown in FIG. 8, the same characteristics can be obtained even when the same type of paper differs only in basis weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例装置の断面略図、第2図
は第1図においてA−A面に沿つて切り取つた実
施例装置の断面図、第3図並びに第4図は本発明
実施例装置における入射光量可変手段の具体例を
示す斜視図、第5図は本発明の他の実施例装置を
示す断面略図、第6図は第5図においてB−B面
に沿つて切り取つた本発明実施例装置の断面図、
第7図及び第8図は本発明実施例装置の効果を示
す特性図、第9図及び第10図は従来装置の断面
略図、第11図及び第12図は従来装置の特性図
である。 3……シート状の紙、4……光源、6……回転
フイルタ、23……上側のヘツド、24……下側
ヘツド、25……光の通路、26……反射光量可
変手段、27……積分球、28……光検出器。
FIG. 1 is a schematic cross-sectional view of an apparatus according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the apparatus according to an embodiment taken along the A-A plane in FIG. 1, and FIGS. FIG. 5 is a schematic cross-sectional view showing another embodiment of the device of the present invention, and FIG. 6 is a perspective view showing a specific example of the incident light amount variable means in FIG. A cross-sectional view of an example device,
7 and 8 are characteristic diagrams showing the effects of the apparatus according to the embodiment of the present invention, FIGS. 9 and 10 are schematic sectional views of the conventional apparatus, and FIGS. 11 and 12 are characteristic diagrams of the conventional apparatus. 3... Sheet of paper, 4... Light source, 6... Rotating filter, 23... Upper head, 24... Lower head, 25... Light path, 26... Reflected light amount variable means, 27... ...integrating sphere, 28...photodetector.

Claims (1)

【特許請求の範囲】[Claims] 1 水分量に応じて吸収されるスペクトル帯域の
測定光と、水分によつて吸収されないスペクトル
帯域の基準光とを時分割的に照射する光源と、こ
の光源から導かれた光を内部反射面で反射させ、
シート状の紙を挟んで光の閉ループを形成する手
段と、前記光の閉ループ内に設けられた反射光量
可変手段と、前記光の閉ループ外に設けられ、前
記反射光量可変手段を経て前記光の閉ループ内の
光が与えられる光検出手段とを備え、この光検出
手段で検出される前記基準光が一定になるように
前記反射量可変手段を制御し、前記測定光に基づ
く測定信号と前記基準光に基づく基準信号とより
前記紙と水分量に関連した信号を得るようにした
紙の水分量測定装置。
1. A light source that time-divisionally irradiates measurement light in a spectral band that is absorbed depending on the moisture content and reference light in a spectral band that is not absorbed by moisture, and a light source that irradiates the light guided from this light source with an internal reflection surface. reflect,
A means for forming a closed loop of light by sandwiching a sheet of paper, a means for varying the amount of reflected light provided within the closed loop for light, and a means for varying the amount of reflected light provided outside the closed loop for light. and a light detection means to which light in a closed loop is applied, the reflection amount variable means is controlled so that the reference light detected by the light detection means is constant, and the measurement signal based on the measurement light and the reference light are controlled. A paper moisture content measuring device configured to obtain a signal related to the paper and moisture content using a reference signal based on light.
JP60107257A 1985-05-20 1985-05-20 Apparatus for measuring moisture content of paper Granted JPS61265555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60107257A JPS61265555A (en) 1985-05-20 1985-05-20 Apparatus for measuring moisture content of paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60107257A JPS61265555A (en) 1985-05-20 1985-05-20 Apparatus for measuring moisture content of paper

Publications (2)

Publication Number Publication Date
JPS61265555A JPS61265555A (en) 1986-11-25
JPH0523382B2 true JPH0523382B2 (en) 1993-04-02

Family

ID=14454461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60107257A Granted JPS61265555A (en) 1985-05-20 1985-05-20 Apparatus for measuring moisture content of paper

Country Status (1)

Country Link
JP (1) JPS61265555A (en)

Also Published As

Publication number Publication date
JPS61265555A (en) 1986-11-25

Similar Documents

Publication Publication Date Title
US4254337A (en) Infrared interference type film thickness measuring method and instrument therefor
US4302108A (en) Detection of subsurface defects by reflection interference
US3994586A (en) Simultaneous determination of film uniformity and thickness
US4015127A (en) Monitoring film parameters using polarimetry of optical radiation
US3631526A (en) Apparatus and methods for eliminating interference effect errors in dual-beam infrared measurements
JPS60620B2 (en) Method and device for measuring moisture content of paper
JPH0445772B2 (en)
US4320967A (en) Apparatus for measuring a radiation affecting parameter of a film or coating
JPS5839931A (en) Method of measuring characteristic of plastic film by using infrared ray
US5087817A (en) Infrared ray moisture meter
JPS5825219B2 (en) Red-crowned night heron
EP0176826A2 (en) Method and apparatus for dual-beam spectral transmission measurements
JP2004138499A (en) Gas concentration detection sensor
JPH0523382B2 (en)
JPS62156544A (en) Measuring device for moisture quantity of paper
JPS5850303Y2 (en) Moisture meter standard sample
RU2049985C1 (en) Refractometer
JPS62289749A (en) Reflection factor measuring instrument
SU737817A1 (en) Interference method of measuring refraction coefficient of dielectric films of variable thickness
JP2550872Y2 (en) Sheet material online measuring device
JP2932783B2 (en) Equipment for measuring characteristics of sheet-like objects
SU1755125A1 (en) Device for measuring index of refraction
JPS63277957A (en) Method and device for measuring optical absorptivity
JPH1123233A (en) Meter and method for measurement of film thickness by infrared rays
JPS6073406A (en) Infrared-ray thickness meter