JPH05232383A - Wide-angle zoom lens - Google Patents

Wide-angle zoom lens

Info

Publication number
JPH05232383A
JPH05232383A JP4034778A JP3477892A JPH05232383A JP H05232383 A JPH05232383 A JP H05232383A JP 4034778 A JP4034778 A JP 4034778A JP 3477892 A JP3477892 A JP 3477892A JP H05232383 A JPH05232383 A JP H05232383A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
positive
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4034778A
Other languages
Japanese (ja)
Inventor
Masahiro Nakatsuji
雅裕 中辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4034778A priority Critical patent/JPH05232383A/en
Priority to US07/912,718 priority patent/US5353163A/en
Publication of JPH05232383A publication Critical patent/JPH05232383A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain excellent image forming performance although a wide field angle range is included while maintaining simpler constitution by employing a zoom type which has a 1st positive lens group and a 2nd negative lens group and satisfying specific conditions. CONSTITUTION:The 1st lens group G1 consists of a front group GF with negative refracting power and a rear group GR with positive refracting power in order from the object side and the 2nd lens group has a positive lens which is convex to the image plane and a negative lens which is concave to the object side. Conditions shown by inequalities I-V1 are satisfied. Here, D2 is the on-axis distance from the most image-side lens surface in the front group GF of the 1st lens group G1 to the most object-side lens surface in the rear group GR, D3 the center thickness of the most object-side positive lens in the rear group GR of the 1st lens group G1, fw the focal length of the zoom lens at the wide-angle end, fF the focal length of the front group GF of the st lens group G1, f1 and f2 the focal lengths of the G1 and G2, and M the on-axis distance from the most object-side lens surface in the rear group GR of the G1 to the most image-side lens surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンパクトカメラに適
したズームレンズに関するものであり、特に広角端での
全画角が80゜程度の広角域を含む広角ズームレンズに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens suitable for a compact camera, and more particularly to a wide-angle zoom lens including a wide-angle range in which the total angle of view at the wide-angle end is about 80 °.

【0002】[0002]

【従来の技術】従来のコンパクトカメラ用のズームレン
ズとしては、例えば特開平2−73322号公報等で数
多く提案されている。また、この種のズームレンズは、
正の屈折力の第1レンズ群と負の屈折力の第2レンズ群
とからなり、この2つのレンズ群間隔を変化させること
により変倍が達成されている。
2. Description of the Related Art Many conventional zoom lenses for compact cameras have been proposed in, for example, Japanese Patent Application Laid-Open No. 2-73322. Also, this kind of zoom lens
It consists of a first lens group having a positive refractive power and a second lens group having a negative refractive power, and zooming is achieved by changing the distance between the two lens groups.

【0003】[0003]

【発明が解決しようとする課題】近年においては、コン
パクトカメラ用のズームレンズに対し、より広角化の要
求が高まっている。しかし、従来において提案されてい
るズームレンズでは、広角端での画角が60゜程度であ
り、広角を求める要求を十分に満たすものではなかっ
た。
In recent years, there is an increasing demand for a wider angle of view for zoom lenses for compact cameras. However, the zoom lens proposed in the past has an angle of view of about 60 ° at the wide-angle end, which does not sufficiently satisfy the requirement for a wide angle.

【0004】前述した特開平2ー73322号公報に示
されたような正の第1レンズ群G1と負の第2レンズ群
G2 とから成る従来の2群ズームレンズは、画角が80
゜程度の広画角を得ようとする場合、広角端におけるバ
ックフォーカスの確保及び望遠端における第1レンズ群
G1 と第2レンズ群G2 の群間隔の確保を同時に達成す
る事が困難であった。また、広画角を図るために第1レ
ンズ群G1 の焦点距離f1 を短くすると、これに伴い諸
収差が悪化する。このため、これらの諸収差を補正する
ためには、第1レンズ群G1 を多数のレンズ枚数を用い
て複雑な構成にしなければならなかった。
A conventional two-group zoom lens composed of a positive first lens group G1 and a negative second lens group G2 as disclosed in Japanese Patent Laid-Open No. 2-73322 mentioned above has an angle of view of 80.
In order to obtain a wide angle of view of about ゜, it was difficult to secure the back focus at the wide-angle end and the space between the first lens group G1 and the second lens group G2 at the telephoto end at the same time. .. Further, if the focal length f1 of the first lens group G1 is shortened in order to achieve a wide angle of view, various aberrations are worsened accordingly. Therefore, in order to correct these various aberrations, the first lens group G1 had to have a complicated structure using a large number of lenses.

【0005】以上の如く、従来の正負の2群ズームレン
ズでは、レンズ系のコンパクト化をはかりながら、単純
に広角化を図ることは、困難であった。そこで、特開平
3−17650号公報は、第1レンズ群G1 を負の前群
GF と正の後群GR とで構成し、いわゆるレトロフォー
カス型を採用した。この結果、第1レンズ群G1 の後側
主点を第1レンズ群G1 の最も像側のレンズ面よりも像
側に大きく離して位置させることで、広角端でのバック
フォーカスの確保と望遠端での第1レンズ群G1 と第2
レンズ群G2 の群間隔の確保とを同時に達成することが
可能になった。この様な構造をとるためには、負の前群
GF と正の後群GR の間隔をある程度確保する必要があ
る。このことは、全長の増加につながり、さらに周辺光
量確保のためには、負のレンズ群GF の有効径の拡大を
招く。逆に、全長の短縮のため、負の前群GF と正の後
群GR の間隔を小さくすると、負の前群GF の屈折力の
増大を招き、収差の補正が困難となる。
As described above, in the conventional positive / negative two-group zoom lens, it has been difficult to simply widen the angle while making the lens system compact. Therefore, in Japanese Patent Laid-Open No. 3-17650, the first lens group G1 is composed of a negative front group GF and a positive rear group GR, and a so-called retrofocus type is adopted. As a result, by arranging the rear principal point of the first lens group G1 at a position farther away from the image side than the most image side lens surface of the first lens group G1, ensuring the back focus at the wide angle end and the telephoto end. The first lens group G1 and the second
It has become possible to achieve the securing of the group spacing of the lens group G2 at the same time. In order to take such a structure, it is necessary to secure a certain distance between the negative front group GF and the positive rear group GR. This leads to an increase in the total length, and further an increase in the effective diameter of the negative lens group GF in order to secure the peripheral light amount. On the contrary, if the distance between the negative front lens group GF and the positive rear lens group GR is reduced in order to shorten the overall length, the refracting power of the negative front lens group GF is increased, which makes it difficult to correct aberrations.

【0006】そこで、本発明は、正の第1レンズ群G1
と負の第2レンズ群G2 とを有するズームタイプであ
り、より簡単な構成を維持しつつ画角が80゜程度の広
角域を含みながらも優れた結像性能を有する広角ズーム
レンズを提供することを目的としている。
Therefore, in the present invention, the positive first lens group G1
And a negative second lens group G2, which is a zoom type, and provides a wide-angle zoom lens having an excellent imaging performance while maintaining a simpler configuration and including a wide-angle range of about 80 °. The purpose is to

【0007】[0007]

【課題を解決する為の手段】上記の目的を達成するため
に、本発明は図1に示す如く、物体側より順に、正の屈
折力の第1レンズ群G1 と負の屈折力の第2レンズ群G
2 とを有し、第1レンズ群G1 と第2レンズ群G2 の群
間隔を変化させて変倍を行うズームレンズにおいて、第
1レンズ群G1 は、物体側より順に、負の屈折力の前群
GF と正の屈折力の後群GR とから構成され、前群GF
は少なくとも1枚の負レンズを有し、後群GR は少なく
とも2枚の正レンズを有し、後群GR は、物体側に凸面
を向けた正レンズと、物体側に凹面を向けたレンズと、
正レンズとを有し、第2レンズ群G2 は、像面に凸面を
向けた正レンズと、物体側に凹面を向けた負レンズを有
し、さらに以下の条件を満足する構成にした。 (1) 0.1 <D2 /fw < 0.4 (2) 0.2 <D3 /fw < 0.4 (3) 0.75<|fF /fw |<1.12 ; fF <0 (4) 0.6 <f1 /fw < 0.95 (5) 0.38<M/fw < 0.86 (6) 0.7 <|f2 /fw |< 1.7 ; f2 <0 但し、 D2 :第1レンズ群G1 の前群GF 中の最も像側のレン
ズ面から後群GR 中の最も物体側のレンズ面までの軸上
距離 D3 :第1レンズ群G1 の後群GR 中の最も物体側の正
レンズの中心厚 fw :広角端でのズームレンズの焦点距離 fF :第1レンズ群G1 の前群GF の焦点距離 f1 :第1レンズ群G1 の焦点距離 M :第1レンズ群G1 の後群GR 中の最も物体側のレ
ンズ面から最も像側のレンズ面までの軸上距離 f2 :第2レンズ群G2 の焦点距離
In order to achieve the above object, the present invention, as shown in FIG. 1, includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G1 having a negative refractive power. Lens group G
In the zoom lens having 2 and zooming by changing the group distance between the first lens group G1 and the second lens group G2, the first lens group G1 is arranged in order from the object side before the negative refracting power. It consists of the group GF and the rear group GR of positive refractive power, and the front group GF
Has at least one negative lens, the rear group GR has at least two positive lenses, and the rear group GR has a positive lens having a convex surface facing the object side and a lens having a concave surface facing the object side. ,
The second lens group G2 has a positive lens, has a positive lens having a convex surface facing the image surface, and has a negative lens having a concave surface facing the object side. (1) 0.1 <D2 / fw <0.4 (2) 0.2 <D3 / fw <0.4 (3) 0.75 <| fF / fw | <1.12; fF <0 (4) 0.6 <f1 / fw <0.95 (5) 0.38 <M / fw <0.86 (6) 0.7 <| f2 / fw | <1.7; f2 <0 where D2: the most lens side of the front lens group GF in the front lens group GF of the first lens group G1 to the rear lens group GR. Axial distance to the lens surface on the object side D3: Center thickness of the most object-side positive lens in the rear group GR of the first lens group G1 fw: Focal length of zoom lens at wide-angle end fF: First lens group G1 Of the front lens group GF of the first lens group G1: focal length of the first lens group G1 M: axial distance from the lens surface closest to the object side to the lens surface closest to the image side in the rear group GR of the first lens group G1 f2: Focal length of the second lens group G2

【0008】[0008]

【作用】本発明は、上記のような構成をとることによっ
て、負の前群GF と正の後群GR との間隔を変化させな
がら、負の前群GF の屈折力を増大させることなく、レ
ンズ系のコンパクト化を達成することができた。そし
て、負の前群GF の有効径の拡大をおさえつつ、広角端
での周辺光量の確保が可能になった。また、良好な性能
を得るために、諸条件式を満足するものである。以下
に、各条件式の説明を行う。
According to the present invention, by adopting the above structure, the distance between the negative front lens group GF and the positive rear lens group GR is changed, and the refractive power of the negative front lens group GF is not increased. We were able to achieve a compact lens system. Then, it becomes possible to secure the peripheral light amount at the wide-angle end while suppressing the expansion of the effective diameter of the negative front lens group GF. Further, in order to obtain good performance, it satisfies various conditional expressions. Each conditional expression will be described below.

【0009】先ず、条件式(1)は、第1レンズ群G1
中の負の前群GF と正の後群GR との間隔の適正な範囲
を規定するものである。条件式(1)の上限を越える
と、全長の増加につながると共に、広角端での周辺光量
の確保の為に負の前群GF の最も物体側の有効径が大き
くなり、コンパクト化が困難となる。さらに、負の前群
GF を通る主光線の第1レンズ面への入射高が大きくな
るため、負の方向の倍率色収差が大きく発生し好ましく
ない。反対に条件式(1)の下限を越えると、極端なコ
ンパクト化により第1レンズ群内でのそれぞれのレンズ
屈折力が強くなり、特に負の前群GF で発生するコマ収
差の変動が大きくなる。
First, the conditional expression (1) is defined by the first lens group G1.
It defines an appropriate range of the distance between the negative front group GF and the positive rear group GR. If the upper limit of conditional expression (1) is exceeded, the overall length will increase, and the effective diameter on the most object side of the negative front lens group GF will become large in order to secure peripheral light quantity at the wide-angle end, making it difficult to make it compact. Become. Further, since the height of incidence of the chief ray passing through the negative front lens group GF on the first lens surface becomes large, chromatic aberration of magnification in the negative direction becomes large, which is not preferable. On the contrary, if the lower limit of the conditional expression (1) is exceeded, the refracting power of each lens in the first lens group becomes strong due to the extreme compactness, and in particular, the fluctuation of the coma aberration generated in the negative front lens group GF becomes large. ..

【0010】条件式(2)は、第1レンズ群G1 内の正
の後群GR 中の最も物体側の正レンズの中心厚の適正な
範囲を規定するものである。条件式(2)の上限を越え
ると、広角端及び望遠端における倍率色収差を抑えた場
合、変倍時の特に中間の焦点距離状態における倍率色収
差が正として残り、変動が大きく補正できない。またレ
ンズ中心厚の増加は、重量の増加という欠点も生じる。
反対に、条件式(2)の下限を越えると、広角端での倍
率色収差の曲がりが大きく正の傾向となり、このことが
原因で、色に関するコマの収差の悪化を招く。
Conditional expression (2) defines an appropriate range of the center thickness of the positive lens closest to the object in the positive rear lens group GR in the first lens group G1. When the upper limit of conditional expression (2) is exceeded, when the chromatic aberration of magnification at the wide-angle end and the telephoto end is suppressed, the chromatic aberration of magnification remains positive during zooming, especially in the intermediate focal length state, and large fluctuations cannot be corrected. Further, an increase in the center thickness of the lens causes a drawback of an increase in weight.
On the contrary, when the value goes below the lower limit of the conditional expression (2), the bending of the chromatic aberration of magnification at the wide-angle end becomes large and tends to be positive, which causes deterioration of the coma aberration relating to color.

【0011】条件式(3)は、第1レンズ群G1 内の負
の前群GF の最適な焦点距離の範囲を規定するものであ
る。条件式(3)の上限を越えると、負の前群GF の屈
折力が弱くなり、第1レンズ群G1 全体ではレトロフォ
ーカス型としての効果が薄れてしまう。これにより、第
1レンズ群G1 の後側主点を第1レンズ群G1 の最も像
側のレンズ面より像側に、大きく離して位置させること
が困難になるため、広角端でのバックフォーカスの確保
と望遠端での第1レンズ群G1 と第2レンズ群G2 の群
間隔の確保とを同時に達成することが困難になり好まし
くない。反対に条件式(3)の下限を越えると、負の前
群GF の屈折力が強くなり過ぎ、広角端におけるコマ収
差の補正が難しくなる。さらに、負の前群GF と正の後
群GR との相互の偏心公差が厳しくなるという欠点も生
じる。
Conditional expression (3) defines the optimum range of the focal length of the negative front lens group GF in the first lens group G1. If the upper limit of conditional expression (3) is exceeded, the refractive power of the negative front lens group GF will be weakened, and the effect of the retrofocus type will be diminished in the entire first lens group G1. This makes it difficult to position the rear principal point of the first lens group G1 farther away from the image surface than the most image side lens surface of the first lens group G1. It is not preferable because it is difficult to achieve the securing and the securing of the group distance between the first lens group G1 and the second lens group G2 at the telephoto end at the same time. On the other hand, if the lower limit of conditional expression (3) is exceeded, the refracting power of the negative front lens group GF becomes too strong, and it becomes difficult to correct coma at the wide-angle end. Further, there is a drawback that the mutual eccentricity tolerance between the negative front group GF and the positive rear group GR becomes severe.

【0012】ところで、諸収差をバランス良く補正する
ためには、第1レンズ群G1 の後群GR は、物体側に凸
面を向けた正レンズと物体側に凹面を向けたレンズと正
レンズとを有することが望ましく、さらにこの後群GR
中の物体側に凹面を向けたレンズは負レンズで構成する
ことがより望ましい。このように、後群GR が正・負・
正のレンズを有する構成とすることにより、第1レンズ
群G1 全体としての屈折力配置は負・正・負・正とな
り、諸収差をバランスよく補正するのに好適な配置とな
る。特に、後群GR 中の最も物体側の正レンズは、前群
GF 内で発生するコマ収差を補正する機能を持ち、そし
て後群GR 中の物体側に凹面を向けたレンズは前群GF
と共に、広角端において負の第2レンズ群G2 で発生す
る正の歪曲収差をバランス良く補正する機能を持つ。
In order to correct various aberrations in good balance, the rear lens group GR of the first lens group G1 includes a positive lens having a convex surface facing the object side, a lens having a concave surface facing the object side, and a positive lens. It is desirable to have a further group GR
It is more desirable that the lens with the concave surface facing the object side is a negative lens. In this way, the rear group GR is positive / negative /
With the configuration having a positive lens, the refractive power arrangement of the first lens group G1 as a whole becomes negative / positive / negative / positive, which is an arrangement suitable for correcting various aberrations in a well-balanced manner. Particularly, the most object-side positive lens in the rear group GR has a function of correcting coma aberration generated in the front group GF, and the lens having a concave surface facing the object side in the rear group GR is the front group GF.
At the same time, it has a function of correcting in a well-balanced manner the positive distortion that occurs in the negative second lens group G2 at the wide-angle end.

【0013】そして、更にバランス良い収差補正を果た
すには、条件式(4)、(5)を満足することがより望
ましい。条件式(4)は第1レンズ群G1 の最適な焦点
距離を規定するものである。条件式(4)の上限を越え
ると、広角端における第2レンズ群G2 の結像倍率βが
1倍に近くなり、広角端では第2レンズ群G2 が著しく
像面に接近するため、広角端でのバックフォーカスを十
分に確保できなくなり好ましくない。反対に条件式
(4)の下限を越えると、第1レンズ群G1 の屈折力が
過大となり、球面収差、像面弯曲、非点収差、コマ収差
等の諸収差を良好に補正するのが難しくなる。尚、諸収
差の補正をより容易にしながら第1レンズ群G1 のレン
ズ構成枚数を少なく抑えるには、条件式(4)の下限値
を0.7とすることが望ましい。
Further, it is more desirable to satisfy the conditional expressions (4) and (5) in order to achieve a better balanced aberration correction. Conditional expression (4) defines the optimum focal length of the first lens group G1. When the upper limit of conditional expression (4) is exceeded, the imaging magnification β of the second lens group G2 at the wide-angle end becomes close to 1, and at the wide-angle end, the second lens group G2 remarkably approaches the image plane. It is not preferable because the back focus cannot be sufficiently secured. On the other hand, if the lower limit of conditional expression (4) is exceeded, the refracting power of the first lens group G1 will become excessive, and it will be difficult to satisfactorily correct various aberrations such as spherical aberration, field curvature, astigmatism, and coma. Become. In order to make it easier to correct various aberrations and to keep the number of lens components of the first lens group G1 small, it is desirable to set the lower limit of conditional expression (4) to 0.7.

【0014】条件式(5)は第1レンズ群G1 の後群G
R の最も物体側のレンズ面から最も像側のレンズ面まで
の最適な距離を規定するものである。条件式(5)の上
限を越えると、第1レンズ群G1 の軸上厚が大きくな
り、レンズ系全体の大型化を招くので好ましくない。反
対に条件式(5)の下限を越えて第1レンズ群G1 の後
群GR を小型化しようとすると、歪曲収差、コマ収差等
の軸外諸収差の悪化を招くので良好なる結像性能を得る
ことが困難となる。
Conditional expression (5) is defined by the rear group G of the first lens group G1.
It defines the optimum distance from the most object side lens surface of R to the most image side lens surface. If the upper limit of conditional expression (5) is exceeded, the axial thickness of the first lens group G1 becomes large, which leads to an increase in the size of the entire lens system, which is not preferable. On the contrary, if the rear group GR of the first lens group G1 is made smaller than the lower limit of conditional expression (5), off-axis aberrations such as distortion and coma are deteriorated, so that good imaging performance is obtained. Hard to get.

【0015】ところで、第2レンズ群G2 は、物体側か
ら順に、正・負のレンズ構成にすることが諸収差の補正
とバックフォーカスの確保のために好適である。特に第
2レンズ群G2 の正レンズの像側面を凸面に、負レンズ
の物体側面を凹面にすれば、歪曲収差、コマ収差の補正
に好適である。そして、さらに条件式(6)を満足する
ことがより好ましい。
Incidentally, it is preferable that the second lens group G2 has a positive / negative lens structure in order from the object side in order to correct various aberrations and secure a back focus. Particularly, if the image side surface of the positive lens of the second lens group G2 is made convex and the object side surface of the negative lens is made concave, it is suitable for correction of distortion and coma. It is more preferable that the conditional expression (6) is further satisfied.

【0016】条件式(6)は、諸収差の補正と変倍比の
確保とを同時に達成するために、第2レンズ群G2 の最
適な焦点距離を規定するものである。条件式(6)の上
限を越えると、第2レンズ群G2 の屈折力が弱くなるた
め、変倍に際する第2レンズ群G2 の移動量が大きくな
る。この結果、所望の変倍比を得ようとすると、第1レ
ンズ群G1 と第2レンズ群G2 とが機械的に干渉するた
め十分な変倍比を得ることが難しくなる。逆に条件式
(6)の下限を越えると、第2レンズ群G2 の屈折力が
大きくなり、少ない移動量で所望の変倍比が得られるた
め高変倍比化には有利であるが、歪曲収差、コマ収差等
の諸収差の補正が困難になり好ましくない。また、第1
レンズ群G1 と第2レンズ群G2 の相互の偏心公差も厳
しくなり、好ましくない。尚、第2レンズ群G2 中のい
ずれかのレンズ面を非球面にすれば、歪曲収差、コマ収
差、像面弯曲等の軸外諸収差の補正に効果的である。
Conditional expression (6) defines the optimum focal length of the second lens group G2 in order to simultaneously correct various aberrations and secure a zoom ratio. If the upper limit of conditional expression (6) is exceeded, the refracting power of the second lens group G2 becomes weak, and the amount of movement of the second lens group G2 during zooming increases. As a result, when trying to obtain a desired zoom ratio, it is difficult to obtain a sufficient zoom ratio because the first lens group G1 and the second lens group G2 mechanically interfere with each other. On the other hand, if the lower limit of conditional expression (6) is exceeded, the refractive power of the second lens group G2 becomes large, and the desired zoom ratio can be obtained with a small amount of movement, which is advantageous for achieving a high zoom ratio. It is not preferable because it becomes difficult to correct various aberrations such as distortion and coma. Also, the first
The mutual decentering tolerance between the lens group G1 and the second lens group G2 becomes strict, which is not preferable. If any of the lens surfaces in the second lens group G2 is aspherical, it is effective in correcting various off-axis aberrations such as distortion, coma, and field curvature.

【0017】さらに倍率色収差を良好に補正するために
は、第1レンズ群G1 の前群GF 中の負レンズのアッベ
数をνd とし、以下の条件式(7)を満足することがよ
り望ましい。 (7) νd >50
In order to satisfactorily correct lateral chromatic aberration, it is more preferable that the Abbe number of the negative lens in the front lens group GF of the first lens group G1 is νd and the following conditional expression (7) is satisfied. (7) νd > 50

【0018】[0018]

【実施例】図1〜図7は、それぞれ本発明の第1〜第7
実施例のレンズ構成図であり、各実施例とも正の屈折力
の第1レンズ群G1 と負の屈折力の第2レンズ群とから
成る2群構成の広角ズームレンズである。 第1レンズ
群G1 は基本的には負の屈折力の前群GF と正の屈折力
の後群GR とから構成され、前群GF は物体側に凸面を
向けた負メニスカスレンズLF1で構成され、後群GR は
両凸形状の正レンズLR1、両凹形状の負レンズLR2と両
凸形状の正レンズLR3との接合レンズであり全体として
物体側に凹面を向けたメニスカス形状の接合負レンズ、
両凸形状の正レンズLR4から構成され、第2レンズ群G
2 は、像側に凸面を向けた正メニスカスレンズL21と、
物体側に凹面を向けた負メニスカスレンズL22とから構
成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 7 show the first to seventh aspects of the present invention.
FIG. 1 is a lens configuration diagram of an example, and each example is a wide-angle zoom lens having a two-group configuration including a first lens group G1 having a positive refractive power and a second lens group having a negative refractive power. The first lens group G1 is basically composed of a front lens group GF having a negative refractive power and a rear lens group GR having a positive refractive power, and the front lens group GF is composed of a negative meniscus lens LF1 having a convex surface directed toward the object side. The rear lens group GR is a cemented lens of a biconvex positive lens LR1, a biconcave negative lens LR2 and a biconvex positive lens LR3, and is a meniscus-shaped cemented negative lens whose concave surface faces the object side as a whole.
The second lens group G is composed of a biconvex positive lens LR4.
2 is a positive meniscus lens L21 having a convex surface facing the image side,
And a negative meniscus lens L22 having a concave surface facing the object side.

【0019】尚、第1実施例〜第7実施例は基本的に同
一のレンズ構成であり、軸外の諸収差をよりバランス良
く補正するために、第2レンズ群中の負メニスカスレン
ズL22の物体側面に非球面を設けている。また広角端か
ら望遠端への変倍は、各実施例とも図1〜図7に示す如
く、第1レンズ群G1 と第2レンズ群G2 との群間隔が
縮小するように両レンズ群が共に物体側へ移動する。そ
して、各実施例とも絞りSは、第1レンズ群G1 の像側
に配置されており、変倍時には第1レンズ群G1 と一体
に移動する。
The first to seventh examples have basically the same lens construction, and in order to correct various off-axis aberrations in a better balance, the negative meniscus lens L22 in the second lens group is used. An aspherical surface is provided on the side surface of the object. Further, in the zooming from the wide-angle end to the telephoto end, as shown in FIGS. 1 to 7 in each of the embodiments, both lens groups are arranged so that the group distance between the first lens group G1 and the second lens group G2 is reduced. Move to the object side. In each embodiment, the diaphragm S is disposed on the image side of the first lens group G1 and moves integrally with the first lens group G1 during zooming.

【0020】以下において、それぞれ順に本発明におけ
る各実施例の諸元の値及び条件対応数値を掲げる。但
し、諸元表の左端の数字は物体側からの順序を表し、r
はレンズ面の曲率半径、dはレンズ面間隔、νはアッベ
数、nはd線(λ=587.6nm )における屈折率、2ωは
画角、FNOはFナンバー、fは全系の焦点距離を表して
いる。
In the following, the values of specifications and the numerical values corresponding to the conditions of the respective embodiments of the present invention will be listed in order. However, the number at the left end of the specifications table indicates the order from the object side, and r
Is the radius of curvature of the lens surface, d is the lens surface spacing, ν is the Abbe number, n is the refractive index at the d line (λ = 587.6 nm), 2ω is the angle of view, FNO is the F number, and f is the focal length of the entire system. It represents.

【0021】また、諸元の値に示す非球面は、光軸から
垂直方向の高さhにおける各非球面の頂点の接平面から
の光軸方向に沿った距離をX(h)とし、基準の近軸曲
率半径をr、円錐定数をk、n次の非球面係数をcn と
したとき、
Further, the aspherical surface shown in the specification values is a distance X (h) from the tangent plane of the apex of each aspherical surface at a height h in the vertical direction from the optical axis, and is defined as a reference value. Let r be the paraxial radius of curvature of k, k be the conic constant, and c n be the aspherical coefficient of order n.

【0022】[0022]

【数1】 [Equation 1]

【0023】で表している。It is represented by.

【0024】[0024]

【表1】 第1実施例の諸元 2ω=81.3°〜49.9°、FNO=4.08〜7.82 (変倍における可変間隔) f 24.7000 35.0000 47.0000 d 9 13.2523 7.3493 3.7351 d13 6.3891 19.7808 35.3828 (第1実施例の第10面の非球面形状) 円錐定数 k= .1000×10 非球面係数 c 2= .0000 c 4= .3439×10-4 c 6= .1040×10-6 c 8= .1110×10-8 c10= .1862×10-10 (条件対応数値) (1)D2 /fw =0.133 (2)D3 /fw =0.219 (3)|fF /fw |=0.838 (4)f1 /fw =0.790 (5)M/fw =0.664 (6)|f2/fw |=1.028 (7) νd =55.60[Table 1] Specifications of the first embodiment 2ω = 81.3 ° to 49.9 °, FNO = 4.08 to 7.82 (Variable distance in zooming) f 24.7000 35.0000 47.0000 d 9 13.2523 7.3493 3.7351 d13 6.3891 19.7808 35.3828 (Aspherical shape of the 10th surface of the first embodiment) Conic constant k = .1000 × 10 aspherical coefficient c 2 = .0000 c 4 = .3439 × 10 -4 c 6 = .1040 × 10 -6 c 8 = .1110 × 10 -8 c10 = .1862 × 10 -10 (Values corresponding to conditions) (1) D2 / fw = 0.133 (2) D3 / fw = 0.219 (3) | fF / fw | = 0.838 (4) f1 / fw = 0.790 (5) M / fw = 0.664 (6) | f2 / fw | = 1.028 (7) νd = 55.60

【0025】[0025]

【表2】 第2実施例の諸元 2ω=81.2°〜50.1°、FNO=4.08〜7.83 (変倍における可変間隔) f 24.7000 35.0000 47.0000 d 9 13.2618 7.3674 3.7585 d13 7.0341 21.0606 37.4022 (第2実施例の第10面の非球面形状) 円錐定数 k= .1000×10 非球面係数 c 2= .0000 c 4= .3149×10-4 c 6= .2485×10-7 c 8= .3372×10-8 c10= .8716×10-11 (条件対応数値) (1)D2 /fw =0.150 (2)D3 /fw =0.263 (3)|fF /fw |=0.804 (4)f1 /fw =0.772 (5)M/fw =0.668 (6)|f2/fw |=1.051 (7) νd =55.60[Table 2] Specifications of the second embodiment 2ω = 81.2 ° to 50.1 °, FNO = 4.08 to 7.83 (Variable distance in zooming) f 24.7000 35.0000 47.0000 d 9 13.2618 7.3674 3.7585 d13 7.0341 21.0606 37.4022 (Aspherical shape of the 10th surface of the second embodiment) Conic constant k = .1000 × 10 aspherical coefficient c 2 = .0000 c 4 = .3149 × 10 -4 c 6 = .2485 × 10 -7 c 8 = .3372 × 10 -8 c10 = .8716 × 10 -11 (Values corresponding to conditions) (1) D2 / fw = 0.150 (2) D3 / fw = 0.263 (3) | fF / fw | = 0.804 (4) f1 / fw = 0.772 (5) M / fw = 0.668 (6) | f2 / fw | = 1.051 (7) νd = 55.60

【0026】[0026]

【表3】 第3実施例の諸元 2ω=81.3°〜49.9°、FNO=4.10〜7.87 (変倍における可変間隔) f 24.7000 35.0000 47.0000 d 9 13.3040 7.3914 3.7713 d13 7.0230 20.7253 36.6891 (第3実施例の第10面の非球面形状) 円錐定数 k= .1000×10 非球面係数 c 2= .0000 c 4= .2758×10-4 c 6= .1565×10-6 c 8= .1325×10-8 c10= .6892×10-11 (条件対応数値) (1)D2 /fw =0.133 (2)D3 /fw =0.227 (3)|fF /fw |=0.760 (4)f1 /fw =0.782 (5)M/fw =0.664 (6)|f2/fw |=1.040 (7)νd =55.60[Table 3] Specifications of the third embodiment 2ω = 81.3 ° to 49.9 °, FNO = 4.10 to 7.87 (Variable distance in zooming) f 24.7000 35.0000 47.0000 d 9 13.3040 7.3914 3.7713 d13 7.0230 20.7253 36.6891 (Aspherical shape of the 10th surface of the third embodiment) Conic constant k = .1000 × 10 aspherical coefficient c 2 = .0000 c 4 = .2758 × 10 -4 c 6 = .1565 × 10 -6 c 8 = .1325 × 10 -8 c10 = .6892 × 10 -11 (Values corresponding to conditions) (1) D2 / fw = 0.133 (2) D3 / fw = 0.227 (3) | fF / fw | = 0.760 (4) f1 / fw = 0.782 (5) M / fw = 0.664 (6) | f2 / fw | = 1.040 (7) νd = 55.60

【0027】[0027]

【表4】 第4実施例の諸元 2ω=81.2°〜49.8°、FNO=4.08〜7.82 (変倍における可変間隔) f 24.7000 35.0000 47.0000 d 9 13.2718 7.3725 3.7606 d13 5.9704 19.2136 34.6425 (第4実施例の第10面の非球面形状) 円錐定数 k= .1000E ×10 非球面係数 c 2= .0000 c 4= .3207×10-4 c 6= .1167×10-6 c 8= .1127×10-8 c10= .1492×10-10 (条件対応数値) (1)D2 /fw =0.133 (2)D3 /fw =0.232 (3)|fF /fw |=0.833 (4)f1 /fw =0.794 (5)M/fw =0.670 (6)|f2/fw |=1.022 (7) νd =55.60[Table 4] Specifications of the fourth embodiment 2ω = 81.2 ° to 49.8 °, FNO = 4.08 to 7.82 (Variable distance in zooming) f 24.7000 35.0000 47.0000 d 9 13.2718 7.3725 3.7606 d13 5.9704 19.2136 34.6425 (Aspherical shape of the 10th surface of the fourth embodiment) Conic constant k = .1000E × 10 Aspherical coefficient c 2 = .0000 c 4 = .3207 × 10 -4 c 6 = .1167 × 10 -6 c 8 = .1127 × 10 -8 c10 = .1492 × 10 -10 (Values corresponding to conditions) (1) D2 / fw = 0.133 (2) D3 / fw = 0.232 (3) | fF / fw | = 0.833 (4) f1 / fw = 0.794 (5) M / fw = 0.670 (6) | f2 / fw | = 1.022 (7) νd = 55.60

【0028】[0028]

【表5】 第5実施例の諸元 2ω=81.2°〜49.7° FNO=4.08〜7.82 (変倍における可変間隔) f 24.7000 35.0000 47.0000 d 9 13.1481 7.3266 3.7623 d13 5.6707 18.9887 34.5049 (第5実施例の第10面の非球面形状) 円錐定数 k= .1000×10 非球面係数 c 2= .0000 c 4= .3906×10-4 c 6= .4141×10-6 c 8=-.1854×10-8 c10= .3529×10-10 (条件対応数値) (1)D2 /fw =0.133 (2)D3 /fw =0.263 (3)|fF /fw |=0.869 (4)f1 /fw =0.787 (5)M/fw =0.696 (6)|f2/fw |=1.018 (7) νd =60.14[Table 5] Specifications of the fifth embodiment 2ω = 81.2 ° to 49.7 ° FNO = 4.08 to 7.82 (Variable spacing in zooming) f 24.7000 35.0000 47.0000 d 9 13.1481 7.3266 3.7623 d13 5.6707 18.9887 34.5049 (Aspherical shape of the 10th surface of the fifth embodiment) Conic constant k = .1000 × 10 aspherical coefficient c 2 = .0000 c 4 = .3906 × 10 -4 c 6 = .414 1 × 10 -6 c 8 =-. 1854 × 10 -8 c10 = .3529 × 10 -10 (Values corresponding to conditions) (1) D2 / fw = 0. 133 (2) D3 / fw = 0.263 (3) | fF / fw | = 0.869 (4) f1 / fw = 0.787 (5) M / fw = 0.696 (6) | f2 / fw │ = 1.018 (7) νd = 60.14

【0029】[0029]

【表6】 第6実施例の諸元 2ω=80.9°〜49.7°、FNO=3.96〜7.60 (変倍における可変間隔) f 24.6992 35.0000 47.0018 d 9 13.3720 7.5415 3.9717 d13 5.6017 18.8215 34.2242 (第6実施例の第10面の非球面形状) 円錐定数 k = .1000×10 非球面係数 c 2= .0000 c 4= .3784×10-4 c 6= .6940×10-6 c 8=-.4462×10-8 c10= .5012×10-10 (条件対応数値) (1)D2 /fw =0.300 (2)D3 /fw =0.202 (3)|fF /fw |=1.115 (4)f1 /fw =0.791 (5)M/fw =0.675 (6)|f2 /fw |=1.015 (7) νd =60.64[Table 6] Specifications of the sixth embodiment 2ω = 80.9 ° to 49.7 °, FNO = 3.96 to 7.60 (Variable spacing in zooming) f 24.6992 35.0000 47.0018 d 9 13.3720 7.5415 3.9717 d13 5.6017 18.8215 34.2242 (Aspherical shape of the 10th surface of the sixth embodiment) Conic constant k = .1000 × 10 aspherical coefficient c 2 = .0000 c 4 = .3784 × 10 -4 c 6 = .69 40 × 10 -6 c 8 =-. 4462 × 10 -8 c10 = .5012 × 10 -10 (Values corresponding to conditions) (1) D2 / fw = 0. 300 (2) D3 / fw = 0.202 (3) | fF / fw | = 1.115 (4) f1 / fw = 0.791 (5) M / fw = 0.675 (6) | f2 / fw │ = 1.015 (7) νd = 60.64

【0030】[0030]

【表7】 第7実施例の諸元 2ω=81.2°〜49.8°、FNO=4.00〜7.66 (変倍における可変間隔) f 24.7000 35.0002 47.0006 d 9 13.3694 7.5413 3.9729 d13 5.6023 18.9256 34.4481 (第7実施例の第10面の非球面形状) 円錐定数 k = .1000×10 非球面係数 c 2= .0000 c 4= .3777×10-4 c 6= .8613×10-6 c 8=-.7697×10-8 c10= .6687×10-10 (条件対応数値) (1)D2 /fw =0.263 (2)D3 /fw =0.259 (3)|fF /fw |=0.994 (4)f1 /fw =0.787 (5)M/fw =0.680 (6)|f2 /fw |=1.018 (7)νd =60.64以上の各実施例の諸元の値よ
り、各実施例のレンズ系とも、7枚程度の少ないレンズ
構成枚数でコンパクトに構成されていることが分かる。
[Table 7] Specifications of the seventh embodiment 2ω = 81.2 ° to 49.8 °, FNO = 4.00 to 7.66 (Variable spacing during zooming) f 24.7000 35.0002 47.0006 d 9 13.3694 7.5413 3.9729 d13 5.6023 18.9256 34.4481 (Aspherical shape of the 10th surface of the seventh embodiment) Conic constant k = .1000 × 10 aspherical coefficient c 2 = .0000 c4 = .3777 × 10 -4 c 6 = .8613 × 10 -6 c 8 =-. 7697 × 10 -8 c10 = .6687 × 10 -10 (Values corresponding to conditions) (1) D2 / fw = 0. 263 (2) D3 / fw = 0.259 (3) | fF / fw | = 0.994 (4) f1 / fw = 0.787 (5) M / fw = 0.680 (6) | f2 / fw │ = 1.018 (7) ν d = 60.64 From the values of the specifications of each embodiment or more, it can be seen that the lens system of each embodiment is compactly configured with a small number of lens components of about 7 lenses. I understand.

【0031】また、第1〜第7実施例における広角端で
の諸収差図をそれぞれ図8、図11、図14、図17、
図20、図23、図26に示している。そして第1〜第
7実施例における中間焦点距離状態での諸収差図をそれ
ぞれ図9、図12、図15、図18、図21、図24、
図27に示している。そして、第1〜第7実施例におけ
る望遠端での諸収差図をそれぞれ図10、図13、図1
6、図19、図22、図25、図28に示している。な
お、各収差図中の点線はメリジオナル像面を、実線はサ
ジタル像面それぞれ示している。
Further, various aberration diagrams at the wide angle end in the first to seventh examples are shown in FIGS. 8, 11, 14, and 17, respectively.
It is shown in FIGS. 20, 23, and 26. FIGS. 9, 12, 15, 18, 21, and 24 are graphs showing various aberrations in the intermediate focal length state in the first to seventh examples, respectively.
It is shown in FIG. Then, various aberration diagrams at the telephoto end in the first to seventh examples are shown in FIGS. 10, 13, and 1, respectively.
6, FIG. 19, FIG. 22, FIG. 25, and FIG. The dotted line in each aberration diagram shows the meridional image plane, and the solid line shows the sagittal image plane.

【0032】各収差図から、広角端で80゜にも達する
広画角化が図られているにもかかわらず、広角端から望
遠端にわたり優れた結像性能を有していることが分か
る。
From each of the aberration diagrams, it can be seen that the image forming performance is excellent from the wide-angle end to the telephoto end, even though the wide angle of view reaches 80 ° at the wide-angle end.

【0033】[0033]

【発明の効果】以上の如く本発明によれば、コンパクト
で画角が80゜にも達し、しかも広角端から望遠端にわ
たり優れた結像性能を有する広角ズームレンズを提供す
ることができる。
As described above, according to the present invention, it is possible to provide a wide-angle zoom lens which is compact and has an angle of view of up to 80 ° and which has excellent image forming performance from the wide-angle end to the telephoto end.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第1実施例のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment according to the present invention.

【図2】本発明による第2実施例のレンズ構成図。FIG. 2 is a lens configuration diagram of a second embodiment according to the present invention.

【図3】本発明による第3実施例のレンズ構成図。FIG. 3 is a lens configuration diagram of a third embodiment according to the present invention.

【図4】本発明による第4実施例のレンズ構成図。FIG. 4 is a lens configuration diagram of a fourth embodiment according to the present invention.

【図5】本発明による第5実施例のレンズ構成図。FIG. 5 is a lens configuration diagram of a fifth embodiment according to the present invention.

【図6】本発明による第6実施例のレンズ構成図。FIG. 6 is a lens configuration diagram of a sixth embodiment according to the present invention.

【図7】本発明による第7実施例のレンズ構成図。FIG. 7 is a lens configuration diagram of a seventh embodiment according to the present invention.

【図8】本発明による第1実施例の広角端での諸収差
図。
FIG. 8 is a diagram of various types of aberration at the wide-angle end according to the first example of the present invention.

【図9】本発明による第1実施例の中間焦点距離状態で
の諸収差図。
FIG. 9 is a diagram of various types of aberration in the intermediate focal length state of Example 1 according to the present invention.

【図10】本発明による第1実施例の望遠端での諸収差
図。
FIG. 10 is a diagram of various types of aberration at the telephoto end of the first embodiment according to the present invention.

【図11】本発明による第2実施例の広角端での諸収差
図。
FIG. 11 is a diagram of various types of aberration at the wide-angle end according to the second example of the present invention.

【図12】本発明による第2実施例の中間焦点距離状態
での諸収差図。
FIG. 12 is a diagram of various types of aberration in the intermediate focal length state of the second example according to the present invention.

【図13】本発明による第2実施例の望遠端での諸収差
図。
FIG. 13 is a diagram of various types of aberration at the telephoto end of the second embodiment according to the present invention.

【図14】本発明による第3実施例の広角端での諸収差
図。
FIG. 14 is a diagram of various types of aberration at the wide-angle end according to the third example of the present invention.

【図15】本発明による第3実施例の中間焦点距離状態
での諸収差図。
FIG. 15 is a diagram of various types of aberration in the intermediate focal length state of the third example according to the present invention.

【図16】本発明による第3実施例の望遠端での諸収差
図。
FIG. 16 is a diagram of various types of aberration at the telephoto end of the third embodiment according to the present invention.

【図17】本発明による第4実施例の広角端での諸収差
図。
FIG. 17 is a diagram of various types of aberration at the wide-angle end according to the fourth example of the present invention.

【図18】本発明による第4実施例の中間焦点距離状態
での諸収差図。
FIG. 18 is a diagram of various types of aberration in the intermediate focal length state of the fourth example according to the present invention.

【図19】本発明による第4実施例の望遠端での諸収差
図。
FIG. 19 is a diagram of various types of aberration at the telephoto end of the fourth embodiment according to the present invention.

【図20】本発明による第5実施例の広角端での諸収差
図。
FIG. 20 is a diagram of various types of aberration at the wide-angle end according to the fifth example of the present invention.

【図21】本発明による第5実施例の中間焦点距離状態
での諸収差図。
FIG. 21 is a diagram of various types of aberration in the intermediate focal length state of the fifth example according to the present invention.

【図22】本発明による第5実施例の望遠端での諸収差
図。
FIG. 22 is a diagram of various types of aberration at the telephoto end of the fifth embodiment according to the present invention.

【図23】本発明による第6実施例の広角端での諸収差
図。
FIG. 23 is a diagram of various types of aberration at the wide-angle end according to the sixth example of the present invention.

【図24】本発明による第6実施例の中間焦点距離状態
での諸収差図。
FIG. 24 is a diagram of various types of aberration in the intermediate focal length state of the sixth example according to the present invention.

【図25】本発明による第6実施例の望遠端での諸収差
図。
FIG. 25 is a diagram of various types of aberration at the telephoto end of the sixth embodiment according to the present invention.

【図26】本発明による第7実施例の広角端での諸収差
FIG. 26 is a diagram of various types of aberration at the wide-angle end according to the seventh example of the present invention.

【図27】本発明による第7実施例の中間焦点距離状態
での諸収差図。
FIG. 27 is a diagram of various types of aberration in the intermediate focal length state of the seventh example according to the present invention.

【図28】本発明による第7実施例の望遠端での諸収差
図。
FIG. 28 is a diagram of various types of aberration at the telephoto end of the seventh example according to the present invention.

【主要部分の符号の説明】[Explanation of symbols for main parts]

G1 ・・・・・・・・第1レンズ群 G2 ・・・・・・・・第2レンズ群 GF ・・・・・・・・前群 GR ・・・・・・・・後群 dM ・・・・・・・・d線のメリジオナル像面 dS ・・・・・・・・d線のサジタル像面 gM ・・・・・・・・g線のメリジオナル像面 gS ・・・・・・・・g線のサジタル像面 G1 ・ ・ ・ ・ ・ ・ First lens group G2 ・ ・ ・ ・ ・ ・ Second lens group GF ・ ・ ・ ・ ・ ・ Front group GR ・ ・ ・ ・ ・ ・ Rear group dM ・..... d-line meridional image plane dS .....- d-line sagittal image plane gM .....- g-line meridional image plane gS .. ..G-line sagittal image plane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正の屈折力の第1レンズ
群G1 と負の屈折力の第2レンズ群G2 とを有し、該第
1レンズ群G1 と該第2レンズ群G2 との間隔を変化さ
せて変倍を行うズームレンズにおいて、 前記第1レンズ群G1 は、物体側より順に、負の屈折力
の前群GF と正の屈折力の後群GR とから構成され、該
前群GF は少なくとも1枚の負レンズを有し、該後群G
R は少なくとも2枚の正レンズを有し、以下の条件を満
足することを特徴とする広角ズームレンズ。 (1) 0.1 <D2 /fw <0.4 (2) 0.2 <D3 /fw <0.4 (3) 0.75<|fF /fw |<1.12 ;fF <0 但し、 D2 :第1レンズ群G1 の前群GF 中の最も像側のレン
ズ面から後群GR 中の最も物体側のレンズ面までの軸上
距離 fw :広角端でのズームレンズの焦点距離 D3 :第1レンズ群G1 の後群GR 中の最も物体側の正
レンズの中心厚 fF :第1レンズ群G1 の前群GF の焦点距離
1. A first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power, which are arranged in this order from the object side, the first lens group G1 and the second lens group G2. In the zoom lens for changing the magnification by changing the interval of, the first lens group G1 is composed of, in order from the object side, a front lens group GF having a negative refractive power and a rear lens group GR having a positive refractive power. The front group GF has at least one negative lens, and the rear group G
R is a wide-angle zoom lens characterized by having at least two positive lenses and satisfying the following conditions. (1) 0.1 <D2 / fw <0.4 (2) 0.2 <D3 / fw <0.4 (3) 0.75 <| fF / fw | <1.12; fF <0 However, D2: in the front lens group GF of the first lens group G1 Distance from the lens surface closest to the image side to the lens surface closest to the object in the rear lens group fw: Focal length of the zoom lens at the wide-angle end D3: Most object in the rear lens group GR of the first lens group G1 Thickness of the positive lens on the side fF: Focal length of the front lens group GF of the first lens group G1
【請求項2】前記後群GR は、物体側に凸面を向けた正
レンズと、物体側に凹面を向けたレンズと、正レンズと
を有し、さらに以下の条件を満足することを特徴とする
請求項1記載の広角ズームレンズ。 (4) 0.6 <f1 /fw < 0.95 (5) 0.38 <M/fw < 0.86 但し、 f1 :第1レンズ群G1 の焦点距離 M :第1レンズ群G1 の後群GR 中の最も物体側のレ
ンズ面から最も像側のレンズ面までの軸上距離
2. The rear lens group GR has a positive lens having a convex surface facing the object side, a lens having a concave surface facing the object side, and a positive lens, and further satisfies the following conditions. The wide-angle zoom lens according to claim 1. (4) 0.6 <f1 / fw <0.95 (5) 0.38 <M / fw <0.86 where f1 is the focal length of the first lens group G1 M is the lens closest to the object in the rear lens group GR of the first lens group G1 On-axis distance from the surface to the lens surface closest to the image
【請求項3】前記第2レンズ群G2 は、物体側から順
に、像面に凸面を向けた正レンズと、物体側に凹面を向
けた負レンズを有し、さらに以下の条件を満足すること
を特徴とする請求項2記載の広角ズームレンズ。 (6) 0.7 <|f2 /fw |< 1.7 ; f2 <0 但し、 f2 :第2レンズ群G2 の焦点距離
3. The second lens group G2 comprises, in order from the object side, a positive lens having a convex surface facing the image surface and a negative lens having a concave surface facing the object side, and further satisfying the following conditions. The wide-angle zoom lens according to claim 2. (6) 0.7 <| f2 / fw | <1.7; f2 <0 where f2: focal length of the second lens group G2
JP4034778A 1991-07-17 1992-02-21 Wide-angle zoom lens Pending JPH05232383A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4034778A JPH05232383A (en) 1992-02-21 1992-02-21 Wide-angle zoom lens
US07/912,718 US5353163A (en) 1991-07-17 1992-07-13 Wide-angle zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4034778A JPH05232383A (en) 1992-02-21 1992-02-21 Wide-angle zoom lens

Publications (1)

Publication Number Publication Date
JPH05232383A true JPH05232383A (en) 1993-09-10

Family

ID=12423752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4034778A Pending JPH05232383A (en) 1991-07-17 1992-02-21 Wide-angle zoom lens

Country Status (1)

Country Link
JP (1) JPH05232383A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306361A (en) * 1994-05-11 1995-11-21 Canon Inc Compact zoom lens
US5633760A (en) * 1994-02-03 1997-05-27 Nikon Corporation Zoom lens
JP2000137163A (en) * 1998-11-04 2000-05-16 Asahi Optical Co Ltd Zoom lens system
JP2000193885A (en) * 1998-12-24 2000-07-14 Asahi Optical Co Ltd Zoom lens system
CN109116519A (en) * 2018-10-19 2019-01-01 中山联合光电科技股份有限公司 A kind of large aperture wide-angle monitoring imaging system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633760A (en) * 1994-02-03 1997-05-27 Nikon Corporation Zoom lens
JPH07306361A (en) * 1994-05-11 1995-11-21 Canon Inc Compact zoom lens
JP2000137163A (en) * 1998-11-04 2000-05-16 Asahi Optical Co Ltd Zoom lens system
JP2000193885A (en) * 1998-12-24 2000-07-14 Asahi Optical Co Ltd Zoom lens system
CN109116519A (en) * 2018-10-19 2019-01-01 中山联合光电科技股份有限公司 A kind of large aperture wide-angle monitoring imaging system
CN109116519B (en) * 2018-10-19 2024-01-09 中山联合光电科技股份有限公司 Large-aperture wide-angle monitoring imaging system

Similar Documents

Publication Publication Date Title
US7227700B2 (en) Wide zoom lens system
US7532411B2 (en) High zoom ratio zoom lens system
US7508592B2 (en) Zoom lens system
US7251081B2 (en) Zoom lens system
JP3200925B2 (en) Zoom lens with wide angle of view
US7359125B2 (en) Two-lens-group zoom lens system
JPH06337354A (en) Zoom lens
JPH0868941A (en) High-magnification zoom lens
JP4972900B2 (en) Zoom lens
JPH1020193A (en) Zoom lens
JP3698134B2 (en) Zoom lens
JPH0642017B2 (en) Compact zoom lens
US20030002171A1 (en) Zoom lens system
JP3063248B2 (en) Wide-angle zoom lens
JPH07287168A (en) Zoom lens with high power variation rate
JPH05107477A (en) Telescoping zoom lens constructed with five groups of lenses
JP3551520B2 (en) Zoom lens
JP4951915B2 (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JP3134448B2 (en) Telephoto zoom lens
JPH05127082A (en) Small-sized zoom lens
JP4210876B2 (en) Zoom lens
JP2910206B2 (en) Compact zoom lens
JPH11167062A (en) Variable power lens
JPH05232383A (en) Wide-angle zoom lens