JPH05232324A - Element for linear illumination - Google Patents

Element for linear illumination

Info

Publication number
JPH05232324A
JPH05232324A JP4037822A JP3782292A JPH05232324A JP H05232324 A JPH05232324 A JP H05232324A JP 4037822 A JP4037822 A JP 4037822A JP 3782292 A JP3782292 A JP 3782292A JP H05232324 A JPH05232324 A JP H05232324A
Authority
JP
Japan
Prior art keywords
light
glass
linear illumination
light emitting
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4037822A
Other languages
Japanese (ja)
Inventor
Kiyosumi Fujii
清澄 藤井
Nobuyoshi Osato
信義 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP4037822A priority Critical patent/JPH05232324A/en
Publication of JPH05232324A publication Critical patent/JPH05232324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Planar Illumination Modules (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To provide the element for linear illumination with which linear illumination light having a uniform illuminance distribution is obtd. by making light incident from an external light source and which can be inexpensively produced. CONSTITUTION:A silver plating film 22 is applied on the lateral peripheral surface of a transparent bar-shaped body 21 consisting of glass in which phase splitting is generated. The specified width part is then polished and lapped along the ridge line of the lateral peripheral surface to form a light releasing part 23. The light within progresses toward the other end while repeating the irregular reflection by the phase splitting of the glass and the total reflection by the silver film on the outer periphery when the light source light is made incident on this element 20 from its one end. The light arriving at the light releasing part 23 is released as scattered light to the outside in the process of this reflection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、端面から光を入射させ
ることにより側周面を通して外部に光を放射するように
した線状照明用素子に関し、特に光放射効率および光放
射均一性を高めた線状照明用素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear illumination element which emits light from the end face through a side peripheral surface thereof, and in particular, improves the light emission efficiency and the light emission uniformity. The present invention relates to a linear illumination element.

【0002】[0002]

【従来の技術】最近、ファクシミリやスキャナーあるい
は複写機などの読み取り部において原稿を照射したり感
光面を部分露光する照明として、発光ダイオードを用い
た線状照明が用いられている。上記線状照明は基本的
に、図1に示すように長尺の基板11の上に発光ダイオ
ード素子12群を1列ないし2列に整列して配置し、こ
れを反射枠13で囲い、その上方に光源光を集光させる
棒状レンズ14を配置した構造を成している。
2. Description of the Related Art Recently, linear illumination using a light emitting diode has been used as illumination for illuminating an original or partially exposing a photosensitive surface in a reading unit such as a facsimile, a scanner or a copying machine. The linear illumination is basically arranged by arranging a group of light emitting diode elements 12 in one or two rows on a long substrate 11 as shown in FIG. It has a structure in which a rod-shaped lens 14 for condensing light from the light source is arranged above.

【0003】近年、より低コスト、軽量、コンパクト化
が進み、発光ダイオード素子の数を減らしたり、反射枠
あるいは棒状レンズを有しない線状照明も使用される。
In recent years, cost reduction, weight reduction, and size reduction have progressed, and the number of light emitting diode elements has been reduced, or linear illumination without a reflection frame or rod lens has been used.

【0004】[0004]

【発明が解決しようとする課題】このような線状照明に
おいては、間隔を置いて平面的に配置された個々の発光
ダイオード素子ごとに発光するため、有効照射長範囲で
の照度のムラが大きく、ファクシミリなどの照明として
使う場合、出力信号補正を行なう必要があり、複写機な
どに使う場合は、感光面での露光ムラが生じる。
In such a linear illumination, since light is emitted for each individual light emitting diode element arranged in a plane at a distance, the unevenness of illuminance in the effective irradiation length range is large. When used as illumination for facsimiles or the like, it is necessary to correct the output signal, and when used as a copying machine, uneven exposure occurs on the photosensitive surface.

【0005】照度のムラを小さくするためには、配置す
る発光ダイオード素子の数を多くすれば有効だが、製造
コストが上がることと消費電力が増加する問題点があ
る。また、特に棒状レンズを有した線状照明では、全体
が大きくなりコンパクトにできない。反対に棒状レンズ
を取り除くと光源光の集光効率が落ちて、指向性が落ち
る問題点がある。加えて、発光ダイオード素子は単一波
長の光を発光するため、カラー化に向かない。
In order to reduce the unevenness of the illuminance, it is effective to increase the number of light emitting diode elements arranged, but there are problems that the manufacturing cost increases and the power consumption increases. In particular, the linear illumination having the rod-shaped lens cannot be made compact because it becomes large as a whole. On the contrary, when the rod-shaped lens is removed, there is a problem that the light collection efficiency of the light source light is lowered and the directivity is lowered. In addition, since the light emitting diode element emits light of a single wavelength, it is not suitable for colorization.

【0006】[0006]

【問題点を解決するための手段】前述の従来の問題点を
解決するために、本発明では、均一な温度あるいは勾配
を持った温度で予め熱処理してその内部に均一なあるい
は傾斜分布を持った分相を有する棒状のガラス体を素子
本体として用い、その側周面に銀メッキ等で反射被膜を
設けるとともに、側周面上一稜線に沿ってスリ加工など
で粗面化して放光部を形成した。
In order to solve the above-mentioned conventional problems, in the present invention, a heat treatment is carried out in advance at a uniform temperature or a temperature having a gradient so that a uniform or gradient distribution is formed therein. Using a rod-shaped glass body with phase separation as the element body, a reflective coating is provided on the side peripheral surface by silver plating, etc., and the light emitting section is roughened by scoring along one ridgeline on the side peripheral surface. Formed.

【0007】本発明の素子への光入射は両端面あるいは
片端面から行なうが、光放射均一性を高めるためには、
両端面からの同時光入射が望ましい。光源としてはハロ
ゲンランプあるいは発光ダイオード素子などが使用でき
る。その際の光源から照明用素子への光入射の方法は、
直接入射であってもよいしあるいは間接的に入射させて
もよい。
Light is incident on the device of the present invention from both end faces or one end face.
Simultaneous light incidence from both end faces is desirable. A halogen lamp or a light emitting diode element can be used as the light source. At that time, the method of light incidence from the light source to the lighting element is
It may be directly incident or may be indirectly incident.

【0008】ただし、集光効率を上げるためには間接の
光入射が望ましい。例えば光ファイバーバンドルを用い
たり、あるいは集光レンズを用いた方法などがある。
However, in order to increase the light collection efficiency, indirect light incidence is desirable. For example, there is a method using an optical fiber bundle or a method using a condenser lens.

【0009】[0009]

【作用】本発明によれば、素子の端面から入った光は、
その内部の周囲反射膜境界面で全反射を繰り返しながら
粗面化された稜線上の放光部に到達する。その際、粗面
の作用で光は乱反射され、側面から放射していき、高い
均一性が得られる。
According to the present invention, the light entering from the end face of the device is
It reaches the light emitting portion on the roughened ridge while repeating total reflection on the boundary surface of the surrounding reflective film inside thereof. At that time, light is diffusely reflected by the effect of the rough surface and is radiated from the side surface to obtain high uniformity.

【0010】そして本発明では、熱処理を加えて異なる
屈折率を有する二相のガラス、いわゆる分相を起こさせ
たガラス体を素子本体として用いているので、端面から
入った光はガラス内部の分相により乱反射を起こし、一
部の光は粗面化された放光部に到達し、ここから外部に
放射していくため、分相を有しないガラス体を素子本体
として用いた場合に比べてさらに多くの光を発散させ
る。
In the present invention, since two-phase glass having different refractive indexes by heat treatment, that is, a glass body in which so-called phase separation is caused is used as the element main body, light entering from the end face is divided into the inside of the glass. Diffuse reflection occurs depending on the phase, and some light reaches the roughened light emitting part and radiates to the outside, so compared to the case where a glass body without phase separation is used as the element body. Emit more light.

【0011】上記のような分相ガラス体を成形するに当
たり、勾配をもたせた温度で熱処理することで分相の密
度あるいは状態に分布を持たせ、乱反射の起こる確率を
素子の長さ方向(光進行方向)に徐々に変化させると、
放射光の均一性をさらに上げることができる。上記のよ
うな素子長さ方向に変化する分相分布を与える構成は、
特に光入射を素子の片端面から行なう場合に有効であ
る。
In molding the above-mentioned phase-separated glass body, heat treatment is performed at a temperature having a gradient so that the density or state of the phase separation has a distribution, and the probability of irregular reflection occurs in the longitudinal direction of the device (light When gradually changing to
The uniformity of the emitted light can be further increased. The configuration that gives the phase separation distribution that changes in the element length direction as described above is
This is particularly effective when light is incident from one end surface of the element.

【0012】[0012]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明する。 実施例1 ガラス組成がSiO2:65mol%、Na2O:10m
ol%、B23:25mol%である直径3mm、長さ
230mmの丸棒状のガラス体に700℃で20分間の
熱処理を加えて、SiO2成分に富むガラス質とB23
成分に富むガラス質の二相に分離する、いわゆる分相を
起こさせた。
The present invention will be described in more detail based on the following examples. Example 1 Glass composition was SiO 2 : 65 mol%, Na 2 O: 10 m
ol%, B 2 O 3 : 25 mol% of a round rod-shaped glass body having a diameter of 3 mm and a length of 230 mm was subjected to heat treatment at 700 ° C. for 20 minutes to give a glassy material rich in SiO 2 and B 2 O 3
A so-called phase separation was caused to separate into two vitreous phases rich in components.

【0013】図2に示すように、その分相ガラス棒21
の全側周面に銀メッキを施すことにより反射膜22を被
覆形成し、その側面上の一稜線を幅2mmで研削した
後、表面をJIS規格粒度1000番の研磨砥粒でスリ
加工して粗面放光部23として線状照明用素子20を製
作した。これを実施例1とする。
As shown in FIG. 2, the phase-separated glass rod 21
After coating the reflective film 22 by silver-plating all the side peripheral surfaces, grinding one ridgeline on the side surface with a width of 2 mm, the surface is ground with abrasive grains of JIS standard grain size No. 1000. The linear illumination element 20 was manufactured as the rough surface light emitting portion 23. This is Example 1.

【0014】次に、性能比較のために直径3mm、長さ
230mmの市販石英ガラス丸棒にも上記実施例素子と
同様な加工処理を施して照明用素子を製作した。これを
比較例1とする。
Next, for the purpose of performance comparison, a commercially available quartz glass round bar having a diameter of 3 mm and a length of 230 mm was also processed in the same manner as the above-mentioned example element to manufacture an illuminating element. This is Comparative Example 1.

【0015】このように作った実施例および比較例の線
状照明用素子の放射光強度を以下のようにして測定し
た。側面での放射光強度を測定するために図3のような
装置を用い、ハロゲン光源31から、外径2mmの二分
岐ファイバーバンドル32Aおよび32Bを用いて素子
20の両端から光を入射した。
The radiant light intensities of the linear illumination devices of Examples and Comparative Examples thus produced were measured as follows. A device as shown in FIG. 3 was used to measure the intensity of radiated light on the side surface, and light was incident from both ends of the element 20 from the halogen light source 31 using the bifurcated fiber bundles 32A and 32B having an outer diameter of 2 mm.

【0016】素子の放光部23からの放射光強度は、光
パワーメータ33を放光部23の長さ方向に沿って走査
させることで測定した。
The intensity of light emitted from the light emitting section 23 of the device was measured by scanning the optical power meter 33 along the length direction of the light emitting section 23.

【0017】その測定結果を図4のグラフ中に「実施例
1、比較例1」として示した。また、発光ダイオード素
子を長尺方向に30個並べた長さ230mmの従来型線
状照明装置についてその放射光強度を測定した結果を同
図中に「比較例2」として示した。
The measurement results are shown as "Example 1, Comparative Example 1" in the graph of FIG. Further, the result of measuring the emitted light intensity of a conventional linear lighting device having a length of 230 mm in which 30 light emitting diode elements are arranged in the longitudinal direction is shown as "Comparative Example 2" in the figure.

【0018】図4の結果から、実施例1の照明素子は比
較例1の素子に比べて全体に放射光強度が高く、効率よ
く入射光が放光部から放射しており、ガラス中の分相に
よる乱反射効果が大きく寄与していることがわかる。ま
た比較例2では長尺方向に配置した発光ダイオード素子
に対応した大きな光強度ムラが明瞭に出現しているのに
対し、本発明構造の素子は光放射の均一性が極めて高い
ことがわかる。
From the results shown in FIG. 4, the illuminating device of Example 1 has a higher radiant light intensity as a whole than the device of Comparative Example 1, and the incident light is efficiently radiated from the light emitting portion, and the illuminating device has a component in the glass. It can be seen that the diffuse reflection effect due to the phases greatly contributes. Further, in Comparative Example 2, large light intensity unevenness corresponding to the light emitting diode elements arranged in the longitudinal direction clearly appears, whereas it can be seen that the element having the structure of the present invention has extremely high light emission uniformity.

【0019】実施例2 ガラス組成が、SiO2:70mol%、Na2O:5m
ol%、B23:25mol%である直径3mm、長さ
230mmのガラス丸棒試料を図5のような温度勾配型
熱処理炉で熱処理した。
Example 2 The glass composition was SiO 2 : 70 mol%, Na 2 O: 5 m.
A glass round bar sample having a diameter of 3 mm and a length of 230 mm, which is ol%, B 2 O 3 : 25 mol%, was heat-treated in a temperature gradient type heat treatment furnace as shown in FIG.

【0020】ガラス試料50を温度勾配型電気加熱炉5
1の中に水平方向に挿入し、約15分間熱処理を加え
た。温度勾配は炉の一端からもう一端にかけて600℃か
ら750℃の範囲でほぼ等間隔につくように、カンタルヒ
ーター52を5ゾーンに分けて温度制御した。そして、熱
処理中ガラスの軟化による変形を防ぐために粘土容器53
でガラス試料を保持した。
A glass sample 50 is placed in a temperature gradient type electric heating furnace 5
1 was inserted horizontally and heat-treated for about 15 minutes. The temperature of the Kanthal heater 52 was divided into 5 zones and controlled so that the temperature gradient from the one end to the other end of the furnace was in the range of 600 ° C to 750 ° C at almost equal intervals. And, in order to prevent deformation due to softening of the glass during the heat treatment, the clay container 53
The glass sample was held at.

【0021】約15分の熱処理後、ガラス試料50を熱
衝撃で割れない程度に急冷し、炉外に取り出した。その
際、耐熱性セラミックファイバーでガラス試料をくるん
で、室温まで冷却した。ここで、熱処理後ガラス試料を
徐冷しない理由は、徐冷中にガラスが失透を起こすから
である。
After the heat treatment for about 15 minutes, the glass sample 50 was rapidly cooled so as not to be broken by thermal shock, and taken out of the furnace. At that time, the glass sample was wrapped with a heat resistant ceramic fiber and cooled to room temperature. The reason why the glass sample is not gradually cooled after the heat treatment is that the glass is devitrified during the slow cooling.

【0022】本実施例のガラス組成は、上記温度範囲
(600℃〜750℃)で約15分の熱処理を行なうこ
とで、SiO2成分に富むガラス質とB23成分に富む
ガラス質の二相に分離する、いわゆる分相という現象を
おこす。ただし本実施例の温度範囲では、より高い温度
つまり750℃に近い温度での分相がより低い温度つま
り600℃に近い温度での分相よりも密度が大きくなる
ために、ガラス棒の長さ方向全体にわたって分相の程度
に傾斜分布がつけられる。このようにして作った分相に
傾斜分布を持つガラス丸棒に実施例1と同様の加工処理
を施して線状照明用素子を製作した。これを実施例2と
する。
The glass composition of this example is heat-treated in the above temperature range (600 ° C. to 750 ° C.) for about 15 minutes to obtain a glassy material rich in SiO 2 component and a glassy material rich in B 2 O 3 component. Separation into two phases causes a so-called phase separation phenomenon. However, in the temperature range of the present example, since the phase separation at a higher temperature, that is, a temperature near 750 ° C. has a higher density than the phase separation at a lower temperature, that is, a temperature near 600 ° C., the glass rod length increases. A gradient distribution is given to the degree of phase separation over the entire direction. The glass round bar having the gradient distribution in the phase separation thus produced was subjected to the same processing as in Example 1 to manufacture a linear illumination element. This is Example 2.

【0023】上記素子の放射光強度を実施例1と同様の
方法で測定した。ただし、本実施例では光入射は一方の
ファイバーバンドル32Aを使って、熱処理温度の低い
側の端面50Aからのみ行なった。その測定結果を図6
のグラフ中に「実施例2」として示した。図6のグラフ
中には、前述した比較例1(発光ダイオード配列)の同
様な測定結果も示した。
The emitted light intensity of the above device was measured in the same manner as in Example 1. However, in this embodiment, the light is incident only from the end face 50A on the side where the heat treatment temperature is low, using the one fiber bundle 32A. Figure 6 shows the measurement results.
It was shown as "Example 2" in the graph. The graph of FIG. 6 also shows the same measurement results of Comparative Example 1 (light emitting diode array) described above.

【0024】図6から明らかなように、比較例1の放射
光強度が光入射の端面から離れるに従い急激に減衰して
いくのに対し、本実施例品の放射光強度は全体に均一性
が高く、しかも放射光強度も若干高い。
As is clear from FIG. 6, the radiant light intensity of Comparative Example 1 is rapidly attenuated as the distance from the light-incident end face is increased, whereas the radiant light intensity of the product of this embodiment is not uniform throughout. It is high, and the intensity of emitted light is also slightly high.

【0025】ここで素子に光を、温度の低い側で熱処理
された端面50Aから入射させたのは、それが分相密度
の小さい側であり、他方の端面50Bに近づくほどより
高い密度の分相で光の乱反射を多く起こさせて、素子の
長さ方向での光放射の均一性を上げるためである。
Here, light is made incident on the element from the end surface 50A that has been heat-treated on the lower temperature side, that is, the side on which the phase separation density is smaller, and the closer to the other end surface 50B, the higher the density. This is to cause a large amount of diffused reflection of light in the phases to improve the uniformity of light emission in the length direction of the device.

【0026】以上のように、本実施例の放射光強度は素
子全体にわたり高く、かつ均一性の極めて良好な光を放
射する。
As described above, the radiated light intensity of this embodiment is high over the entire device and radiates light with extremely good uniformity.

【0027】本発明で使用するガラスとしては、上記実
施例のガラス組成の他にも分相を起こすようなガラス組
成、たとえばSiO2−Na2O系ガラスやSiO2−L
2O系ガラスなども有効である。
As the glass used in the present invention, in addition to the glass composition of the above embodiment, a glass composition that causes a phase separation, for example, SiO 2 —Na 2 O type glass or SiO 2 -L.
i 2 O type glass is also effective.

【0028】[0028]

【発明の効果】本発明によれば、光放射の均一性を高め
た線状照明用素子が得られる。したがって、ファクシミ
リやスキャナーあるいは複写機などの読み取り部におい
て原稿を照射したり感光面を部分露光する光源として極
めて有用である。
According to the present invention, it is possible to obtain a linear illuminating element with improved uniformity of light emission. Therefore, it is extremely useful as a light source for illuminating an original or partially exposing the photosensitive surface in a reading unit such as a facsimile, a scanner, or a copying machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の発光ダイオード素子を使った線状照明装
置を示す側断面図
FIG. 1 is a side sectional view showing a conventional linear lighting device using a light emitting diode element.

【図2】本発明の素子の一実施例を示す平面図及び横断
面図
FIG. 2 is a plan view and a cross-sectional view showing an embodiment of the element of the present invention.

【図3】放射光強度を測定する装置を示す概略図FIG. 3 is a schematic diagram showing an apparatus for measuring radiant light intensity.

【図4】本発明素子、石英ガラスを使った素子、および
発光ダイオードを使った従来の線状照明装置の放射光強
度の比較測定結果を示す図
FIG. 4 is a diagram showing comparative measurement results of emitted light intensities of an element of the present invention, an element using quartz glass, and a conventional linear lighting device using a light emitting diode.

【図5】ガラス中に分相勾配を与えた本発明素子を製作
する場合に使用する温度勾配型電気加熱炉を示す断面図
FIG. 5 is a cross-sectional view showing a temperature gradient type electric heating furnace used when manufacturing the element of the present invention in which a phase gradient is applied in glass.

【図6】分相勾配を与えた本発明素子と石英ガラス素子
の、片端面光入射時の放射光強度比較を示す図
FIG. 6 is a diagram showing a comparison of radiant light intensities of a device according to the present invention and a quartz glass device having a phase separation gradient when light is incident on one end surface.

【符号の説明】[Explanation of symbols]

11 基板 12 発光ダイオード素子 13 反射枠 14 棒状レンズ 20 線状照明用素子 21 分相ガラス棒 22 反射膜(銀膜) 23 粗面化放光部 31 ハロゲン光源 32A、32B 二分岐ファイバーバンドル 33 光パワーメータ 50 分相勾配ガラス棒(線状照明用素子本体) 51 温度勾配型電気加熱炉 52 カンタルヒーター 53 粘土容器 Reference Signs List 11 substrate 12 light emitting diode element 13 reflective frame 14 rod lens 20 linear illumination element 21 phase-separating glass rod 22 reflective film (silver film) 23 roughened light emitting portion 31 halogen light source 32A, 32B bifurcated fiber bundle 33 optical power Meter 50 Phase gradient glass rod (element body for linear lighting) 51 Temperature gradient type electric heating furnace 52 Kanthal heater 53 Clay container

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 端面から光を入射させることにより側周
面を通して外部に光を放射するようにした照明用素子で
あって、棒状本体を分相ガラスで構成し、該本体側周面
に銀膜等の反射被膜で被覆するとともに、側周面上の長
手方向一稜線に沿って粗面化した放光部を設けてなる線
状照明用素子。
1. An illuminating element which emits light to the outside through a side peripheral surface by allowing light to enter from an end surface, wherein a rod-shaped main body is made of phase-separated glass, and silver is provided on the peripheral side surface of the main body. An element for linear illumination, which is provided with a light emitting portion which is covered with a reflective coating such as a film and which is roughened along one longitudinal ridgeline on the side peripheral surface.
【請求項2】 前記ガラス体中の分相密度が、素子の長
さ方向で次第に変化している請求項1に記載の線状照明
用素子。
2. The linear lighting element according to claim 1, wherein the phase separation density in the glass body gradually changes in the length direction of the element.
JP4037822A 1992-02-25 1992-02-25 Element for linear illumination Pending JPH05232324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4037822A JPH05232324A (en) 1992-02-25 1992-02-25 Element for linear illumination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4037822A JPH05232324A (en) 1992-02-25 1992-02-25 Element for linear illumination

Publications (1)

Publication Number Publication Date
JPH05232324A true JPH05232324A (en) 1993-09-10

Family

ID=12508215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4037822A Pending JPH05232324A (en) 1992-02-25 1992-02-25 Element for linear illumination

Country Status (1)

Country Link
JP (1) JPH05232324A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760577A2 (en) * 1995-08-24 1997-03-05 Matsushita Electric Industrial Co., Ltd. Linear illumination device
US6268600B1 (en) 1994-08-01 2001-07-31 Matsushita Electric Industrial Co., Ltd. Linear illumination device
JP2013095849A (en) * 2011-11-01 2013-05-20 Nippon Electric Glass Co Ltd Wavelength conversion member and light emitting device using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268600B1 (en) 1994-08-01 2001-07-31 Matsushita Electric Industrial Co., Ltd. Linear illumination device
EP0760577A2 (en) * 1995-08-24 1997-03-05 Matsushita Electric Industrial Co., Ltd. Linear illumination device
EP0760577A3 (en) * 1995-08-24 1997-04-16 Matsushita Electric Ind Co Ltd
US5969343A (en) * 1995-08-24 1999-10-19 Matsushita Electric Industrial Co., Ltd. Linear illumination device
US6072171A (en) * 1995-08-24 2000-06-06 Matsushita Electric Industrial Co., Ltd. Linear illumination device
US6127675A (en) * 1995-08-24 2000-10-03 Matsushita Electric Industrial Co., Ltd. Linear illumination device
JP2013095849A (en) * 2011-11-01 2013-05-20 Nippon Electric Glass Co Ltd Wavelength conversion member and light emitting device using the same

Similar Documents

Publication Publication Date Title
US4755654A (en) Semiconductor wafer heating chamber
US4571486A (en) Heating method of semiconductor wafer
US4504323A (en) Method for annealing semiconductors with a planar source composed of flash discharge lamps
US6268600B1 (en) Linear illumination device
CN102182981B (en) LED linear light source and reading apparatus
US20060044810A1 (en) Glass reflector for projector and manufacturing method for the same
CN108353468A (en) RF transmitter
JP2001185483A (en) Optical device
RU2245851C2 (en) Method and a device for even heating of glass and\or glass ceramics with the help of infrared radiation
EP1197769A1 (en) Method of manufacturing plastic optical fiber
US4525380A (en) Heating method of semiconductor wafer
JPH05232324A (en) Element for linear illumination
JP3531567B2 (en) Flash irradiation heating device
JPS587604A (en) Illuminating device for optical fiber
US3646472A (en) Laser structures
JPH05232325A (en) Element for linear illumination
JP3972379B2 (en) heating furnace
JPH05232323A (en) Element for linear illuminator
JP2002208466A (en) Heating lamp and heat treatment device
JPS6322453B2 (en)
JPH0448724A (en) Semiconductor heat treatment device
JP2002118072A (en) Semiconductor manufacturing apparatus
SU762364A1 (en) Method for making optical waveguides
JPH04358102A (en) Production of light divergence element made of glass
US20220026615A1 (en) High-radiance wavelength-agile incoherent light-source