JPH05232210A - Positioning method and control method of moving body utilizing gas satellite - Google Patents

Positioning method and control method of moving body utilizing gas satellite

Info

Publication number
JPH05232210A
JPH05232210A JP4033036A JP3303692A JPH05232210A JP H05232210 A JPH05232210 A JP H05232210A JP 4033036 A JP4033036 A JP 4033036A JP 3303692 A JP3303692 A JP 3303692A JP H05232210 A JPH05232210 A JP H05232210A
Authority
JP
Japan
Prior art keywords
station
mobile station
mobile
fixed reference
gps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4033036A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ishikawa
博康 石川
Hideo Kobayashi
英雄 小林
Toshio Mizuno
俊夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP4033036A priority Critical patent/JPH05232210A/en
Priority to GB9303011A priority patent/GB2264837B/en
Publication of JPH05232210A publication Critical patent/JPH05232210A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/073Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations

Abstract

PURPOSE:To perform a positioning operation with high accuracy by a method wherein a propagation distance error which has been measured by a fixed reference station is transmitted to a mobile station and a piece of information on the position of the mobile station is obtained from a piece of information on the distance, between a GPS satellite and the mobile station, which has been measured by the mobile station and from the propagation distance error. CONSTITUTION:A fixed reference station A is composed of a GPS receiver 1, an interface 2 for positioning data processing use and a fixed wireless apparatus 3. The interface 2 computes the true distance between GPS satellites 4a to 4c and the fixed reference station by using a piece of starting data S1, for the GPS satellites, which is obtained from the receiver 1. At the same time, a propagation distance error included in the measured distance, between the GPS satellites and the fixed reference station, which is obtained by the receiver 1 is drawn; it is formed as a piece of data so that satellite numbers for the satellites 4a to 4c and the propagation distance error coincide with the frame format of a control channel 5. A piece of information on an error which is transmitted through the control channel 5 from the reference station A is received and demodulated by a wireless apparatus 3 in a mobile station B; it is input to an interface 2; the propagation error is eliminated by using a piece of information S2 on an error; a piece of new data in obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セルラー構成で各セル
内に少なくとも1つの基地局を有する自動車電話システ
ム,携帯電話システム,MCA無線システム,ページン
グシステム等において、移動体に高精度の位置情報を提
供するとともに移動体の運行管理を行うGPS衛星を利
用した測位方法及び移動体管理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly accurate position information for a moving body in a cellular phone system, a mobile phone system, an MCA radio system, a paging system, etc., which has at least one base station in each cell. The present invention relates to a positioning method and a mobile body management method using a GPS satellite, which provide the operation of the mobile body and manage the operation of the mobile body.

【0002】[0002]

【従来の技術】従来のGPS(Global Posi
tioning System)衛星を利用した単独測
位方式は、GPS衛星が電波を発射した時刻と移動局が
電波を受信した時刻の差より、複数のGPS衛星−移動
局間の距離を計算し、この距離を半径とする球面を描
き、その交点を求めることにより、移動局の位置を決定
することができる。
2. Description of the Related Art Conventional GPS (Global Posi)
In the single positioning system using the satellite positioning system, the distance between a plurality of GPS satellites and the mobile station is calculated from the difference between the time when the GPS satellite emits the radio wave and the time when the mobile station receives the radio wave, and the distance is calculated. The position of the mobile station can be determined by drawing a spherical surface having a radius and finding the intersection.

【0003】但し、受信機の時計の安定度の制限により
時間のずれが存在するため、2次元測位を行う場合、測
位計算に必要なGPS衛星の数は少なくとも3個とな
る。ところで、GPS衛星を利用した測位では、たとえ
3個のGPS衛星を用いたとしても大気や電離層による
伝搬遅延、GPS衛星の軌道誤差や時計のずれ等のた
め、測位誤差が100m以上にも及ぶ場合がある。
However, since there is a time lag due to the limitation of the stability of the clock of the receiver, when performing two-dimensional positioning, the number of GPS satellites required for positioning calculation is at least three. By the way, in positioning using GPS satellites, even if three GPS satellites are used, the positioning error may reach 100 m or more due to propagation delay due to the atmosphere or ionosphere, orbit error of GPS satellites, clock shift, etc. There is.

【0004】その対策として、位置が既知である固定基
準局にGPS受信機を設置し、GPS衛星−固定基準局
間の測定距離とGPS衛星の軌道情報及び固定基準局の
真位置から計算したGPS衛星−固定基準局間の真距離
の差を、誤差情報として固定基準局から半径数百km以
内に存在する移動局に伝送し、移動局では自局で測定し
たGPS衛星−移動局間の距離に含まれる伝搬距離誤差
を固定基準局から伝送された誤差情報を用いて消去した
後、測位計算を行うディファレンシャル測位方式(DG
PS)が提案されている。
As a countermeasure, a GPS receiver is installed in a fixed reference station whose position is already known, and a GPS satellite-fixed calculated from the measured distance between the GPS satellite and the fixed reference station, orbit information of the GPS satellite and the true position of the fixed reference station. The difference in the true distance between the reference stations is transmitted as error information to the mobile stations existing within a radius of several hundred km from the fixed reference station, and the mobile station propagates the propagation distance included in the distance measured between the GPS satellite and the mobile station. The differential positioning method (DG) which performs positioning calculation after eliminating the error using the error information transmitted from the fixed reference station
PS) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】従来のディファレンシ
ャル測位方式(DGPS)は、主に沿岸を航行する船舶
を対象としており、固定基準局は大陸の沿岸部や海洋上
の島に設置され、その適用範囲は約1000km以内と
広範囲に亙る。そのため、適用範囲の限界に近づくほ
ど、GPS衛星−固定基準局間の伝搬路とGPS衛星−
移動局間の伝搬路の相関が低下し、測位精度が劣化する
という問題が生じる。
The conventional differential positioning system (DGPS) is mainly intended for ships navigating along the coast, and the fixed reference station is installed in the coastal area of the continent or an island on the ocean. Has a wide area of less than about 1000 km. Therefore, the closer to the limit of the applicable range, the propagation path between the GPS satellite and the fixed reference station and the GPS satellite-
There arises a problem that the correlation of the propagation paths between mobile stations is lowered and the positioning accuracy is deteriorated.

【0006】また、これまでに提案されているディファ
レンシャル測位方式(DGPS)では、移動局−固定基
準局間において誤差情報を固定基準局から移動局に伝送
するための通信用チャンネルが新たに必要となること、
及び固定基準局の設備を新たに構築するために、膨大な
費用が必要であるという欠点が存在する。
In addition, the differential positioning system (DGPS) proposed so far requires a new communication channel for transmitting error information from the fixed reference station to the mobile station between the mobile station and the fixed reference station. ,
Also, there is a drawback that enormous cost is required to newly construct the equipment of the fixed reference station.

【0007】一方、受信できるGPS衛星の個数に関し
ては、移動局周辺の建築物や地形の影響により、GPS
衛星からの電波が遮断されることが最大の問題となる。
この現象はシャドウイングと呼ばれるが、シャドウイン
グは特に高層ビルが立ち並ぶ市街地や、狭い道路の両側
に大きな樹木が立ち並ぶ山間部において頻繁に発生し、
常時3個のGPS衛星を測位計算に必要とする現在のG
PS衛星を利用した測位システムは、このような場所で
はほとんど利用できないのが現状である。
On the other hand, regarding the number of GPS satellites that can be received, the number of GPS satellites that can be received depends on the influence of buildings and topography around the mobile station.
The biggest problem is that the radio waves from satellites are cut off.
This phenomenon is called shadowing, but shadowing frequently occurs in urban areas with high-rise buildings, and in mountainous areas with large trees on both sides of a narrow road.
The current G that constantly requires 3 GPS satellites for positioning calculation
The current situation is that a positioning system using PS satellites can hardly be used in such a place.

【0008】また、移動局が両側にビルや樹木が立ち並
ぶ道路を走行する場合、道路の前方あるいは後方に位置
するGPS衛星の信号は受信できることに注目し、特開
昭63−171377号公報に記載された従来の移動局
測位方法では、移動体の進行方向を推定することにより
2個のGPS衛星による測位を行う方法が提案されてい
るが、この従来の方法では移動体が全くの直線走行を行
うと仮定しており、移動体の速度変化や進行方向変化と
いった移動体の実際の動きを全く考慮しておらず、実用
的ではないと考えられる。
Further, when the mobile station travels on a road lined with buildings and trees on both sides, it is noted that the signals of GPS satellites located in front of or behind the road can be received, and it is described in JP-A-63-171377. In the conventional mobile station positioning method described above, a method of performing positioning by two GPS satellites by estimating the traveling direction of the moving body has been proposed. However, in this conventional method, the moving body moves in a completely straight line. It is assumed that it is performed, and it does not consider the actual movement of the moving body such as the speed change or the moving direction change of the moving body at all and is considered to be impractical.

【0009】ところが、既存のMCA無線システムの基
地局、あるいはセルラー系陸上移動通信システムの基地
局若しくは制御局に固定基準局を設置した場合、前者は
ゾーン半径が20〜30km,後者はセル半径が数百m
〜10km程度と狭く、GPS衛星−固定基準局間の伝
搬路とGPS衛星−移動局間の伝搬路の相関が極めて高
いため、ディファレンシャル測位方式(DGPS)を適
用することにより、GPS衛星−固定基準局間距離とG
PS衛星−移動局間距離の伝搬距離誤差の共通誤差成分
を、ほぼ完全に取り除くことができ、測位精度が常時5
〜10mという極めて高精度の測位を行うことができ
る。こゝにおいて、本発明は前記従来の技術の課題を解
決するのに有効適切なGPS衛星を利用した測位方法及
び移動体管理方法を提供せんとするものである。
However, when a fixed reference station is installed in a base station of an existing MCA radio system or a base station or control station of a cellular land mobile communication system, the former has a zone radius of 20 to 30 km and the latter has a cell radius of several. Hundred meters
Since the propagation path between the GPS satellite and the fixed reference station and the propagation path between the GPS satellite and the mobile station are as narrow as about 10 km and the propagation path between the GPS satellite and the mobile station is extremely high. Distance and G
The common error component of the propagation distance error of the PS satellite-mobile station distance can be almost completely removed, and the positioning accuracy is always 5
It is possible to perform extremely highly accurate positioning of -10 m. Here, the present invention is to provide a positioning method and a mobile body management method using GPS satellites, which are effective for solving the problems of the conventional techniques.

【0010】[0010]

【課題を解決するための手段】前記の課題の解決は、本
発明の次に列挙する新規な特徴的構成手法を採用するこ
とにより達成される。即ち、本発明の第一の特徴は、複
数のGPS衛星を利用するGPS衛星測位方式におい
て、セルラー系陸上移動体通信システムの各セル内に配
置されている基地局若しくは複数の基地局を管理する制
御局を固定基準局として利用するとともに、移動体に移
動局を設けて、前記固定基準局において測定した前記G
PS衛星−当該固定基準局間の距離及び前記GPS衛星
ー当該固定基準局間の真距離から求めた伝搬距離誤差を
陸上移動体通信システムの制御チャンネルを用いて前記
固定基準局から前記移動局に伝送し、当該移動局におい
て測定した前記GPS衛星−当該移動局間の距離情報と
該伝搬距離誤差とから当該移動局の位置情報を得て高精
度の測位を行うGPS衛星を利用した測位方法である。
The solution of the above-mentioned problems can be achieved by adopting the novel characteristic construction methods listed below the present invention. That is, the first feature of the present invention is to manage a base station or a plurality of base stations arranged in each cell of a cellular land mobile communication system in a GPS satellite positioning system using a plurality of GPS satellites. The control station is used as a fixed reference station, and the mobile station is provided with a mobile station to measure the G measured at the fixed reference station.
A propagation distance error obtained from the distance between the PS satellite and the fixed reference station and the true distance between the GPS satellite and the fixed reference station is transmitted from the fixed reference station to the mobile station using a control channel of a land mobile communication system. This is a positioning method using a GPS satellite that performs high-precision positioning by obtaining position information of the mobile station from the distance information between the GPS satellite and the mobile station measured by the mobile station and the propagation distance error.

【0011】本発明の第二の特徴は、前記第一の特徴に
おいて、移動局が2個のGPS衛星からの信号しか受信
できない場合、移動局が備える方位検知手段及び速度検
知手段により求まる前記移動局の進行方向データを利用
して、当該移動局が曲線運動を行う場合においても、2
個の前記GPS衛星により高精度の2元測位を行うGP
S衛星を利用した測位方法である。
A second feature of the present invention is that, in the first feature, when the mobile station can receive only signals from two GPS satellites, the movement obtained by the azimuth detecting means and the speed detecting means included in the mobile station. Even when the mobile station makes a curvilinear motion using the traveling direction data of the station,
GP that performs high-precision binary positioning by the number of GPS satellites
This is a positioning method using the S satellite.

【0012】本発明の第三の特徴は、複数のGPS衛星
を利用するGPS衛星測位方式において、セルラー系陸
上移動体通信システムの各セル内に配置されている基地
局若しくは複数の基地局を管理する制御局を固定基準局
として利用するとともに移動体に移動局を設けて、前記
固定基準局において測定した前記GPS衛星−前記固定
基準局間の距離及び前記GPS衛星−前記固定基準局間
の真距離から求めた伝搬距離誤差を前記陸上移動体通信
システムの制御チャンネルを用いて前記固定基準局から
前記移動局に伝送し、当該移動局において測定した前記
GPS衛星−前記移動局間の距離情報と該伝搬距離誤差
とから、又は、前記移動局が曲線運動その他で2個のG
PS衛星からの信号しか受信できない場合、前記移動局
が備える方位検知手段及び速度検知手段により求まる前
記移動局の進行方向データをも2元的に利用して、それ
ぞれ得た前記移動局の緯度及び経度の位置情報を当該移
動局が自局に与えられた認識番号とともに前記固定基準
局を経て前記制御チャンネルを介し移動管理局に周期的
に伝送し、当該移動管理局はそのデータを用いて移動局
の運行管理を行ってなるGPS衛星を利用した移動体管
理方法である。
The third feature of the present invention is to manage a base station or a plurality of base stations arranged in each cell of a cellular land mobile communication system in a GPS satellite positioning system using a plurality of GPS satellites. The control station is used as a fixed reference station, and a mobile station is provided in the moving body, and the distance is calculated from the distance between the GPS satellite and the fixed reference station and the true distance between the GPS satellite and the fixed reference station measured at the fixed reference station. Propagation distance error is transmitted from the fixed reference station to the mobile station using the control channel of the land mobile communication system, and the distance information between the GPS satellite and the mobile station measured at the mobile station and the propagation distance error. Or, if the mobile station has two G
When only signals from PS satellites can be received, the latitude and the latitude of the mobile station obtained respectively using the traveling direction data of the mobile station obtained by the azimuth detecting means and the speed detecting means included in the mobile station are also used. The position information of longitude is periodically transmitted to the mobile management station via the control channel via the fixed reference station by the mobile station together with the identification number given to the mobile station, and the mobile management station uses the data to transmit the mobile station. Is a mobile body management method using a GPS satellite that manages the operation of.

【0013】[0013]

【作用】本発明は、前記のような構成手法を採用するの
で、従来のGPS衛星を利用したデイファレンシヤル測
位方式(DGPS)は市街地では既存の移動局周辺の建
物により衛星からの信号が遮断され測位時間率の低下を
招くのに対し、陸上移動通信システムの各セル内に配置
されている基地局若しくは制御局を固定基準局として利
用し、当該固定基準局で求めた伝搬距離誤差データを前
記陸上移動通信システムの制御チャンネルを利用し移動
局に通知し測位時間率を向上させる。又、移動局の方位
検知手段及び速度検知手段と2個のGPS衛星により2
元測位を行う。
Since the present invention adopts the above-described construction method, the conventional differential positioning system (DGPS) using GPS satellites blocks the signals from the satellites in the urban area by the buildings around the existing mobile station. While the positioning time rate is lowered, the base station or control station located in each cell of the land mobile communication system is used as a fixed reference station, and the propagation distance error data obtained by the fixed reference station is used for the land reference. The control channel of the mobile communication system is used to notify the mobile station to improve the positioning time rate. In addition, the azimuth detecting means and speed detecting means of the mobile station and two GPS satellites
Perform original positioning.

【0014】さらに、このようにして得られた移動局の
位置情報(移動局が位置する緯度及び経度)を、陸上移
動体通信システムの制御チャンネルの上りチャンネルを
利用して移動局から基地局に通知することにより、基地
局と固定網回線で接続されている移動管理局は、移動局
から通知された移動局の位置情報を用いて、多数の移動
局の運行管理を容易に行うことができる。
Further, the position information (latitude and longitude in which the mobile station is located) of the mobile station thus obtained is transferred from the mobile station to the base station using the upstream channel of the control channel of the land mobile communication system. By notifying, the mobile management station connected to the base station by the fixed network line can easily perform operation management of many mobile stations by using the position information of the mobile station notified from the mobile station. ..

【0015】[0015]

【実施例】【Example】

(実施例1)本発明の第一実施例を図面につき説明す
る。図1は本実施例を適用するGPS衛星測位システム
の構成を示す図、図2は同・限られたGPS衛星の信号
しか受信できなかった場合において高精度で測位を行う
際の移動局の構成を示す図、図3は図2の構成を持つ移
動局により高精度の測位を行う際の原理を説明する図で
ある。
(Embodiment 1) A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a GPS satellite positioning system to which the present embodiment is applied, and FIG. 2 is a configuration of a mobile station for highly accurate positioning when only signals from the limited GPS satellites can be received. FIG. 3 is a diagram for explaining the principle of highly accurate positioning performed by the mobile station having the configuration of FIG.

【0016】図中、Aは固定基準局、B,B′は移動
局、1はGPS衛星からの信号Sa,Sb,Scを受信
するアンテナ1aを持つGPS受信機、2,2′はデー
タ処理インタフェース、3はそれぞれの局A,B,B′
に備えられたアンテナ3aを持つ無線機、4a,4b,
4cはGPS衛星、5は固定基準局Aと移動局B,B′
との間の伝送を行う制御チャンネルである。
In the figure, A is a fixed reference station, B and B'are mobile stations, 1 is a GPS receiver having an antenna 1a for receiving signals Sa, Sb, Sc from GPS satellites, and 2 and 2'are data processing interfaces. 3 is each station A, B, B '
Radios 4a, 4b, which have an antenna 3a provided in
4c is a GPS satellite and 5 is a fixed reference station A and mobile stations B and B '.
It is a control channel that performs transmission between and.

【0017】図1において、陸上移動体通信システムの
基地局を利用する固定基準局Aは、GPS受信機1、測
位データの処理用のインタフェース2、固定無線機3か
ら構成される。GPS受信機1は現在開発並びに商用化
されている通常のGPS受信機を表し、固定基準局Aで
は可視範囲にある全てのGPS衛星4a,4b,4
c....からの信号Sa,Sb,Scを受信することがで
きる。
In FIG. 1, a fixed reference station A that uses a base station of a land mobile communication system comprises a GPS receiver 1, an interface 2 for processing positioning data, and a fixed radio 3. The GPS receiver 1 represents a normal GPS receiver which is currently being developed and commercialized, and in the fixed reference station A, all the GPS satellites 4a, 4b, 4 are in the visible range.
The signals Sa, Sb, Sc from c ... can be received.

【0018】データ処理インタフェース2では、GPS
受信機1から得られるGPS衛星4a〜4cの軌道デー
タS1を用いて、GPS衛星−固定基準局間の真距離を
計算すると同時に、GPS受信機1で得られたGPS衛
星−固定基準局間の測定距離に含まれる伝搬距離誤差を
導出し、GPS衛星4a,4b,4c....の衛星番号、
並びにその各GPS衛星4a〜4c....に関する伝搬距
離誤差を、陸上移動体通信システムの制御チャンネル5
のフレームフォーマットに合致するようにデータ化す
る。
In the data processing interface 2, the GPS
The orbit data S1 of the GPS satellites 4a to 4c obtained from the receiver 1 is used to calculate the true distance between the GPS satellite and the fixed reference station, and at the same time, the measured distance between the GPS satellite and the fixed reference station obtained by the GPS receiver 1 is calculated. , The satellite number of the GPS satellites 4a, 4b, 4c ..
And the propagation distance error concerning each of the GPS satellites 4a to 4c ..
Convert to data so that it matches the frame format of.

【0019】例えば、GPS衛星4a〜4nの認識番号
に1から32までの整数値を、0.02mステップで±
655.32mの伝搬距離誤差データS2を用意した場
合、GPS衛星4a〜4n1個あたり21ビットのデー
タが必要となり、このデータを無線機3を用いて制御チ
ャンネル5を通して移動局Bに伝送する。
For example, an integer value from 1 to 32 is added to the identification numbers of the GPS satellites 4a to 4n within ± 0.02m steps.
When the propagation distance error data S2 of 655.32 m is prepared, 21-bit data is required for each GPS satellite 4a to 4n, and this data is transmitted to the mobile station B through the control channel 5 using the radio device 3.

【0020】一方、移動局Bも同様に、GPS受信機
1、測位データS3の処理用のインタフェース2、無線
機3から構成される。まず、固定基準局Aから制御チャ
ンネル5を通して伝送されてきた誤差情報S2は、無線
機3により受信・復調され、データ処理インタフェース
2に入力される。
On the other hand, the mobile station B similarly comprises a GPS receiver 1, an interface 2 for processing the positioning data S3, and a radio 3. First, the error information S2 transmitted from the fixed reference station A through the control channel 5 is received and demodulated by the wireless device 3 and input to the data processing interface 2.

【0021】データ処理インタフェース2では、GPS
受信機1で得られたGPS衛星−移動局間の測定距離に
含まれる伝搬距離誤差を、固定基準局Aから伝送された
誤差情報S2を用いて消去することにより、新規の距離
データを作成する。最後にそのデータを用いて、GPS
受信機1の内部にある測位計算部において高精度の測位
計算を行う。
In the data processing interface 2, the GPS
By deleting the propagation distance error included in the measured distance between the GPS satellite and the mobile station obtained by the receiver 1 using the error information S2 transmitted from the fixed reference station A, new distance data is created. Finally, using that data, GPS
The positioning calculation section inside the receiver 1 performs highly accurate positioning calculation.

【0022】ここで、周囲の建築物や地形の影響によ
り、GPS受信機1において、例えばGPS衛星4a,
4b,4cのうち、4b及び4cの信号Sb及びScし
か受信できなかった場合、方位検知手段たる振動ジャイ
ロ,光ファイバージャイロ,地磁気センサ等の方位セン
サと速度検知手段たる車速センサ,車輪速差センサ等の
速度センサを利用した衛星測位方法により、高精度の測
位を行うことができる。そのシステム構成自体は基本的
に図1と同様となるが、図1における移動局Bの構成
が、図2における移動局B′の構成となる。
Here, due to the influence of surrounding buildings and topography, in the GPS receiver 1, for example, the GPS satellites 4a,
When only signals 4b and 4c of 4b and 4c can be received, a direction sensor such as a vibration gyro which is a direction detecting means, an optical fiber gyro, a geomagnetic sensor, and a vehicle speed sensor which is a speed detecting means, a wheel speed difference sensor, etc. High-precision positioning can be performed by the satellite positioning method using the speed sensor of. The system configuration itself is basically the same as that of FIG. 1, but the configuration of the mobile station B in FIG. 1 is the configuration of the mobile station B ′ in FIG.

【0023】まず、3個の衛星4a,4b,4cによる
通常の測位では、GPS受信機1において測定された移
動局B′の正確な速度情報(移動局B′の進行方向及び
走行速度)を利用して、データ処理インタフェース2′
を通して方位センサ6と速度センサ7の監視が行われ
る。
First, in the ordinary positioning by the three satellites 4a, 4b, 4c, accurate speed information of the mobile station B '(the traveling direction and traveling speed of the mobile station B') measured by the GPS receiver 1 is obtained. Use the data processing interface 2 '
The direction sensor 6 and the speed sensor 7 are monitored through the.

【0024】一方、測位に利用できるGPS衛星4b,
4cが2個の場合、方位センサ6の方位データ、速度セ
ンサ7の速度データ、GPS受信機1からの距離の測位
データS3、及び無線機3で受信された固定基準局Aか
らの誤差データS2をデータ処理インタフェース2′に
おいてデータ処理を施した後、下記に示す手法で測位計
算を行うことにより、連続した測位を高精度に行うこと
ができる。
On the other hand, GPS satellites 4b usable for positioning,
When there are two 4c, the azimuth data of the azimuth sensor 6, the speed data of the speed sensor 7, the positioning data S3 of the distance from the GPS receiver 1, and the error data S2 from the fixed reference station A received by the wireless device 3 are used. After performing the data processing in the data processing interface 2 ', the positioning calculation is performed by the following method, so that the continuous positioning can be performed with high accuracy.

【0025】測位の方法を図3を参照しながら説明す
る。方位センサ6(振動ジャイロ,光ファイバージャイ
ロ,地磁気センサ等)と速度センサ7(車速センサ,車
輪速差センサ等)、並びにGPS受信機1を搭載した移
動局B′は、GPS衛星が3個4a〜4c以上見える場
合、固定基準局Aから制御チャンネル5を経由して伝送
される誤差情報S2と自局のGPS受信機1により、高
精度の位置情報(移動局B′の位置する緯度及び経度)
及び速度情報(移動局B′の進行方向及び走行速度)を
得ることができる。また、この速度情報により方位セン
サ6及び速度センサ7の精度は常時監視されている。
The positioning method will be described with reference to FIG. The mobile station B ′ equipped with the direction sensor 6 (vibration gyro, optical fiber gyro, geomagnetic sensor, etc.), speed sensor 7 (vehicle speed sensor, wheel speed difference sensor, etc.), and GPS receiver 1 has three GPS satellites 4 a When 4c or more is seen, the error information S2 transmitted from the fixed reference station A via the control channel 5 and the GPS receiver 1 of the own station provide highly accurate position information (latitude and longitude where the mobile station B'is located).
And speed information (the traveling direction and traveling speed of the mobile station B ′) can be obtained. Further, the accuracy of the azimuth sensor 6 and the speed sensor 7 is constantly monitored by this speed information.

【0026】ここで、移動局B′周辺の建築物や地形の
影響により、1つのGPS衛星4aからの信号が遮断さ
れた場合、GPS受信機1により測位を行うことができ
た最終時刻をt0,並びにその時刻における地心座標系
(地球の重心を原点に、赤道面をxy面にとり、経度0
度の向きをx軸の正の向きに、東経90度の向きにy軸
にとり、北極方向をz軸の正の向きにとる座標系)での
測位座標を(x0,y0,z0)で表し、座標(x0,
y0,z0)を中心とする測地座標系(観測点を原点
に、原点を通り地球表面に接する平面をxy軸にとり、
東をx軸の正の向きに、北をy軸の正の向きにとり、原
点を通りxy平面に垂直上向きにz軸の正の向きをとる
座標系)において、時刻t0において方位センサ6及び
速度センサ7により測定した移動局B′の速度ベクトル
を(v0sinθ0,v0cosθ0,0),時刻t0
+nΔtにおいて方位センサ6及び速度センサ7により
測定した移動局B′の速度ベクトルを(vnsinθ
n,vncosθn,0)で表すと、原点から時刻t0
+Δt(ただし、Δt=MΔtであり、かつn=1,
2,…,M)経過した時点における移動局B′の移動地
点への方向ベクトル(X,Y,Z)は次式で与えられ
る。
Here, when the signal from one GPS satellite 4a is cut off due to the influence of buildings and topography around the mobile station B ', the last time when positioning can be performed by the GPS receiver 1 is t0. , And the geocentric coordinate system at that time (with the center of gravity of the earth as the origin, the equatorial plane as the xy plane, and the longitude 0
Positioning coordinates in (x0, y0, z0) are expressed in a coordinate system in which the direction of degrees is the positive direction of the x axis, the y axis is the direction of 90 degrees east longitude, and the north pole direction is the positive direction of the z axis. , Coordinates (x0,
Geodesic coordinate system centered on y0, z0 (Observation point is the origin, the plane passing through the origin and in contact with the earth's surface is the xy axis,
In the coordinate system in which the east is the positive direction of the x-axis, the north is the positive direction of the y-axis, and the positive direction of the z-axis passes through the origin and is vertically upward in the xy plane, the direction sensor 6 and the velocity are measured at time t0. The velocity vector of the mobile station B ′ measured by the sensor 7 is (v0sin θ0, v0cos θ0, 0), time t0.
The velocity vector of the mobile station B ′ measured by the azimuth sensor 6 and the velocity sensor 7 at + nΔt is (vnsinθ
n, vncos θn, 0), the time t0 from the origin
+ Δt (where Δt = MΔt and n = 1,
2, ..., M), the direction vector (X, Y, Z) of the mobile station B ′ to the moving point is given by the following equation.

【0027】[0027]

【数1】 [Equation 1]

【0028】更に、方向ベクトル(X,Y,Z)を地心
座標系の方向ベクトルに変換したものを(α,β,γ)
で表し、時刻t0+Δtにおける残りの2個のGPS衛
星4b,4cの地心座標系における位置座標を(a1,
b1,c1),(a2,b2,c2)、並びに移動局
B′の地心座標系における位置座標を(X,Y,Z)で
表現し、以下の計算を行うことにより、移動局B′の走
行状態に対応した高精度の測位を連続的に行うことがで
きる。
Further, the direction vector (X, Y, Z) converted into the direction vector of the geocentric coordinate system is (α, β, γ).
And the position coordinates of the remaining two GPS satellites 4b and 4c in the geocentric coordinate system at time t0 + Δt are represented by (a1,
b1, c1), (a2, b2, c2) and the position coordinates of the mobile station B'in the geocentric coordinate system are represented by (X, Y, Z), and the following calculation is performed to obtain the mobile station B '. It is possible to continuously perform high-precision positioning corresponding to the traveling state of.

【0029】まず、固定基準局Aから制御チャンネル5
を経由して伝送される誤差情報S3により、伝搬遅延等
の誤差要因が取り除かれた時刻t0+ΔtにおけるGP
S衛星−移動局間距離は、
First, the fixed reference station A to the control channel 5
GP at time t0 + Δt when an error factor such as a propagation delay is removed by the error information S3 transmitted via
The distance between S satellite and mobile station is

【数2】 [Equation 2]

【数3】 で与えられる。ただしr1,r2は、固定基準局Aから
伝送された誤差情報S3を用いて伝搬距離誤差を取り除
いた2つのGPS衛星−移動局間の距離を表し、r′は
移動局B′のGPS受信機1の時計のずれにより生じる
等価伝搬距離誤差を表す。
[Equation 3] Given in. However, r1 and r2 represent the distance between the two GPS satellites and the mobile station in which the propagation distance error is removed using the error information S3 transmitted from the fixed reference station A, and r'is the GPS receiver 1 of the mobile station B '. Represents the equivalent propagation distance error caused by the clock shift of.

【0030】ここで、式(2)及び式(3)の両辺の差
を次式のようにとることにより、未知であった時計のず
れを消去することができる[このとき、下記の式(4)
は双曲面となる]。
Here, by taking the difference between both sides of the equations (2) and (3) as in the following equation, the unknown clock shift can be eliminated [at this time, the following equation ( 4)
Is a hyperboloid.]

【数4】 一方、点(x0,y0,z0)を通り、方向ベクトルが
(α,β,γ)である直線の方程式は
[Equation 4] On the other hand, the equation of a straight line passing through the point (x0, y0, z0) and having a direction vector (α, β, γ) is

【数5】 で与えられる。[Equation 5] Given in.

【0031】以上の式(4)及び式(5)の連立方程式
を解くことにより、時刻t0+Δtにおける移動局B′
の位置を推定値として求めることができる。以後、同様
にして時刻t0+kΔtにおいて求めた座標を基準とし
て、時刻t0+(k+1)Δtにおける移動局B′の位
置を推定することにより、移動局B′がいかなる走行を
行う場合においても2個のGPS衛星4b,4cによる
高精度で連続的な測位を行うことができる。
By solving the simultaneous equations of the equations (4) and (5), the mobile station B'at time t0 + Δt.
Can be obtained as an estimated value. After that, by similarly estimating the position of the mobile station B ′ at the time t0 + (k + 1) Δt with reference to the coordinates obtained at the time t0 + kΔt as a reference, the two GPS signals are used regardless of the travel of the mobile station B ′. Highly accurate and continuous positioning can be performed by the satellites 4b and 4c.

【0032】(実施例2)次に図4に、移動局において
得られた位置情報を利用して行う移動体管理システムの
構成例を示す。図中、Cは陸上移動体通信システムの基
地局、Dは移動管理局、8は基地局Cと移動管理局Dの
間を伝送する固定網回線である。
(Embodiment 2) FIG. 4 shows an example of the configuration of a mobile unit management system which uses the position information obtained at the mobile station. In the figure, C is a base station of the land mobile communication system, D is a mobile management station, and 8 is a fixed network line for transmission between the base station C and the mobile management station D.

【0033】各移動局Bi,Bii,Biiiは自局に
与えられた認識番号とその移動局Bi〜Biiiが存在
する地点の位置データSi〜Siiiから構成されるデ
ータフレームを各制御チャンネル5i,5ii,5ii
iの上りチャンネルを用いて基地局Cに伝送し、基地局
CはそのデータSi〜Siiiを固定網回線8で接続さ
れている移動管理局Dへ伝送する。移動管理局Dでは基
地局Cから伝送された各移動局Bi,Bii,Biii
の認識番号と位置データSi〜Siiiを用いることに
より、各移動局Bi,Bii,Biiiの運行管理を行
うことができる。
Each mobile station Bi, Bii, Biii transmits a data frame composed of an identification number given to itself and position data Si-Siii of the point where the mobile station Bi-Bii exists to each control channel 5i, 5iii. , 5ii
The data is transmitted to the base station C using the upstream channel of i, and the base station C transmits the data Si to Siii to the mobile management station D connected by the fixed network line 8. In the mobile management station D, the mobile stations Bi, Bii, Biii transmitted from the base station C are transmitted.
The operation management of each mobile station Bi, Bii, and Biii can be performed by using the identification number and the position data Si to Siii.

【0034】ここで、図4のシステムにおける移動体の
運行管理方法に関して説明する。前記第一実施例におけ
る方位センサと速度センサを利用した衛星測位方法を利
用して、陸上移動体通信システムの各制御チャンネル5
i,5ii,5iiiの下りチャンネルを利用すること
により、基地局Cから各移動局Bi,Bii,Biii
に対して誤差情報S2を伝送することができる。
Here, the operation management method of the moving body in the system of FIG. 4 will be described. Each control channel 5 of the land mobile communication system using the satellite positioning method using the direction sensor and the speed sensor in the first embodiment.
By using the downlink channels i, 5ii, and 5iii, the mobile station Bi, Bii, and Biii from the base station C can be used.
The error information S2 can be transmitted to.

【0035】これと同時に、各移動局Bi,Bii,B
iiiからは自局に与えられた認識番号、並びに各移動
局Bi,Bii,Biiiの存在位置の緯度及び経度か
ら成る位置データSi〜Siiiから構成されるデータ
フレームを、基地局C−各移動局Bi,Bii,Bii
i間に設定された各制御チャンネル5i,5ii,5i
iiの上りチャンネルを利用して、各移動局Bi,Bi
i,Biiiから基地局Cに周期的に伝送することが可
能である。
At the same time, each mobile station Bi, Bii, B
From iii, the identification number given to the local station and the data frame composed of the position data Si to Sii including the latitude and longitude of the existing position of each mobile station Bi, Bii, and Biii are stored in the base station C-each mobile station. Bi, Bii, Bii
Each control channel 5i, 5ii, 5i set between i
By using the upstream channel of ii, each mobile station Bi, Bi
It is possible to periodically transmit from i, Biii to the base station C.

【0036】更に基地局Cは、自局Cと固定網回線8で
接続されている個々の移動管理局Dに対して、各々の移
動管理局Dが管理する各移動局Bi,Bii,Biii
の認識番号及びその各移動局Bi,Bii,Biiiが
存在する地点の位置データSi〜Siiiを伝送する。
最終的に各々の移動管理局Dは、伝送されてきたデータ
Si〜Siiiを用いて各移動局Bi,Bii,Bii
iの位置を確認し、各移動局Bi,Bii,Biiiの
運行管理を正確に、かつ容易に行うことができる。また
逆に、各移動局Bi,Bii,Biiiに対して各制御
チャンネル5i,5ii,5iiiを経由して、様々な
情報を提供したり、管理する基地局Cや移動管理局Dか
ら指令を与えたりすることもできる。
Further, the base station C, with respect to the individual mobile management stations D connected to the local station C via the fixed network line 8, the mobile stations Bi, Bii, Biii managed by the respective mobile management stations D.
And the position data Si to Siii of the point where each mobile station Bi, Bii, Biii exists.
Finally, each mobile management station D uses each of the transmitted data Si to Siii to transmit each mobile station Bi, Bii, Bii.
By confirming the position of i, the operation management of each mobile station Bi, Bii, Biii can be accurately and easily performed. On the contrary, various information is provided to each mobile station Bi, Bii, Biii via each control channel 5i, 5ii, 5iii, and a command is given from the base station C or the mobile management station D to be managed. You can also do it.

【0037】しかして、これ等実施例の仕様は、このよ
うな具体的実施態様を呈するので、セルラー系陸上移動
体通信システム,MCA無線システムの移動局B,B′
の無線機3と既存のGPS受信機1との間にGPS受信
機1から得られる測位データS3と無線機3から得られ
る誤差データS2の処理を同時に行い,GPS受信機1
と無線機3を結合するための簡単なデータ処理インター
フェース2を組み込むことにより、容易に高精度の測位
システムを実現できる。
However, since the specifications of these embodiments represent such a concrete embodiment, the mobile stations B and B'of the cellular land mobile communication system and MCA radio system.
Between the GPS receiver 1 and the existing GPS receiver 1, the positioning data S3 obtained from the GPS receiver 1 and the error data S2 obtained from the radio device 3 are processed at the same time.
By incorporating a simple data processing interface 2 for connecting the wireless device 3 and the wireless device 3, a highly accurate positioning system can be easily realized.

【0038】ここで、衛星−受信局間の伝搬距離誤差を
測定し、誤差情報S2を移動局B,B′に伝送する固定
基準局Aは、MCA無線システムの基地局C、あるいは
セルラー系陸上移動体通信システムの各セル内に配置さ
れている基地局Cもしくは複数のセルを管理する制御局
を利用し、固定基準局Aで導出された誤差情報S2は、
制御局−基地局間では固定網回線8を利用して伝送し、
基地局−移動局間では既存の陸上移動体通信システムの
制御チャンネル5を利用して移動局B,B′に通報する
ことにより実現する。
Here, the fixed reference station A that measures the propagation distance error between the satellite and the receiving station and transmits the error information S2 to the mobile stations B and B'is the base station C of the MCA radio system or the cellular land mobile. The error information S2 derived by the fixed reference station A using the base station C arranged in each cell of the body communication system or a control station managing a plurality of cells is
Transmission is performed between the control station and the base station using the fixed network line 8,
This is realized by notifying the mobile stations B and B'using the control channel 5 of the existing land mobile communication system between the base station and the mobile station.

【0039】このように、既存のMCA無線システムの
基地局C、あるいはセルラー系陸上移動通信システムの
基地局Cもしくは制御局、および移動局B,B′にGP
S受信機1とデータ処理インタフェース2を設置するこ
とにより、高精度の測位方法を提供できる。
As described above, the base station C of the existing MCA radio system, or the base station C or the control station of the cellular land mobile communication system, and the mobile stations B and B'are GP.
By installing the S receiver 1 and the data processing interface 2, a highly accurate positioning method can be provided.

【0040】さらに、このようにして得られた移動局B
i〜Biiiの位置情報(移動局が位置する緯度および
経度)Si〜Siiiを、陸上移動体通信システムの制
御チャネル5の上りチャネルを利用して移動局Bi〜B
iiiから基地局Cに通知することにより、基地局Cと
固定網回線8で接続されている移動管理局Dは、移動局
Bi〜Biiiから通知された移動局Bi〜Biiiの
位置情報Si〜Siiiを用いて、多数の移動局Bi〜
Biiiの運行管理を容易に行うことができる。
Further, the mobile station B thus obtained
i-Biii position information (latitude and longitude where the mobile station is located) Si-Sii is used by using the up channel of the control channel 5 of the land mobile communication system to obtain the mobile stations Bi-B.
By notifying the base station C from iii, the mobile management station D, which is connected to the base station C by the fixed network line 8, receives the location information Si to Sii of the mobile stations Bi to Biii notified from the mobile stations Bi to Biii. , A large number of mobile stations Bi ...
It is possible to easily manage the operation of Biii.

【0041】また、移動局B′が両側にビルや樹木が立
ち並ぶ道路を走行する場合、道路の前方あるいは後方に
位置するGPS衛星4b,4cの信号Sb〜Scは受信
できることに注目し、前後方向の2個のGPS衛星4
b,4cと固定基準局Aから伝送された誤差情報S2、
並びに移動局B′の持つ方位センサ6(振動ジャイロ、
光ファイバージャイロ、地磁気センサ等)および速度セ
ンサ7(車速センサ、車輪速差センサ等)を利用して、
これまで測位を行うことのできなかった場所において
も、高精度の測位を行う手段を移動局B′に提供し得
る。
When the mobile station B'runs on a road lined with buildings and trees on both sides, it should be noted that the signals Sb to Sc from the GPS satellites 4b and 4c located in front of or behind the road can be received. 2 GPS satellites 4
b, 4c and error information S2 transmitted from the fixed reference station A,
In addition, the orientation sensor 6 of the mobile station B '(vibration gyro,
Using an optical fiber gyro, a geomagnetic sensor, etc.) and a speed sensor 7 (vehicle speed sensor, wheel speed difference sensor, etc.),
It is possible to provide the mobile station B ′ with means for performing highly accurate positioning even in a place where positioning could not be performed until now.

【0042】これ等実施例は、以上のように既存の陸上
移動体通信システムの基地局Cもしくは制御局、および
移動局B,Bi,Bi〜BiiiにGPS受信機1と測
位データ処理インタフェース2を設置することにより、
膨大な費用をかけることなく移動局における高精度の測
位を可能とするものである。
In these embodiments, the GPS receiver 1 and the positioning data processing interface 2 are provided to the base station C or the control station of the existing land mobile communication system and the mobile stations B, Bi, Bi to Biii as described above. By installing
This enables highly accurate positioning in mobile stations without enormous cost.

【0043】(応用例)以上の本実施例を、具体的にセ
ルラー系ディジタル自動車電話システムに応用した場合
の構成例を図5に示す。図中、D′は移動管理局、Eは
無線回線制御局、Fは自動車電話基地局(BS)、Gは
自動車電話交換局(MSC)、9は無線ゾーン、10は
自動車電話基地局(BS)Fと無線回線制御局Eとの間
及び無線回線制御局Eと自動車電話交換局Gとの間を接
続する移動通信網、11は移動管理局D′と自動車電話
交換局(MSC)Gとの間を接続する固定電話網であ
る。
(Example of Application) FIG. 5 shows an example of the configuration in which the present embodiment described above is specifically applied to a cellular digital car telephone system. In the figure, D'is a mobility management station, E is a radio network controller, F is a mobile telephone base station (BS), G is a mobile telephone switching center (MSC), 9 is a wireless zone, and 10 is a mobile telephone base station (BS). ) F is a mobile communication network that connects the radio network controller E and the radio network controller E and the mobile telephone switching center G, and 11 is a mobile management station D'and a mobile telephone switching center (MSC) G. It is a fixed telephone network that connects the two.

【0044】図5において適用したGPS衛星を利用し
た測位方法自体は、図1に示す方法と変わらない。従っ
て、図5における固定基準局は、無線ゾーン9を制御す
る無線回線制御局Eに設置され、固定基準局のシステム
構成自体は、図1に示す固定基準局Aと変わらない。
The positioning method itself using GPS satellites applied in FIG. 5 is the same as the method shown in FIG. Therefore, the fixed reference station in FIG. 5 is installed in the radio network controller E that controls the wireless zone 9, and the system configuration itself of the fixed reference station is the same as the fixed reference station A shown in FIG.

【0045】データ処理インタフェース(図1中の2)
では、4つのGPS衛星4d,4e,4f,4gと固定
基準局(図1中のA)の測定距離に含まれる伝搬距離誤
差を導出した後、各GPS衛星4d,4e,4f,4g
の認識番号並びにその各GPS衛星4d,4e,4f,
4gに関する伝搬距離誤差を、セルラー系ディジタル自
動車電話システムの制御チャンネル5のフレームフォー
マットに合致するようにデータ化する。そして、このデ
ータを移動通信網10で接続されている各自動車電話基
地局(BS)Fに転送し、各自動車電話基地局(BS)
Fの無線機(図1中の3)により各制御チャンネル5を
経由して各無線ゾーン9内に存在する各移動局Bに伝送
する。
Data processing interface (2 in FIG. 1)
Then, after deriving the propagation distance error included in the measurement distance between the four GPS satellites 4d, 4e, 4f, 4g and the fixed reference station (A in FIG. 1), the respective GPS satellites 4d, 4e, 4f, 4g
Identification number and its GPS satellites 4d, 4e, 4f,
The propagation distance error regarding 4g is converted into data so as to match the frame format of the control channel 5 of the cellular digital mobile telephone system. Then, this data is transferred to each car telephone base station (BS) F connected to the mobile communication network 10, and each car telephone base station (BS) is transferred.
The data is transmitted to each mobile station B existing in each radio zone 9 via each control channel 5 by the radio device F (3 in FIG. 1).

【0046】移動局Bのシステム構成自体は、図1に示
す移動局Bに示すシステム構成と変わらない。移動局B
では、自局BのGPS受信機(図1中の1)で得られた
GPS衛星−移動局間の測定距離に含まれる伝搬距離誤
差を、各自動車電話基地局(BS)Fから制御チャンネ
ル5を経由して伝送される誤差情報S3を用いて消去す
ることにより新規の距離データを作成し、そのデータを
用いて測位計算を行う。
The system configuration itself of the mobile station B is the same as the system configuration shown in the mobile station B shown in FIG. Mobile station B
Then, the propagation distance error included in the measured distance between the GPS satellite and the mobile station, which is obtained by the GPS receiver of the own station B (1 in FIG. 1), is transmitted from each mobile telephone base station (BS) F to the control channel 5. New distance data is created by deleting the error information S3 transmitted via the data, and positioning calculation is performed using the data.

【0047】また、移動局Bは自局に与えられた認識番
号とその移動局Bが存在する地点の位置データ(移動局
の緯度及び経度)Si〜Snから構成されるデータフレ
ームを制御チャンネル5の上りチャンネルを用いて各自
動車電話基地局(BS)Fに伝送し、自動車電話基地局
(BS)Fはそのデータを移動通信網10で接続されて
いる無線回線制御局Eに伝送する。
Further, the mobile station B sends a data frame composed of an identification number given to itself and position data (latitude and longitude of the mobile station) Si to Sn of the point where the mobile station B exists to the control channel 5. Is transmitted to each mobile telephone base station (BS) F by using the up channel of the mobile telephone base station (BS) F, and the mobile telephone base station (BS) F transmits the data to the radio network controller E connected to the mobile communication network 10.

【0048】さらに、無線回線制御局Eは移動通信網1
0で接続されている自動車電話交換局(MSC)Gにこ
の位置情報データSi〜Snを伝送した後、自動車電話
交換局(MSC)Gは固定電話網11で接続されている
移動管理局D′に移動局Bの位置データSi〜Snを伝
送する。最終的に移動管理局D′は、移動局Bから伝送
されてきたデータを用いて移動局Bの位置を確認し、移
動局Bの運行管理を正確に、かつ容易に行うことができ
る。また、移動管理局D′は、自局D′とその他の固定
電話網で接続されている図示しない交通情報センター等
から得た様々な情報を、逆の回線をたどることにより移
動局Bに提供したり、自局D′から指令を与えたりする
こともできる。
Further, the radio network controller E is the mobile communication network 1
After transmitting the position information data Si to Sn to the mobile telephone switching center (MSC) G connected by 0, the mobile telephone switching center (MSC) G is connected to the fixed telephone network 11 by the mobile management station D ′. To the position data Si to Sn of the mobile station B. Finally, the mobile management station D ′ can confirm the position of the mobile station B using the data transmitted from the mobile station B, and can accurately and easily perform the operation management of the mobile station B. The mobile management station D'provides the mobile station B with various information obtained from a traffic information center (not shown) connected to the mobile station D'by another fixed telephone network by tracing the reverse line. It is also possible to give a command from the local station D '.

【0049】[0049]

【発明の効果】以上に説明したように、本発明によれ
ば、周囲の建築物や地形の影響をほとんど受けることな
く、常に高精度の測位を容易に行うことができる。ま
た、MCA無線システムやセルラー系陸上移動体通信シ
ステムといった既存の設備を活用することにより、新た
に多額の費用をかけて測位システムを構築する必要もな
く、陸上移動体通信システムのユーザーに対し、高精度
で安易な位置情報サービスを提供し、かつ移動局の運行
管理も行うことができる等、優れた経済性・有用性を発
揮する。
As described above, according to the present invention, highly accurate positioning can always be performed easily without being affected by surrounding buildings and topography. Moreover, by utilizing the existing equipment such as the MCA wireless system and the cellular land mobile communication system, there is no need to newly construct a positioning system at a large cost, and users of the land mobile communication system It offers highly accurate and easy location information service, and can also manage the operation of mobile stations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を適用するGPS衛星測位シス
テムの構成を示す図である。
FIG. 1 is a diagram showing a configuration of a GPS satellite positioning system to which an embodiment of the present invention is applied.

【図2】同上において、限られたGPS衛星の信号しか
受信できなかった場合の高精度で測位を行う際の移動局
の構成を示す図である。
FIG. 2 is a diagram showing a configuration of a mobile station when performing positioning with high accuracy when only limited GPS satellite signals can be received in the above.

【図3】同上の構成を持つ移動局により、高精度の測位
を行う際の原理を説明する図である。
[Fig. 3] Fig. 3 is a diagram for explaining the principle of high-accuracy positioning performed by the mobile station having the above-mentioned configuration.

【図4】本発明の別の実施例を示す図で、移動局におい
て得られた位置情報を利用して行う移動体管理システム
の構成例を示す
FIG. 4 is a diagram showing another embodiment of the present invention, showing an example of the configuration of a mobile management system which is performed by using the position information obtained in the mobile station.

【図5】本発明の実施例を、具体的にセルラー系ディジ
タル自動車電話システムに応用した場合の構成を示す図
である。
FIG. 5 is a diagram showing a configuration when the embodiment of the present invention is specifically applied to a cellular digital car telephone system.

【符号の説明】[Explanation of symbols]

A…固定基準局 B,B′,Bi,Bii,Biii…移動局 C…基地局 D,D′…移動管理局 E…無線回線制御局 F…自動車電話基地局(BS) G…自動車電話交換局(MSC) 1…GPS受信機 2,2′…データ処理用インタフェース 3…無線機 4a,4b,4c,4d,4e,4f,4g…GPS衛
星 5,5i,5ii,5iii…制御チャンネル 6…方位センサ 7…速度センサ 8…固定網回線 9…無線ゾーン 10…移動通信網 11…固定電話網 Sa〜Sc…GPS衛星4a〜4cの信号 S1…軌道データ S2…誤差データ(情報) S3…測位データ Si〜Siii…位置データ
A ... Fixed reference station B, B ', Bi, Bii, Biii ... Mobile station C ... Base station D, D' ... Mobility management station E ... Radio line control station F ... Car telephone base station (BS) G ... Car telephone exchange station (MSC) 1 ... GPS receiver 2, 2 '... Data processing interface 3 ... Radio equipment 4a, 4b, 4c, 4d, 4e, 4f, 4g ... GPS satellites 5, 5i, 5ii, 5iii ... Control channel 6 ... Direction Sensor 7 ... Speed sensor 8 ... Fixed network line 9 ... Wireless zone 10 ... Mobile communication network 11 ... Fixed telephone network Sa-Sc ... GPS satellites 4a-4c signal S1 ... Orbit data S2 ... Error data (information) S3 ... Positioning data Si-Siii ... Position data

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数のGPS衛星を利用するGPS衛星測
位方式において、セルラー系陸上移動体通信システムの
各セル内に配置されている基地局若しくは複数の基地局
を管理する制御局を固定基準局として利用するととも
に、移動体に移動局を設けて、前記固定基準局において
測定した前記GPS衛星−当該固定基準局間の距離及び
前記GPS衛星−当該固定基準局間の真距離から求めた
伝搬距離誤差を陸上移動体通信システムの制御チャンネ
ルを用いて前記固定基準局から前記移動局に伝送し、当
該移動局において測定した前記GPS衛星−当該移動局
間の距離情報と該伝搬距離誤差とから当該移動局の緯度
及び経度の位置情報を得て高精度の測位を行うことを特
徴とするGPS衛生を利用した測位方法
1. In a GPS satellite positioning system using a plurality of GPS satellites, a base station arranged in each cell of a cellular land mobile communication system or a control station managing a plurality of base stations is used as a fixed reference station. In addition to using the mobile station, a mobile station is provided on the mobile body, and the propagation distance error obtained from the distance between the GPS satellite and the fixed reference station measured at the fixed reference station and the true distance between the GPS satellite and the fixed reference station is moved to the land. The latitude of the mobile station, which is transmitted from the fixed reference station to the mobile station using a control channel of the body communication system, is measured from the GPS satellite-the distance information between the mobile station and the propagation distance error. Positioning method using GPS hygiene characterized by performing high-precision positioning by obtaining position information of longitude
【請求項2】移動局が2個のGPS衛星からの信号しか
受信できない場合、移動局が備える方位検知手段及び速
度検知手段により求まる前記移動局の進行方向データを
利用して、当該移動局が曲線運動を行う場合において
も、2個の前記GPS衛星により前記移動間の緯度及び
経度の位置情報を得る2元測位を行うことを特徴とする
請求項1記載のGPS衛星を利用した測位方法
2. When the mobile station can receive only signals from two GPS satellites, the mobile station uses the traveling direction data of the mobile station obtained by the azimuth detecting means and the speed detecting means included in the mobile station. The positioning method using a GPS satellite according to claim 1, wherein binary positioning is performed by two GPS satellites to obtain position information of latitude and longitude between the movements even when performing a curvilinear motion.
【請求項3】複数のGPS衛星を利用するGPS衛星測
位方式において、セルラー系陸上移動体通信システムの
各セル内に配置されている基地局若しくは複数の基地局
を管理する制御局を固定基準局として利用するとともに
移動体に移動局を設けて、前記固定基準局において測定
した前記GPS衛星−前記固定基準局間の距離及び前記
GPS衛星−前記固定基準局間の真距離から求めた伝搬
距離誤差を前記陸上移動体通信システムの制御チャンネ
ルを用いて前記固定基準局から前記移動局に伝送し、当
該移動局において測定した前記GPS衛星−前記移動局
間の距離情報と該伝搬距離誤差とから、又は、前記移動
局が曲線運動その他で2個のGPS衛星からの信号しか
受信できない場合、前記移動局が備える方位検知手段及
び速度検知手段により求まる前記移動局の進行方向デー
タをも2元的に利用して、それぞれ得た前記移動局の緯
度及び経度の位置情報を当該移動局が自局に与えられた
認識番号とともに前記固定基準局を経て前記制御チャン
ネルを介し移動管理局に周期的に伝送し、当該移動管理
局はそのデータを用いて移動局の運行管理を行うことを
特徴とするGPS衛星を利用した移動体管理方法
3. In a GPS satellite positioning system using a plurality of GPS satellites, a base station arranged in each cell of a cellular land mobile communication system or a control station for managing a plurality of base stations is used as a fixed reference station. A mobile station is provided on a mobile body while being used, and a propagation distance error obtained from a distance between the GPS satellite and the fixed reference station measured at the fixed reference station and a true distance between the GPS satellite and the fixed reference station is transferred to the land. Transmitted from the fixed reference station to the mobile station using a control channel of a body communication system, and measured from the GPS satellite-the mobile station distance information and the propagation distance error, or the mobile station. Is only able to receive signals from two GPS satellites due to curvilinear movement or the like, the direction detecting means and speed detecting means provided in the mobile station are By using the traveling direction data of the mobile station obtained in a binary manner as well, the position information of the latitude and longitude of the mobile station obtained respectively is stored in the fixed reference station together with the identification number given to the mobile station. A mobile management method using a GPS satellite, characterized in that the data is periodically transmitted to the mobile management station via the control channel, and the mobile management station uses the data to manage the operation of the mobile station.
JP4033036A 1992-02-20 1992-02-20 Positioning method and control method of moving body utilizing gas satellite Pending JPH05232210A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4033036A JPH05232210A (en) 1992-02-20 1992-02-20 Positioning method and control method of moving body utilizing gas satellite
GB9303011A GB2264837B (en) 1992-02-20 1993-02-15 Method of position determination for a mobile through global-positioning-system satellites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4033036A JPH05232210A (en) 1992-02-20 1992-02-20 Positioning method and control method of moving body utilizing gas satellite

Publications (1)

Publication Number Publication Date
JPH05232210A true JPH05232210A (en) 1993-09-07

Family

ID=12375569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4033036A Pending JPH05232210A (en) 1992-02-20 1992-02-20 Positioning method and control method of moving body utilizing gas satellite

Country Status (2)

Country Link
JP (1) JPH05232210A (en)
GB (1) GB2264837B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651048A (en) * 1992-06-26 1994-02-25 Matsushita Electric Ind Co Ltd Gps position measuring device
US5617100A (en) * 1994-04-07 1997-04-01 Matsushita Electric Industrial Co., Ltd. Accurate position measuring system
JPH10148665A (en) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd System for calculating relative position through inter-vehicle communications
JP2002536671A (en) * 1999-02-12 2002-10-29 クゥアルコム・インコーポレイテッド GPS assist method and apparatus in communication system
US6909902B1 (en) 1999-05-31 2005-06-21 Fujitsu Limited Radio base station equipment and mobile station equipment determining location of mobile station by associating with another radio base station or mobile station in a mobile communication system
JP2006292689A (en) * 2005-04-14 2006-10-26 Sumitomo Electric Ind Ltd Traffic system
JP2012528536A (en) * 2009-05-27 2012-11-12 クゥアルコム・インコーポレイテッド Use of mobile sensors in communication systems
US9380520B2 (en) 2013-03-13 2016-06-28 Qualcomm Incorporated Using motion to improve local wireless network connectivity
US9380519B2 (en) 2013-03-13 2016-06-28 Qualcomm Incorporated Using motion to improve local wireless network connectivity

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY110677A (en) * 1992-12-02 1999-01-30 Voxson Pty Ltd Improvements in positioning systems
US5420594A (en) * 1993-10-21 1995-05-30 Motorola, Inc. Multi-mode position location method
SE515499C2 (en) * 1993-11-08 2001-08-13 Telia Ab Device for enabling communication and positioning in control system
AU1328295A (en) * 1993-12-20 1995-07-10 Industrial Research Limited Radio location determination and notification
JPH07230315A (en) * 1994-02-16 1995-08-29 Fuji Heavy Ind Ltd Traveling controller for autonomously traveling vehicle
GB2287149B (en) * 1994-03-02 1998-02-25 Cossor Electronics Ltd Differential global positioning system
GB9417600D0 (en) 1994-09-01 1994-10-19 British Telecomm Navigation information system
GB2300324A (en) * 1995-04-28 1996-10-30 Anthony David Marshall Position communication
DE19538876A1 (en) * 1995-09-01 1997-03-06 Westdeutscher Rundfunk System for determining the position of moving objects
DE59601731D1 (en) * 1995-09-01 1999-05-27 Konle Tilmar SYSTEM FOR DETERMINING THE POSITION OF MOVABLE OBJECTS
US6208290B1 (en) 1996-03-08 2001-03-27 Snaptrack, Inc. GPS receiver utilizing a communication link
US5841396A (en) * 1996-03-08 1998-11-24 Snaptrack, Inc. GPS receiver utilizing a communication link
AT406714B (en) * 1995-10-20 2000-08-25 Siemens Ag Oesterreich Satellite position-finding system
DE19539302B4 (en) * 1995-10-23 2007-01-11 T-Mobile Deutschland Gmbh Positioning method using Differential GPS (DGPS)
GB2339099B (en) * 1995-10-24 2000-05-31 Inmarsat Ltd Satellite radiodetermination
GB9524754D0 (en) * 1995-12-04 1996-04-24 Symmetricom Inc Mobile position determination
US6522890B2 (en) 1995-12-22 2003-02-18 Cambridge Positioning Systems, Ltd. Location and tracking system
AUPN733395A0 (en) 1995-12-22 1996-01-25 University Of Technology, Sydney Location and tracking system
US5945944A (en) 1996-03-08 1999-08-31 Snaptrack, Inc. Method and apparatus for determining time for GPS receivers
DE19616469A1 (en) * 1996-04-25 1997-11-06 Rohde & Schwarz Differential GPS navigation system
GB9618067D0 (en) * 1996-08-29 1996-10-09 Philips Electronics Nv Combination of a GPS receiver and a telecommunications apparatus
US6185427B1 (en) * 1996-09-06 2001-02-06 Snaptrack, Inc. Distributed satellite position system processing and application network
FR2754968B1 (en) * 1996-10-22 1999-06-04 Sagem LOCALIZABLE CELL MOBILE TELEPHONY TERMINAL
US6070078A (en) * 1997-10-15 2000-05-30 Ericsson Inc. Reduced global positioning system receiver code shift search space for a cellular telephone system
US6212391B1 (en) * 1997-12-01 2001-04-03 Motorola, Inc. Method for positioning gsm mobile station
US6084544A (en) * 1997-12-18 2000-07-04 Ericsson Inc. Method for determining the location of a GPS receiver using an estimated reference time
DE19809212A1 (en) * 1998-03-04 1999-09-09 Siemens Ag Determining geographic position of receiver in geographic area
US6411811B2 (en) * 1998-04-20 2002-06-25 Ericsson Inc. System and method for provisioning assistance global positioning system information to a mobile station
US6249245B1 (en) * 1998-05-14 2001-06-19 Nortel Networks Limited GPS and cellular system interworking
US6415154B1 (en) 1998-10-06 2002-07-02 Ericsson Inc. Method and apparatus for communicating auxilliary information and location information between a cellular telephone network and a global positioning system receiver for reducing code shift search time of the receiver
GB9912724D0 (en) 1999-06-01 1999-08-04 Cambridge Positioning Sys Ltd Radio positioning system
US6587689B1 (en) * 1999-08-19 2003-07-01 Texas Instruments Incorporated Multi-sensor assisted cellular handoff technique
US6429808B1 (en) * 1999-11-12 2002-08-06 Motorola, Inc. Method and apparatus for assisted GPS integrity maintenance
US6965754B2 (en) 2001-10-09 2005-11-15 Motorola, Inc. Satellite positioning system receiver with reference oscillator circuit and methods therefor
US7170447B2 (en) 2003-02-14 2007-01-30 Qualcomm Incorporated Method and apparatus for processing navigation data in position determination
TW201239317A (en) * 2011-03-17 2012-10-01 Acer Inc Systems and methods for detecting positions, and computer program products thereof
EP3246730A1 (en) * 2016-05-19 2017-11-22 Deutsche Telekom AG Method to increase positioning accuracy of global navigation satellite systems by integration of correction service with a mobile communication network

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2176964B (en) * 1985-06-26 1989-01-18 Stc Plc Integrated communications and navigation system
CA1277400C (en) * 1986-04-09 1990-12-04 Uri Rapoport Anti-theft and locating system
DE3777527D1 (en) * 1986-04-15 1992-04-23 Magnavox Co METHOD AND DEVICE FOR MEASURING POSITION WITH BROADCAST SATELLITE SIGNALS.
US5043736B1 (en) * 1990-07-27 1994-09-06 Cae Link Corp Cellular position location system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651048A (en) * 1992-06-26 1994-02-25 Matsushita Electric Ind Co Ltd Gps position measuring device
US5617100A (en) * 1994-04-07 1997-04-01 Matsushita Electric Industrial Co., Ltd. Accurate position measuring system
JPH10148665A (en) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd System for calculating relative position through inter-vehicle communications
JP2002536671A (en) * 1999-02-12 2002-10-29 クゥアルコム・インコーポレイテッド GPS assist method and apparatus in communication system
US6909902B1 (en) 1999-05-31 2005-06-21 Fujitsu Limited Radio base station equipment and mobile station equipment determining location of mobile station by associating with another radio base station or mobile station in a mobile communication system
JP2006292689A (en) * 2005-04-14 2006-10-26 Sumitomo Electric Ind Ltd Traffic system
JP2012528536A (en) * 2009-05-27 2012-11-12 クゥアルコム・インコーポレイテッド Use of mobile sensors in communication systems
JP2014090475A (en) * 2009-05-27 2014-05-15 Qualcomm Incorporated Movement sensor uses in communication systems
US8843181B2 (en) 2009-05-27 2014-09-23 Qualcomm Incorporated Sensor uses in communication systems
US9380520B2 (en) 2013-03-13 2016-06-28 Qualcomm Incorporated Using motion to improve local wireless network connectivity
US9380519B2 (en) 2013-03-13 2016-06-28 Qualcomm Incorporated Using motion to improve local wireless network connectivity

Also Published As

Publication number Publication date
GB2264837A (en) 1993-09-08
GB2264837B (en) 1995-10-25
GB9303011D0 (en) 1993-03-31

Similar Documents

Publication Publication Date Title
JPH05232210A (en) Positioning method and control method of moving body utilizing gas satellite
CN100588987C (en) Position estimation method and system
CN106646570A (en) Multi-base-station satellite differential positioning and inertia combination vehicle precise positioning method
CN101561492B (en) Method and system for validating a mobile station location fix
US20070109185A1 (en) Providing GPS pseudo-ranges
US20110223940A1 (en) Method and apparatus for positioning mobile terminal's location
CN101711345A (en) Global positioning system error correction, vehicle tracking and object location
CN103472459A (en) GPS (Global Positioning System)-pseudo-range-differential-based cooperative positioning method for vehicles
KR20040041617A (en) Method and apparatus for detecting excess delay in a communication signal
AU2004301199A1 (en) A method and apparatus for finding a mobile radio terminal
CN107144867A (en) The accurate space-time bus connected network communication monitoring terminal of the Big Dipper and its method of work
AU2021106247A4 (en) Vehicle fusion positioning method based on V2X and laser point cloud registration for advanced automatic driving
KR100782087B1 (en) The mixing ephemeris method using the aoa, toa and gps in the mobile radio communications network
CN104359484A (en) Beidou navigation vehicle-mounted terminal with ubiquitous locating function and system
CN101707805B (en) Multi-base station frequency shift synthesized positioning method for mobile terminal
CN108885269B (en) Navigation method, navigation device and navigation system
Saleh et al. 5G-enabled vehicle positioning using EKF with dynamic covariance matrix tuning
US20100090893A1 (en) User based positioning aiding network by mobile GPS station/receiver
JP2912317B1 (en) Apparatus and method for correcting display position of navigation system and recording medium for this apparatus
Alam Three dimensional positioning with two GNSS satellites and DSRC for vehicles in urban canyons
CN115184863B (en) Positioning method, positioning device, electronic equipment and storage medium
US20020156575A1 (en) Method for determining the position of a land vehicle having a navigational system, and device for implementing the method
CN114545327A (en) Motion state information and UWB fusion positioning method and positioning system
KR100400556B1 (en) Position monitoring method for mobile communication device
JP3127042B2 (en) High-performance positioning terminal