JPH05232135A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH05232135A
JPH05232135A JP4033122A JP3312292A JPH05232135A JP H05232135 A JPH05232135 A JP H05232135A JP 4033122 A JP4033122 A JP 4033122A JP 3312292 A JP3312292 A JP 3312292A JP H05232135 A JPH05232135 A JP H05232135A
Authority
JP
Japan
Prior art keywords
acceleration
gap
movable electrode
acceleration sensor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4033122A
Other languages
Japanese (ja)
Inventor
Tetsuo Matsukura
哲夫 松倉
Keiji Hanzawa
恵二 半沢
Hirokazu Fujita
弘和 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP4033122A priority Critical patent/JPH05232135A/en
Publication of JPH05232135A publication Critical patent/JPH05232135A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Micromachines (AREA)

Abstract

PURPOSE:To obtain an acceleration sensor, which can arbitrarily set the reference point and the measuring range of a sensor, and whose accuracy and reliability are improved. CONSTITUTION:An acceleration sensor generates an output voltage VO, which is proportional to acceleration G, by imparting the acceleration G on a gage part 1 for detecting the acceleration G, imparting the signal from the gage part into an electronic circuit 12 comprising a VC detector 11, a pulse modulator 8, a NOT circuit 9 and a filter 10. The difference in sizes is provided in the gap between a movable electrode 5 of the gage part 1 and facing two fixed electrodes 4 and 5 in this constitution. The gap difference is formed by using grinding, micromachining and the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加速度センサに関する
もので特に自動車等に搭載してその運動を制御する加速
度センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor, and more particularly to an acceleration sensor mounted on an automobile or the like to control its movement.

【0002】[0002]

【従来の技術】従来、センサの構造としては、特開平2
−110383 号の加速度センサに示す様に、カンチレバー
とその先端に加速度に対応して変位する可動電極と、対
向する二個の固定電極とのギャップ差を、同じ値に形成
する構造となっていた。
2. Description of the Related Art Conventionally, as a structure of a sensor, Japanese Patent Laid-Open No.
As shown in the −110383 acceleration sensor, the gap between the cantilever and the movable electrode that is displaced at the tip of the cantilever corresponding to the acceleration, and the two fixed electrodes that face each other has the same value. ..

【0003】[0003]

【発明が解決しようとする課題】このゲージ構造は、地
球の重力1Gを受けた状態を、基準に考えられていない
ため地球の重力方向に、センサを配置した場合、測定範
囲が理論値より狭くなる。また、検出加速度範囲を+
(プラス)−(マイナス)で、非対称に設定する例えば
+50G〜−20Gの場合などについての配慮がされて
なかった。
This gauge structure has a measurement range narrower than the theoretical value when the sensor is arranged in the direction of the earth's gravity because the gauge structure is not considered as a reference when the earth receives 1G of gravity. Become. Also, the detected acceleration range is +
No consideration was given to the case where (plus)-(minus) is set asymmetrically, for example, + 50G to -20G.

【0004】[0004]

【課題を解決するための手段】加速度検出用ゲージ部の
加速度に対応して変位する可動電極とこの可動電極に対
向する二個の固定電極間のギャップ差に大小寸法差をつ
けた構造にする。
[Means for Solving the Problems] A structure is provided in which the gap difference between a movable electrode that is displaced in accordance with the acceleration of an acceleration detecting gauge portion and two fixed electrodes facing the movable electrode has a large and small size difference. ..

【0005】[0005]

【作用】加速度検出ゲージ部の可動電極と対向する二個
の固定電極間のギャップ差に寸法差をつけることで、加
速度検出の基準点の位置がかえられ、また検出したい加
速度範囲を任意に設定できる。それによって、加速度検
出処理回路の感度の最適値を用いることができるので、
精度,信頼性が向上する。且つ、同一プロセスで、ゲー
ジ部を形成することができるので標準化,低コスト化が
達成できる。
[Function] By changing the gap difference between the two fixed electrodes facing the movable electrode of the acceleration detection gauge section, the position of the acceleration detection reference point can be changed, and the acceleration range to be detected can be set arbitrarily. it can. Thereby, the optimum value of the sensitivity of the acceleration detection processing circuit can be used,
Accuracy and reliability are improved. In addition, since the gauge portion can be formed in the same process, standardization and cost reduction can be achieved.

【0006】[0006]

【実施例】以下、本発明の一実施例を図1から図7によ
り説明する。図1は、加速度センサの回路構成を示した
図である。図1においてゲージ部1は、加速度Gを検出
しこの信号を電子回路12に与えて処理することで加速
度Gに比例した出力V0をつくる。ゲージ部1は上下の
ガラス基板6,7の間に可動電極3をはさみこんだもの
であり、可動部はビーム2によってガラス基板6,7に
固定されている。可動電極3の上下には固定電極4,5
が対向してあり、固定電極4,5は上下共ガラス基板に
固定される。固定電極4と可動電極3には、静電容量C
1が、固定電極5と可動電極3には、静電容量C2が存
在し、この値は、電子回路12にあたえられる。電子回
路12は、C検出器11,パルス変調回路8,ノット回
路9及びフィルタ10で構成されており、1,11,
8,9の構成をもってサーボ形を形作っている。加速度
Gが、ゲージ部1に加わると可動電極3が速度に基づく
慣性力のため移動する。このため両電極間の距離が変化
し静電容量C1,C2が変化する。VC検出器11は、
C1−C2の差Cを検出するように動作するので、Cに
比例した電圧VCを出力する。パルス幅変調器8はVC
の値に比例したパルス幅をもつパルス電圧VEを発生
し、このパルスは固定電極4,5の一方に与えられる。
この回路構成により、加速度Gによる慣性力とパルス電
圧VE,VFによる静電気力とが、平衡し、パルス電圧
VEのパルス幅をフィルタ10で取り出すことで加速度
Gに比例した電圧V0を得ることができる。図2は図1
のセンサにおけるパルス出力波形VEを示したもので、
加速度が0の場合、パルス電圧VEのパルス幅TWは、
周期Tの50%であり、Gが正の場合(G>0)は、パ
ルス幅が50%より増加し、負の場合(G<0)はパル
ス幅50%より減少する。つまり図1の構成では加速度
Gに対応してパルス幅TWが変化し、この波形をフィル
タ10した出力電圧V0は加速度Gに比例した値とな
る。図3はサーボ系を用いないオープンループ系の回路
構成を示したものでVC検出器11,増幅図14,出力
調整器13より成りたっている。この静電容量式加速度
センサに於て、本発明は、前記ゲージ部1の構造に関す
る物について示したものである。加速度検出ゲージ部1
の可動電極3と二個の固定電極4,5間のギャップ差d
1,d2に寸法差(d1−d2≠0)をつけることで、
加速度Gと静電気力とが釣り合う点、加速度検出の基準
点の位置を変えることができ、また検出したい加速度測
定範囲を任意に設定することができる。図4から図7
は、本発明のギャップd1,d2に寸法差をつける構造
の一実施例であり、図4は、可動電極3と対向する固定
電極4,5を固定しているガラス基板7を加工(研削,
研磨)し、可動電極3と固定電極4,5とのギャップd
1,d2に寸法差をつけたものである。図5は、可動電
極3と対向する固定電極4,5の一方の電極厚みを変え
て、可動電極3と固定電極4,5とのギャップd1,d
2に寸法差をつけたものである。図6は、可動電極3の
シリコンマイクロマシニング加工により固定電極4,5
とのギャップd1,d2に寸法差につけたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a circuit configuration of an acceleration sensor. In FIG. 1, the gauge unit 1 detects an acceleration G, applies this signal to an electronic circuit 12, and processes it to produce an output V0 proportional to the acceleration G. The gauge portion 1 is formed by sandwiching the movable electrode 3 between the upper and lower glass substrates 6 and 7, and the movable portion is fixed to the glass substrates 6 and 7 by the beam 2. Fixed electrodes 4, 5 are provided above and below the movable electrode 3.
Are opposed to each other, and the fixed electrodes 4 and 5 are fixed to the upper and lower glass substrates. The fixed electrode 4 and the movable electrode 3 have a capacitance C
1, the fixed electrode 5 and the movable electrode 3 have an electrostatic capacitance C2, and this value is given to the electronic circuit 12. The electronic circuit 12 is composed of a C detector 11, a pulse modulation circuit 8, a knot circuit 9 and a filter 10,
The servo type is formed with the configuration of 8 and 9. When the acceleration G is applied to the gauge unit 1, the movable electrode 3 moves due to the inertial force based on the velocity. Therefore, the distance between both electrodes changes and the electrostatic capacitances C1 and C2 change. The VC detector 11 is
Since it operates so as to detect the difference C between C1 and C2, a voltage VC proportional to C is output. The pulse width modulator 8 is VC
A pulse voltage VE having a pulse width proportional to the value of is generated, and this pulse is applied to one of the fixed electrodes 4 and 5.
With this circuit configuration, the inertial force due to the acceleration G and the electrostatic force due to the pulse voltages VE and VF are balanced, and the pulse width of the pulse voltage VE can be extracted by the filter 10 to obtain the voltage V0 proportional to the acceleration G. .. 2 is shown in FIG.
The pulse output waveform VE of the sensor of
When the acceleration is 0, the pulse width TW of the pulse voltage VE is
When the period T is 50% and G is positive (G> 0), the pulse width increases from 50%, and when it is negative (G <0), the pulse width decreases from 50%. That is, in the configuration of FIG. 1, the pulse width TW changes according to the acceleration G, and the output voltage V0 obtained by filtering this waveform 10 has a value proportional to the acceleration G. FIG. 3 shows the circuit configuration of an open loop system that does not use a servo system, which is composed of a VC detector 11, an amplification diagram 14, and an output adjuster 13. In this capacitance type acceleration sensor, the present invention shows the structure of the gauge section 1. Acceleration detection gauge section 1
Gap d between the movable electrode 3 and the two fixed electrodes 4 and 5
By adding a dimensional difference (d1-d2 ≠ 0) to 1 and d2,
The position where the acceleration G and the electrostatic force are balanced and the position of the reference point for acceleration detection can be changed, and the acceleration measurement range to be detected can be set arbitrarily. 4 to 7
4 is an embodiment of a structure in which the gaps d1 and d2 of the present invention are provided with a dimensional difference.
Polishing), and the gap d between the movable electrode 3 and the fixed electrodes 4 and 5
1 and d2 are different in size. In FIG. 5, the gap d1 between the movable electrode 3 and the fixed electrodes 4 and 5 is changed by changing the thickness of one of the fixed electrodes 4 and 5 facing the movable electrode 3.
2 has a dimensional difference. FIG. 6 shows the fixed electrodes 4, 5 formed by silicon micromachining of the movable electrode 3.
The gaps d1 and d2 between and are added to the dimensional difference.

【0007】図7は、可動電極3を支持するカンチレバ
ー2をシリコンマイクロマシニング加工により差をつ
け、固定電極4,5とのギャップd1,d2に差をつけ
たものである。
FIG. 7 shows the cantilever 2 which supports the movable electrode 3 and which is made different by silicon micromachining so that the gaps d1 and d2 between the fixed electrode 4 and 5 are made different.

【0008】また、d1−d2のギャップ差は、静電容
量変化の値と電子回路部の感度より|d1−d2|=0
〜4μm間になるように設定している。図4〜図7の実
施例は、地球の重力を受けるように可動電極3に対して
固定電極上4,下5に対向させる様に設置した場合の図
で、上側ギャップd1と下側ギャップd2との関係が、
d2≧d1になっているが、逆のd2≦d1の場合も成
り立つ。
The gap difference d1−d2 is | d1−d2 | = 0 from the value of capacitance change and the sensitivity of the electronic circuit section.
It is set so as to be between 4 μm and 4 μm. The embodiment of FIGS. 4 to 7 is a diagram in the case where the movable electrode 3 is installed so as to face the fixed electrode upper 4 and lower 5 so as to receive the gravity of the earth, and the upper gap d1 and the lower gap d2 are arranged. Relationship with
Although d2 ≧ d1 holds, the same holds true for the opposite case of d2 ≦ d1.

【0009】本発明によると可動電極3と固定電極4,
5のギャップ差に寸法差をつける事で、加速度検出処理
回路の感度の最適値を用いる事ができ、加速度測定範囲
を任意に設定できるので、精度,信頼性が向上する。且
つ同一プロセスでゲージ部を作成できるので標準化,低
コスト化が達成できる。
According to the present invention, the movable electrode 3 and the fixed electrode 4,
By giving a dimensional difference to the gap difference of 5, the optimum value of the sensitivity of the acceleration detection processing circuit can be used, and the acceleration measurement range can be set arbitrarily, so that accuracy and reliability are improved. Moreover, since the gauge part can be created in the same process, standardization and cost reduction can be achieved.

【0010】[0010]

【発明の効果】以上、述べたように本発明では、可動電
極と固定電極とのギャップに寸法差をつけてゲージ部を
構成することにより、精度,信頼性が向上した小型化さ
れた加速度センサを提供する効果がある。
As described above, according to the present invention, the size of the gap between the movable electrode and the fixed electrode is made different from each other to form the gauge portion, so that the precision and reliability of the miniaturized acceleration sensor is improved. Has the effect of providing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である加速度センサのサーボ
系で構成された場合の回路構成図である。
FIG. 1 is a circuit configuration diagram in the case where the acceleration sensor according to an embodiment of the present invention is configured by a servo system.

【図2】動作波形図である。FIG. 2 is an operation waveform diagram.

【図3】オープンループ系で構成された場合の回路構成
図である。
FIG. 3 is a circuit configuration diagram in the case of being configured by an open loop system.

【図4】可動電極と固定電極とのギャップの寸法差をか
えた場合の断面であり、ガラス基板の厚みをかえた場合
を示す図である。
FIG. 4 is a cross-sectional view when the dimensional difference of the gap between the movable electrode and the fixed electrode is changed, and is a view showing a case where the thickness of the glass substrate is changed.

【図5】同じく固定電極の厚みをかえた場合を示す図で
ある。
FIG. 5 is a diagram showing a case where the thickness of the fixed electrode is changed similarly.

【図6】同じく固定電極の厚みをかえた場合を示す図で
ある。
FIG. 6 is a diagram showing a case where the thickness of the fixed electrode is changed similarly.

【図7】同じくカンチレバーの厚みをかえた場合を示す
図である。
FIG. 7 is a diagram showing a case where the thickness of the cantilever is changed similarly.

【符号の説明】[Explanation of symbols]

1…ゲージ部、2…カンチレバー、3…可動電極、4…
固定電極、5…固定電極(下側)、6…ガラス基板
(上)、7…ガラス基板(下)、8…パルス変調回路、
9…ノット回路、10…フィルタ、11…VC検出器、
12…電子回路、13…出力調整器、14…増幅器。
1 ... Gauge part, 2 ... Cantilever, 3 ... Movable electrode, 4 ...
Fixed electrode, 5 ... Fixed electrode (lower side), 6 ... Glass substrate (upper), 7 ... Glass substrate (lower), 8 ... Pulse modulation circuit,
9 ... Knot circuit, 10 ... Filter, 11 ... VC detector,
12 ... Electronic circuit, 13 ... Output regulator, 14 ... Amplifier.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 半沢 恵二 茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内 (72)発明者 藤田 弘和 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiji Hanzawa 2477 Kashima Yatsu, Takaba, Katsuta-shi, Ibaraki Prefecture 3 Hitachi Automotive Engineering Co., Ltd. (72) Hirokazu Fujita 2520 Takata, Katsuta-shi, Ibaraki Stocks Company Hitachi, Ltd. Automotive Equipment Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一個以上のカンチレバーとその
先端に加速度に対応して変位する可動電極を形成し、こ
の可動電極に対向する二個の固定電極を有する加速度検
出素子であるゲージとそのゲージの電気信号処理とし
て、加速度検出処理回路を集積回路(IC)等で構成し
た加速度センサにおいて、前記ゲージ部の可動電極と対
向する二個の固定電極間のギャップに大小寸法差をつけ
た事を特徴とした加速度センサ。
1. A gauge, which is an acceleration detecting element having at least one or more cantilevers and a movable electrode displacing in response to acceleration at its tip, and two fixed electrodes facing the movable electrode, and a gauge thereof. As an electric signal processing, in an acceleration sensor having an acceleration detection processing circuit composed of an integrated circuit (IC) or the like, a gap between two fixed electrodes facing the movable electrode of the gauge part is made different in size. And the acceleration sensor.
【請求項2】請求項1に於て、可動電極に対向する固定
電極とのギャップ差を変化させて加速度を検出する範囲
を変化させる事を特徴とした加速度センサ。
2. The acceleration sensor according to claim 1, wherein the range for detecting acceleration is changed by changing the gap difference between the fixed electrode facing the movable electrode and the fixed electrode.
【請求項3】請求項1に於て、可動電極と対向する固定
電極のギャップを、d1,d2とし、基準0G(G=
9.8m/s2)状態にて、ギャップ差(|d1−d2
|)が、d=0〜4μmの間である事を特徴とした加速
度センサ。
3. The gap according to claim 1, wherein the fixed electrode facing the movable electrode has a gap of d1 and d2, and a reference 0G (G =
In the condition of 9.8 m / s 2 ), the gap difference (| d1-d2
|) Is an acceleration sensor characterized in that d = 0 to 4 μm.
【請求項4】請求項1に於て、地球の重力を受ける様に
可動電極に対して、固定電極を上下に対向させる様にゲ
ージを設置した場合、上側のギャップd1と下側のギャ
ップd2との関係が、d2≧d1となる事を特徴とした
加速度センサ。
4. The gap according to claim 1, wherein when the gauge is installed so that the fixed electrode is vertically opposed to the movable electrode so as to receive the gravity of the earth, an upper gap d1 and a lower gap d2 are provided. An acceleration sensor characterized in that the relationship with is d2 ≧ d1.
JP4033122A 1992-02-20 1992-02-20 Acceleration sensor Pending JPH05232135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4033122A JPH05232135A (en) 1992-02-20 1992-02-20 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4033122A JPH05232135A (en) 1992-02-20 1992-02-20 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH05232135A true JPH05232135A (en) 1993-09-07

Family

ID=12377827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4033122A Pending JPH05232135A (en) 1992-02-20 1992-02-20 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH05232135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160743A (en) * 2012-02-09 2013-08-19 Seiko Instruments Inc Acceleration switch and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160743A (en) * 2012-02-09 2013-08-19 Seiko Instruments Inc Acceleration switch and electronic device

Similar Documents

Publication Publication Date Title
US4584885A (en) Capacitive detector for transducers
US5703293A (en) Rotational rate sensor with two acceleration sensors
US5618989A (en) Acceleration sensor and measurement method
US7293460B2 (en) Multiple-axis linear accelerometer
EP0385917B1 (en) Pulse-driven accelerometer arrangement
US4941354A (en) Tri-axial accelerometers
US7795881B2 (en) Capacitive physical quantity detection device
EP0565065B1 (en) Acceleration sensor
US6450029B1 (en) Capacitive physical quantity detection device
JP3272412B2 (en) Circuit arrangement for evaluating and testing capacitive sensors
JPH05142249A (en) Three dimensional acceleration sensor
JP3162149B2 (en) Capacitive sensor
Payne et al. Surface micromachined accelerometer: A technology update
US20060048574A1 (en) Acceleration sensor and method for detecting an acceleration
JP2006023287A (en) Method of measuring jerk (the rate of change of acceleration) using piezoelectric body
US5524488A (en) Flux control groove
US6769304B2 (en) Reduced start time for MEMS gyroscope
Jono et al. Electrostatic servo system for multi-axis accelerometers
JP2760628B2 (en) PWM electrostatic servo accelerometer
JPH05232135A (en) Acceleration sensor
Li et al. Open–loop operating mode of micromachined capacitive accelerometer
JPH05333056A (en) Acceleration sensor
JP4329275B2 (en) Mechanical quantity sensor
EP0620441A1 (en) Rotational accelerometer
EP0390721A1 (en) Electrostatic force nulling accelerometer arrangement