JPH05232076A - Alpha-amylase activation measuring electrode and alpha-amyklase activation measuring method - Google Patents

Alpha-amylase activation measuring electrode and alpha-amyklase activation measuring method

Info

Publication number
JPH05232076A
JPH05232076A JP4031912A JP3191292A JPH05232076A JP H05232076 A JPH05232076 A JP H05232076A JP 4031912 A JP4031912 A JP 4031912A JP 3191292 A JP3191292 A JP 3191292A JP H05232076 A JPH05232076 A JP H05232076A
Authority
JP
Japan
Prior art keywords
enzyme
membrane
electrode
amylase
amylase activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4031912A
Other languages
Japanese (ja)
Inventor
Junichiro Arai
潤一郎 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4031912A priority Critical patent/JPH05232076A/en
Publication of JPH05232076A publication Critical patent/JPH05232076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To use all blood as tested solution without applying centrifugation or filtration in measuring alpha-amylase activation, to enhance a measurement limit and to increase measurement precision. CONSTITUTION:A hydrogen peroxide selectively permeating film 2, a fixed GOD film 3, a conjugation enzyme fixed film 4 and a diffusion limiting film 5 are arranged in sequence on the surface of a base electrode 1. By using the diffusion limiting film 5, the function of separating interfering material and the function of limiting the diffusion and permeation of alpha-amylase and enzyme reaction material are achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はα−アミラーゼ活性測
定用電極装置およびα−アミラーゼ活性測定方法に関
し、さらに詳細にいえば、被検溶液中におけるα−アミ
ラーゼ活性を測定する場合に好適に使用される電極装置
および2種類の酵素を用いて、互に異なるタイミングに
おいて得られる電気信号に基づいてα−アミラーゼ活性
を測定する方法に関する。
FIELD OF THE INVENTION The present invention relates to an electrode device for measuring α-amylase activity and a method for measuring α-amylase activity. More specifically, it is suitable for use in measuring α-amylase activity in a test solution. The present invention relates to a method for measuring α-amylase activity based on electric signals obtained at mutually different timings using the electrode device and two kinds of enzymes described above.

【0002】[0002]

【従来の技術】従来から95%以上の医療施設におい
て、急性膵炎、膵臓癌、肝胆道疾患、腎不全、唾液線
炎、耳下線炎等の可能性がある患者に対して、血液、
尿、唾液等を被検溶液としてα−アミラーゼ活性の測定
を行なっている。具体的には、(1)デンプンがα−ア
ミラーゼによって徐々に分解されるのをヨードデンプン
反応で追跡するヨードメトリック法(アミロクラスチッ
ク法ともいう)、(2)α−アミラーゼによる分解反応
で得られたマルトースの還元力を測定するサッカロジェ
ニック法、(3)色素を交差結合させた不溶性の着色デ
ンプンを基質として、α−アミラーゼの作用により遊離
した可溶性色素を比色測定するクロモジェニック法等が
ある。
2. Description of the Related Art Conventionally, in 95% or more of medical facilities, blood for patients with a possibility of acute pancreatitis, pancreatic cancer, hepatobiliary disease, renal failure, salivitis, parotiditis, etc.
The α-amylase activity is measured using urine, saliva or the like as a test solution. Specifically, (1) an iodometric method (also referred to as an amyloclastic method) in which starch is gradually decomposed by α-amylase is followed by an iodostarch reaction, and (2) a decomposition reaction by α-amylase Saccharogenic method for measuring the reducing power of maltose, (3) Chromogenic method for colorimetrically measuring soluble pigment released by the action of α-amylase using insoluble colored starch cross-linked with pigment as a substrate There is.

【0003】しかし、これらの方法は、反応時間が長
く、呈色が不安定であり、再現性および選択性が不十分
であり、さらに遠心分離操作、濾過作業が必要である等
の不都合を有しており、緊急性が高く、しかも高い測定
精度が要求される上記医療施設での計測に好適な方法で
はない。また、これらの方法に代えて、酵素の基質特異
性を利用する、いわゆる酵素法が提案されている。そし
て、酵素法は選択性が高く、反応時間を短縮できる等の
利点を有しているのであるから、上記(1)(2)
(3)の方法と比較して医療施設での計測に好適であ
る。
However, these methods have the disadvantages that the reaction time is long, the coloration is unstable, the reproducibility and the selectivity are insufficient, and further centrifugation and filtration operations are required. However, this method is not suitable for measurement in the above medical facilities that are highly urgent and require high measurement accuracy. Further, in place of these methods, a so-called enzymatic method utilizing the substrate specificity of the enzyme has been proposed. Since the enzymatic method has advantages such as high selectivity and shortened reaction time, the above (1) and (2)
It is more suitable for measurement in medical facilities than the method (3).

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の酵素法
においては、被検溶液中に含まれているグルコース、マ
ルトースを除去あるいは変換させる必要があるという不
都合、定量手法として比色法を採用しているため、α−
アミラーゼ活性が高い被検溶液については希釈した後に
測定する必要があるという不都合、希釈時のピペット操
作により被検溶液が汚染されてしまう可能性があるとい
う不都合等があり、また酵素電極検知器を2個用いる測
定方法(特開昭56−97863号公報参照)は、被検
溶液中のマルトースが正誤差を与えるという不都合、両
酵素電極検知器を同時に較正しなければならないという
不都合、酵素電極検知器の数が増加することに伴ない周
辺の電子回路部品等の数が著しく増加し、構成が複雑化
するという不都合等を有している。さらに、これらの不
都合を解消するために、グルコースオキシダーゼ(以
下、GODと略称する)が固定化された固定化GOD膜
を密封被着してなる酵素電極を用い、所定濃度のアミラ
ーゼ基質液が供給された1つの固定化GOD膜電極部に
アミラーゼを含む被検溶液と分解補助酵素とを注入し、
固定化GOD膜による分解作用の結果生じる、当初から
存在するグルコース量に関係する電流が、当初は急激に
立上ってからほぼ一定値になり、その後はアミラーゼお
よび補助酵素による分解作用により徐々に上昇するの
で、徐々に上昇する電流の変化量に基づいてアミラーゼ
活性を測定する方法が提案されている(特公平1−47
160号公報参照)。しかし、特公平1−47160号
公報に記載されたアミラーゼ活性測定方法を採用した場
合であっても、被検溶液として全血を用いた場合には、
溶血に起因して血球中のヘモグロビン等が被検溶液中に
流出するのであるから、最終的に得られるアミラーゼ活
性測定結果の精度が低下してしまうという不都合があ
る。そして、測定精度が低下する割合は溶血の程度に依
存するのであるから、緊急性が要求される医療施設等で
の使用に当っては、被検溶液として全血を用いた場合で
あっても高精度にアミラーゼ活性の測定を達成できるア
ミラーゼ活性測定方法が強く要望されていた。
However, in the conventional enzymatic method, it is necessary to remove or convert glucose and maltose contained in the test solution, and the colorimetric method is adopted as a quantitative method. Therefore, α−
A test solution with high amylase activity has the disadvantages that it needs to be measured after dilution, the test solution may be contaminated by pipetting during dilution, and the enzyme electrode detector must be installed. The two measuring methods (see Japanese Patent Laid-Open No. 56-97863) have the disadvantages that maltose in the test solution gives a positive error, that both enzyme electrode detectors must be calibrated at the same time, enzyme electrode detection With the increase in the number of containers, the number of peripheral electronic circuit parts and the like increases remarkably, and the configuration becomes complicated. Further, in order to eliminate these disadvantages, an amylase substrate solution having a predetermined concentration is supplied by using an enzyme electrode obtained by sealingly depositing an immobilized GOD membrane on which glucose oxidase (hereinafter abbreviated as GOD) is immobilized. A test solution containing amylase and a decomposition auxiliary enzyme are injected into one of the immobilized GOD membrane electrode parts,
The current related to the amount of glucose existing from the beginning, which is the result of the degrading action by the immobilized GOD membrane, rises rapidly at the beginning and then becomes a substantially constant value, and thereafter gradually decreases due to the degrading action by the amylase and the auxiliary enzyme. Since it rises, a method of measuring amylase activity based on a gradually increasing amount of change in current has been proposed (Japanese Patent Publication No. 1-47).
No. 160). However, even when the method for measuring amylase activity described in JP-B-1-47160 is adopted, when whole blood is used as a test solution,
Since hemoglobin and the like in blood cells flow out into the test solution due to hemolysis, there is a disadvantage that the accuracy of the amylase activity measurement result finally obtained is lowered. Since the rate of decrease in measurement accuracy depends on the degree of hemolysis, even in the case of using whole blood as the test solution, for use in medical facilities where urgency is required. There has been a strong demand for a method for measuring amylase activity that can achieve highly accurate measurement of amylase activity.

【0005】さらに、被検溶液中のα−アミラーゼ活性
が高い場合のみならず被検溶液に含まれる基質の量が多
い場合には、GODの存在下において反応されるグルコ
ース量が著しく多くなり、この結果、被検溶液中の溶存
酸素の消費量が著しく多くなるので、溶存酸素量により
測定可能な上限が制約されてしまうという不都合もあ
る。
Furthermore, not only when the α-amylase activity in the test solution is high but also when the amount of the substrate contained in the test solution is large, the amount of glucose reacted in the presence of GOD is significantly increased, As a result, the amount of dissolved oxygen consumed in the test solution is remarkably increased, and there is also a disadvantage that the measurable upper limit is restricted by the amount of dissolved oxygen.

【0006】[0006]

【発明の目的】この発明は上記の問題点に鑑みてなされ
たものであり、被検溶液として全血を用いた場合であっ
ても、血球分離操作、濾過作業等を行なうことなく簡単
に、かつ高精度にα−アミラーゼ活性の測定を行なうこ
とができるα−アミラーゼ活性測定電極装置およびα−
アミラーゼ活性測定方法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and even when whole blood is used as a test solution, it is possible to easily perform a blood cell separation operation, a filtration operation, etc. And an α-amylase activity measuring electrode device capable of highly accurately measuring α-amylase activity, and α-
It is intended to provide a method for measuring amylase activity.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの、請求項1のα−アミラーゼ活性測定用電極装置
は、電極の測定面に対して所定の相対位置を保持させて
被検溶液中のα−アミラーゼ、α−アミラーゼの存在下
で2糖体および/または多糖体に分解される多糖体、2
糖体および/または多糖体の透過拡散を制限する拡散制
限膜を配置してあるとともに、測定面と拡散制限膜との
間に、単糖体の加水分解反応を行なわせる第1の酵素
と、2糖体および/または多糖体を単糖体に分解する第
2の酵素とを配置してある。
In order to achieve the above object, the electrode device for measuring α-amylase activity according to claim 1 has a predetermined relative position with respect to the measurement surface of the electrode and holds the test solution. Α-amylase, a polysaccharide that is decomposed into a disaccharide and / or a polysaccharide in the presence of α-amylase, 2
A diffusion limiting membrane that limits permeation and diffusion of the sugar and / or polysaccharide is arranged, and a first enzyme that causes a hydrolysis reaction of the monosaccharide between the measurement surface and the diffusion limiting membrane, And a second enzyme that decomposes the disaccharide and / or polysaccharide into monosaccharides.

【0008】請求項2のα−アミラーゼ活性測定用電極
装置においては、拡散制限膜が電極に対して取外し可能
に配置されてある。請求項3のα−アミラーゼ活性測定
用電極装置においては、第1の酵素が膜に固定化されて
あるとともに、第2の酵素も膜に固定化されてあり、第
2の酵素固定化膜が第1の酵素固定化膜よりも拡散制限
膜に近接する所定位置に配置されてある。
In the electrode device for measuring α-amylase activity according to claim 2, the diffusion limiting film is arranged so as to be removable from the electrode. In the electrode device for measuring α-amylase activity according to claim 3, the first enzyme is immobilized on the membrane and the second enzyme is also immobilized on the membrane, and the second enzyme-immobilized membrane is It is arranged at a predetermined position closer to the diffusion limiting film than the first enzyme-immobilized film.

【0009】請求項4のα−アミラーゼ活性測定用電極
装置においては、第2の酵素固定化膜が電極に対して取
外し可能に配置されてある。請求項5のα−アミラーゼ
活性測定用電極装置においては、電極を所定方向に移動
させる電極移動手段をさらに含んでいるとともに、第1
の酵素固定化膜、第2の酵素固定化膜および拡散制限膜
が、電極の所定方向への所定距離の移動に追従して互に
密着状態となる相対位置関係を保持した状態で配置され
てある。
In the electrode device for measuring α-amylase activity according to claim 4, the second enzyme-immobilized membrane is arranged so as to be removable from the electrode. The electrode device for measuring α-amylase activity according to claim 5 further includes electrode moving means for moving the electrode in a predetermined direction, and
The enzyme-immobilized membrane, the second enzyme-immobilized membrane, and the diffusion-limiting membrane are arranged in a relative positional relationship in which they adhere to each other following the movement of the electrode in a predetermined direction for a predetermined distance. is there.

【0010】請求項6のα−アミラーゼ活性測定方法
は、電極表面に対して第1の酵素固定化膜、第2の酵素
固定化膜および拡散制限膜が配置されてなる電極装置に
対して被検溶液および非還元末端を保護基で修飾してな
る反応基質を所定の順序で点着し、拡散制限膜により被
検溶液に含まれる妨害物質を分離し、第2の酵素の存在
下において妨害物質が分離された被検溶液および反応基
質の分解反応を行なわせて単糖体を得、第1の酵素の存
在下において単糖体の加水分解反応を行なわせ、単糖体
の加水分解反応により電極から出力される電気信号を所
定時間間隔で少なくとも2回計測し、得られた複数の電
気信号に基づいて被検溶液中のα−アミラーゼ活性測定
信号を得る方法である。
In the method for measuring α-amylase activity according to a sixth aspect of the present invention, an electrode device comprising a first enzyme-immobilized membrane, a second enzyme-immobilized membrane and a diffusion limiting membrane is disposed on the electrode surface. The test solution and the reaction substrate obtained by modifying the non-reducing end with a protecting group are spotted in a predetermined order, and the interfering substances contained in the test solution are separated by the diffusion limiting membrane and interfered in the presence of the second enzyme. The test solution from which the substance is separated and the reaction substrate are decomposed to obtain a monosaccharide, and the monosaccharide is hydrolyzed in the presence of the first enzyme to hydrolyze the monosaccharide. The electric signal output from the electrode is measured at least twice at predetermined time intervals, and the α-amylase activity measurement signal in the test solution is obtained based on the obtained electric signals.

【0011】請求項7のα−アミラーゼ活性測定方法に
おいては、第1回目の電気信号の計測がエンドポイント
法により行なわれ、第2回目以降の電気信号の計測がレ
ート法により行なわれる。これらの場合において、第1
の酵素としては例えばGODが例示でき、第2の酵素と
しては、α−D−グルコシダーゼ、β−D−グルコシダ
ーゼ、エクソ−1,4−α−D−グルコシダーゼ、β−
アミラーゼ(但し、β−アミラーゼは前記何れかの酵素
との組み合せとして使用される必要がある)等が例示で
き、反応基質としては、非還元末端を第2の酵素の作用
を受けない保護基で修飾した基質であればよく、保護基
としては、ベンジル基、エチリデン基、イソプロピリデ
ン基、ベンジリデン基、メチル基、エチル基、ジメチル
基、ジエチル基、カルボキシメチル基等が例示でき、基
質としては、マルトテトラオース、マルトペンタオー
ス、マルトデキストリン、デンプン、可溶性デンプン、
アミロース、アミロペクチン等が例示でき、拡散制限膜
としては、ポリカーボネート等が例示できる。また、電
極としては、過酸化水素電極または酸素電極が使用可能
である。
In the α-amylase activity measuring method according to the seventh aspect, the first measurement of the electric signal is performed by the endpoint method, and the second measurement of the electric signal is performed by the rate method. In these cases, the first
Examples of the enzyme include GOD, and examples of the second enzyme include α-D-glucosidase, β-D-glucosidase, exo-1,4-α-D-glucosidase, and β-.
Amylase (however, β-amylase needs to be used in combination with any of the above-mentioned enzymes) and the like can be exemplified, and as the reaction substrate, the non-reducing end is a protecting group that is not affected by the second enzyme. A modified substrate may be used, and examples of the protecting group include a benzyl group, an ethylidene group, an isopropylidene group, a benzylidene group, a methyl group, an ethyl group, a dimethyl group, a diethyl group, and a carboxymethyl group. Maltotetraose, maltopentaose, maltodextrin, starch, soluble starch,
Examples thereof include amylose and amylopectin, and examples of the diffusion limiting film include polycarbonate. Further, a hydrogen peroxide electrode or an oxygen electrode can be used as the electrode.

【0012】さらに、固定化とは、測定を行なった場合
にかなり長期間にわたって酵素を膜に拘束する場合のみ
ならず、溶液の点着から短時間のみ酵素を膜にある程度
拘束する場合をも含む概念として使用される。
Further, the immobilization includes not only the case where the enzyme is bound to the membrane for a considerably long period of time when the measurement is carried out, but also the case where the enzyme is bound to the membrane to some extent only for a short time after the solution is spotted. Used as a concept.

【0013】[0013]

【作用】請求項1のα−アミラーゼ活性測定用電極装置
であれば、電極の測定面に対して所定の相対位置を保持
させて被検溶液中のα−アミラーゼ、α−アミラーゼの
存在下で2糖体および/または多糖体に分解される多糖
体、2糖体および/または多糖体の透過拡散を制限する
拡散制限膜を配置してあるとともに、測定面と拡散制限
膜との間に、単糖体の加水分解反応を行なわせる第1の
酵素と、2糖体および/または多糖体を単糖体に分解す
る第2の酵素とを配置してあるので、被検溶液とα−ア
ミラーゼにより2糖体および/または多糖体に分解され
る反応基質とを拡散制限膜上に点着すれば、α−アミラ
ーゼ、α−アミラーゼの存在下で2糖体および/または
多糖体に分解される多糖体、2糖体および/または分解
された多糖体の透過拡散が制限されて各酵素の配置位置
に到達するα−アミラーゼ、α−アミラーゼの存在下で
2糖体および/または多糖体に分解される多糖体、2糖
体および/または分解された多糖体の濃度を大幅に低減
できるのみならず、被検溶液に含まれる妨害物質の透過
を確実に阻止できる。そして、α−アミラーゼ、α−ア
ミラーゼの存在下で2糖体および/または多糖体に分解
される多糖体、2糖体および/または分解された多糖体
の濃度の大幅な低下に起因して、加水分解により溶存酸
素を消費する単糖体の量をも大幅に低減でき、測定可能
なα−アミラーゼ活性の上限を著しく高めることができ
るとともに、α−アミラーゼ活性測定精度を大幅に高め
ることができる。また、α−アミラーゼ活性測定用電極
装置に対する被検溶液、反応基質の供給についても単に
点着するだけでよく、血球分離操作、濾過作業等が不要
になるので、大幅な操作性の向上を達成できる。
The electrode device for measuring α-amylase activity according to claim 1 holds the predetermined relative position with respect to the measurement surface of the electrode in the presence of α-amylase and α-amylase in the test solution. A diffusion limiting membrane that restricts permeation and diffusion of a disaccharide and / or a polysaccharide that is decomposed into a polysaccharide, a disaccharide and / or a polysaccharide is arranged, and between the measurement surface and the diffusion limiting membrane, Since the first enzyme for hydrolyzing the monosaccharide and the second enzyme for decomposing the disaccharide and / or the polysaccharide into the monosaccharide are arranged, the test solution and the α-amylase When a reaction substrate that is decomposed into a disaccharide and / or a polysaccharide by the method is spotted on the diffusion limiting membrane, it is decomposed into a disaccharide and / or a polysaccharide in the presence of α-amylase or α-amylase. Penetration of polysaccharides, disaccharides and / or degraded polysaccharides Of α-amylase, which is restricted to reach the position of arrangement of each enzyme, a polysaccharide that is decomposed into a disaccharide and / or a polysaccharide in the presence of α-amylase, a disaccharide and / or a degraded polysaccharide, Not only can the concentration be greatly reduced, but the permeation of interfering substances contained in the test solution can be reliably prevented. Then, due to a large decrease in the concentration of α-amylase, a polysaccharide that is decomposed into a disaccharide and / or a polysaccharide in the presence of α-amylase, a disaccharide and / or a decomposed polysaccharide, The amount of monosaccharides that consume dissolved oxygen by hydrolysis can also be significantly reduced, the upper limit of measurable α-amylase activity can be significantly increased, and the accuracy of α-amylase activity measurement can be significantly increased. .. In addition, the test solution and the supply of the reaction substrate to the electrode device for measuring α-amylase activity need only be spotted, and blood cell separation operation, filtration work, etc. are not required, thus achieving a great improvement in operability. it can.

【0014】請求項2のα−アミラーゼ活性測定用電極
装置であれば、拡散制限膜が電極に対して取外し可能に
配置されてあるので、被検溶液に基づくα−アミラーゼ
活性の測定を行なうことに起因して妨害物質により目詰
りが発生するとともに、目詰りに起因して透過拡散制限
効果が変動するという不都合を、拡散制限膜を新しいも
のと交換するという簡単な作業で確実に防止できる。交
換の頻度については、妨害物質を余り含まない被検溶液
に基づく測定を反復する場合には複数回の測定毎に交換
を行なえばよいが、妨害物質を多量に含む被検溶液に基
づく測定を反復する場合には各測定毎に交換することが
好ましい。
In the electrode device for measuring α-amylase activity according to claim 2, since the diffusion limiting film is arranged so as to be removable from the electrode, the α-amylase activity should be measured based on the test solution. It is possible to reliably prevent the inconvenience that clogging is caused by the interfering substance due to the above and the permeation diffusion limiting effect is changed due to the clogging by a simple operation of replacing the diffusion limiting film with a new one. Regarding the frequency of replacement, if the measurement based on the test solution that does not contain much interfering substance is repeated, the replacement may be performed every multiple times, but the measurement based on the test solution containing a large amount of interfering substance should be performed. When repeating, it is preferable to replace each measurement.

【0015】請求項3のα−アミラーゼ活性測定用電極
装置であれば、第1の酵素が膜に固定化されてあるとと
もに、第2の酵素も膜に固定化されてあり、第2の酵素
固定化膜が第1の酵素固定化膜よりも拡散制限膜に近接
する所定位置に配置されてあるので、α−アミラーゼ活
性測定用電極装置を簡単に一体化でき、運搬、保管等を
著しく容易化できるとともに、各酵素の活性保持をも簡
単に達成できる。
According to the electrode device for measuring α-amylase activity of claim 3, the first enzyme is immobilized on the membrane and the second enzyme is also immobilized on the membrane, and the second enzyme is immobilized. Since the immobilization membrane is arranged at a predetermined position closer to the diffusion limiting membrane than the first enzyme immobilization membrane, the electrode device for measuring α-amylase activity can be easily integrated, and transportation and storage are significantly facilitated. In addition, the activity of each enzyme can be easily retained.

【0016】請求項4のα−アミラーゼ活性測定用電極
装置であれば、第2の酵素固定化膜が電極に対して取外
し可能に配置されてあるので、第2の酵素の活性が低下
し、または失活した場合に第2の酵素固定化膜のみを新
しいものと交換すればよく、第1の酵素固定化膜を無駄
に廃棄しなければならないという不都合を確実に防止で
きる。
According to the electrode device for measuring α-amylase activity of claim 4, since the second enzyme-immobilized membrane is arranged so as to be removable from the electrode, the activity of the second enzyme is lowered, Alternatively, when it is deactivated, only the second enzyme-immobilized membrane needs to be replaced with a new one, and the disadvantage that the first enzyme-immobilized membrane must be wastefully discarded can be reliably prevented.

【0017】請求項5のα−アミラーゼ活性測定用電極
装置であれば、電極を所定方向に移動させる電極移動手
段をさらに含んでいるとともに、第1の酵素固定化膜、
第2の酵素固定化膜および拡散制限膜が、電極の所定方
向への所定距離の移動に追従して互に密着状態となる相
対位置関係を保持した状態で配置されてあるので、各膜
の配置の自由度を高めることができるとともに、各膜の
交換作業は非測定時に行なわれることを考慮すれば、各
膜の交換作業を著しく簡素化できる。
The electrode device for measuring α-amylase activity according to claim 5 further comprises an electrode moving means for moving the electrode in a predetermined direction, and the first enzyme-immobilized membrane,
Since the second enzyme-immobilized membrane and the diffusion limiting membrane are arranged in a state of maintaining a relative positional relationship in which they adhere to each other following the movement of the electrode in the predetermined direction for the predetermined distance, The degree of freedom of arrangement can be increased, and considering that the exchange work of each membrane is performed during non-measurement, the exchange work of each membrane can be significantly simplified.

【0018】請求項6のα−アミラーゼ活性測定方法で
あれば、被検溶液とα−アミラーゼにより2糖体および
/または多糖体に分解される反応基質とを拡散制限膜上
に点着すれば、α−アミラーゼ、α−アミラーゼの存在
下で2糖体および/または多糖体に分解される多糖体、
2糖体および/または分解された多糖体の透過拡散が制
限されて各酵素の配置位置に到達するα−アミラーゼ、
α−アミラーゼの存在下で2糖体および/または多糖体
に分解される多糖体、2糖体および/または分解された
多糖体の濃度を大幅に低減できるのみならず、被検溶液
に含まれる妨害物質の透過を確実に阻止できる。そし
て、α−アミラーゼ活性測定用電極装置に対する被検溶
液、反応基質の供給についても単に点着するだけでよ
く、血球分離操作、濾過作業等が不要になるので、大幅
な操作性の向上を達成できる。
According to the method for measuring α-amylase activity of claim 6, if the test solution and the reaction substrate which is decomposed into α-amylase into disaccharide and / or polysaccharide are spotted on the diffusion limiting membrane. , Α-amylase, a polysaccharide that is decomposed into a disaccharide and / or a polysaccharide in the presence of α-amylase,
Α-amylase which reaches the position of each enzyme by limiting the permeation and diffusion of disaccharide and / or degraded polysaccharide.
The concentration of the polysaccharide, disaccharide and / or degraded polysaccharide that is decomposed into a disaccharide and / or a polysaccharide in the presence of α-amylase can be significantly reduced, and it can be contained in a test solution. Permeation of interfering substances can be reliably blocked. Then, the test solution and the supply of the reaction substrate to the electrode device for measuring α-amylase activity only need to be spotted, and the blood cell separation operation, the filtration work, etc. are not required, so that a great improvement in operability is achieved. it can.

【0019】以上のようにして妨害物質が分離され、か
つα−アミラーゼ、α−アミラーゼの存在下で2糖体お
よび/または多糖体に分解される多糖体、2糖体および
/または分解された多糖体の濃度が大幅に低下した状態
で、第2の酵素の存在下において妨害物質が分離された
被検溶液および反応基質の分解反応を行なわせて単糖体
を得、第1の酵素の存在下において単糖体の加水分解反
応を行なわせ、単糖体の加水分解反応により電極から出
力される電気信号を所定時間間隔で少なくとも2回計測
し、得られた複数の電気信号に基づいて被検溶液中のα
−アミラーゼ活性測定信号を得るのであるから、測定可
能なα−アミラーゼ活性の上限を著しく高めることがで
きるとともに、α−アミラーゼ活性測定精度を大幅に高
めることができる。
As described above, the interfering substances are separated and decomposed into α-amylase and disaccharide and / or polysaccharide in the presence of α-amylase. Polysaccharide, disaccharide and / or degradation In the state where the concentration of the polysaccharide is significantly reduced, the test solution from which the interfering substance is separated and the reaction substrate are decomposed in the presence of the second enzyme to obtain a monosaccharide, The hydrolysis reaction of the monosaccharide is performed in the presence, and the electric signal output from the electrode by the hydrolysis reaction of the monosaccharide is measured at least twice at predetermined time intervals, and based on the obtained electric signals. Α in the test solution
Since the amylase activity measurement signal is obtained, the upper limit of measurable α-amylase activity can be significantly increased, and the accuracy of α-amylase activity measurement can be significantly increased.

【0020】請求項7のα−アミラーゼ活性測定方法で
あれば、第1回目の電気信号の計測がエンドポイント法
により行なわれるので、被検溶液中に含まれる2糖体お
よび/または多糖体に起因する反応の終期およびその時
点における電気信号を正確に検出でき、第2回目以降の
電気信号の計測がレート法により行なわれるので、第2
回目以降の測定に関しては反応の終期まで待つ必要がな
く、短時間でα−アミラーゼ活性の測定を達成できる。
According to the α-amylase activity measuring method of claim 7, since the first measurement of the electric signal is carried out by the endpoint method, the disaccharide and / or polysaccharide contained in the test solution can be measured. Since the electrical signal at the end of the resulting reaction and at that time can be accurately detected, and the second and subsequent electrical signals are measured by the rate method,
For the subsequent measurements, it is not necessary to wait until the end of the reaction, and the measurement of α-amylase activity can be achieved in a short time.

【0021】[0021]

【実施例】以下、実施例を示す添付図面によって詳細に
説明する。図1はこの発明のα−アミラーゼ活性測定用
電極装置の一実施例を概略的に示す縦断面図であり、下
地電極1の表面に過酸化水素選択透過膜2、GOD固定
化膜3、2糖体および/または多糖体を単糖体に分解す
る共役酵素固定化膜4および拡散制限膜5をこの順に積
層一体化してある。
Embodiments will now be described in detail with reference to the accompanying drawings showing embodiments. FIG. 1 is a vertical cross-sectional view schematically showing an embodiment of an electrode device for measuring α-amylase activity of the present invention, in which a hydrogen peroxide selective permeable film 2, a GOD-immobilized film 3, 2 are formed on the surface of a base electrode 1. A conjugated enzyme-immobilized membrane 4 and a diffusion limiting membrane 5 for decomposing sugar and / or polysaccharide into monosaccharides are laminated and integrated in this order.

【0022】上記下地電極1は過酸化水素電極であり、
白金等からなる中心電極1aおよび銀等からなる対向電
極1bを絶縁材からなる基体1cで一体化してあるとと
もに、中心電極1a、対向電極1bが露呈される端面を
凸曲面に形成してある。そして、凸曲面上に上記各膜を
積層し、ねじ込み式、圧入式等の、中央部が開口された
キャップ1dにより一体化している。尚、上記拡散制限
膜5は血球等の妨害物質の分離を主機能とするもの、例
えば、微小孔を多数有するポリカーボネート膜等であっ
てもよいが、α−アミラーゼ、多糖体、2糖体、グルコ
ース等の透過拡散の制限を主機能とするものであっても
よい。また、共役酵素として例えば、α−グルコシダー
ゼが3.4単位、グルコアミラーゼが1.6単位のもの
を用い、不織布に架橋結合等により固定化したものを共
役酵素固定化膜4としている。
The base electrode 1 is a hydrogen peroxide electrode,
The center electrode 1a made of platinum or the like and the counter electrode 1b made of silver or the like are integrated by a base body 1c made of an insulating material, and the end faces from which the center electrode 1a and the counter electrode 1b are exposed are formed into convex curved surfaces. Then, the above films are laminated on the convex curved surface and integrated by a cap 1d of a screw-in type, a press-fit type or the like, the central portion of which is opened. The diffusion limiting membrane 5 may be one whose main function is to separate interfering substances such as blood cells, for example, a polycarbonate membrane having a large number of micropores, but α-amylase, a polysaccharide, a disaccharide, It may have a main function of limiting the permeation diffusion of glucose and the like. Further, for example, a conjugate enzyme having 3.4 units of α-glucosidase and 1.6 units of glucoamylase is used, and the conjugate enzyme immobilized on the nonwoven fabric by cross-linking or the like is used as the conjugate enzyme-immobilized membrane 4.

【0023】上記の構成のα−アミラーゼ活性測定用電
極装置を用いて被検溶液としての全血中のα−アミラー
ゼ活性の測定を行なう場合の作用を図2に示すフローチ
ャートを参照しながら説明する。ステップSP1におい
て拡散制限膜5上に被検溶液としての全血を点着し、ス
テップSP2において拡散制限膜5上に反応基質溶液
{例えば、10mMのBES緩衝液(pH7.0)、2
%ベンジルマルトペンタオキシド)を点着する。ステッ
プSP1,SP2の点着作業が行なわれれば、ステップ
SP3において拡散制限膜5により全血中の血球等の妨
害物質の透過が完全に阻止され、しかも全血中のα−ア
ミラーゼ、2糖体および/または多糖体および反応基質
の拡散透過が制限された状態で共役酵素固定化膜4、固
定化GOD膜3にこの順に到達する。したがって、ステ
ップSP4において、共役酵素固定化膜4において2糖
体および/または多糖体が単糖体に分解され、固定化G
OD膜3において単糖体が加水分解されて過酸化水素を
発生させ、過酸化水素が過酸化水素選択透過膜2を通っ
て下地電極1の表面に到達する。この結果、ステップS
P5において、下地電極1の表面において過酸化水素の
酸化、還元が行なわれ、過酸化水素の量に対応する電流
が出力される。
The operation in the case of measuring the α-amylase activity in whole blood as a test solution using the electrode device for measuring α-amylase activity having the above structure will be described with reference to the flowchart shown in FIG. .. Whole blood as a test solution is spotted on the diffusion limiting membrane 5 in step SP1, and a reaction substrate solution {for example, 10 mM BES buffer (pH 7.0), 2 is deposited on the diffusion limiting membrane 5 in step SP2.
% Benzyl maltopentaoxide). When the spotting work in steps SP1 and SP2 is performed, the diffusion limiting film 5 completely blocks the permeation of interfering substances such as blood cells in whole blood in step SP3, and the α-amylase, disaccharide in whole blood is also blocked. And / or the conjugated enzyme-immobilized membrane 4 and the immobilized GOD membrane 3 are reached in this order with diffusion and permeation of the polysaccharide and the reaction substrate being restricted. Therefore, in step SP4, the disaccharide and / or polysaccharide is decomposed into the monosaccharide on the conjugated enzyme-immobilized membrane 4 and the immobilized G is immobilized.
The monosaccharide is hydrolyzed in the OD film 3 to generate hydrogen peroxide, and the hydrogen peroxide reaches the surface of the base electrode 1 through the hydrogen peroxide selective permeable film 2. As a result, step S
At P5, hydrogen peroxide is oxidized and reduced on the surface of the base electrode 1, and a current corresponding to the amount of hydrogen peroxide is output.

【0024】他方、ステップSP4において、反応基質
はα−アミラーゼにより2糖体および/または多糖体に
分解され、2糖体および/または多糖体に分解された後
は上記と同様に2糖体および/または分解された多糖体
の単糖体への分解、単糖体の加水分解が行なわれ、ステ
ップSP5において過酸化水素の発生量に対応する電流
が出力される。
On the other hand, in step SP4, the reaction substrate is decomposed by α-amylase into a disaccharide and / or a polysaccharide, and after being decomposed into the disaccharide and / or the polysaccharide, the same disaccharide and / Or the decomposed polysaccharide is decomposed into a monosaccharide and the monosaccharide is hydrolyzed, and an electric current corresponding to the amount of hydrogen peroxide generated is output in step SP5.

【0025】しかし、2糖体および/または分解された
多糖体を出発物質とする単糖体への分解反応速度はα−
アミラーゼによる多糖体の分解反応速度と比較して著し
く早いのであるから、α−アミラーゼの存在が必要でな
い反応が早期に進行し、α−アミラーゼの存在が必要な
反応が徐々に進行することになり、図3に示す出力電流
特性が得られる。この出力電流特性のうち、急峻に立上
ってほぼ飽和する部分がα−アミラーゼの存在が必要で
ない反応に起因する部分であり、その後に徐々に増加す
る部分がα−アミラーゼの存在が必要な反応に起因する
部分であるから、ステップSP6,SP7において、上
記ほぼ飽和する時点の出力電流値およびほぼ飽和してか
ら所定時間が経過した時点の出力電流値を計測し、ステ
ップSP8において両出力電流値に基づく単位時間当り
の出力電流の増分値(または微分値)を算出し、算出さ
れた増分値に基づいて換算計算を行なうことにより全血
中のα−アミラーゼ活性の測定を達成できる。上記ほぼ
飽和する時点については、例えば、出力電流値の単位時
間当りの変化量が所定の閾値以下になったか否かを判別
することにより検出できる。また、増分値に基づくα−
アミラーゼ活性の測定については、例えば、α−アミラ
ーゼ活性が既知の基準溶液を被検溶液として増分値を算
出することにより検量線を得ておき、α−アミラーゼ活
性が未知の被検溶液に基づく増分値および検量線に基づ
いてα−アミラーゼ活性の測定を行なえばよい。
However, the rate of decomposition reaction into a monosaccharide starting from a disaccharide and / or a degraded polysaccharide is α-
Since the decomposition reaction rate of polysaccharides by amylase is remarkably fast, the reaction that does not require the presence of α-amylase proceeds early, and the reaction that requires the presence of α-amylase gradually proceeds. The output current characteristics shown in FIG. 3 are obtained. Of this output current characteristic, the portion that rises steeply and is almost saturated is the portion due to the reaction that does not require the presence of α-amylase, and the portion that gradually increases thereafter requires the presence of α-amylase. Since it is the portion caused by the reaction, in steps SP6 and SP7, the output current value at the time of almost saturation and the output current value at the time when a predetermined time has passed after the saturation are measured, and both output currents are measured at step SP8. The measurement of the α-amylase activity in whole blood can be achieved by calculating the increment value (or differential value) of the output current per unit time based on the value and performing the conversion calculation based on the calculated increment value. The above-mentioned point of almost saturation can be detected, for example, by determining whether or not the amount of change in the output current value per unit time is below a predetermined threshold value. In addition, α-based on the increment value
Regarding the measurement of amylase activity, for example, a calibration curve is obtained by calculating an increment value using a reference solution having a known α-amylase activity as a test solution, and the α-amylase activity is increased based on an unknown test solution. The α-amylase activity may be measured based on the value and the calibration curve.

【0026】但し、pH7.0のBES緩衝液に代えて
pH5.7のBS緩衝液を用いた方が良好な測定結果が
得られた。したがって、反応基質溶液をやや酸性にして
おく方が好ましいことが分る。具体的には、上記各酵素
の活性を維持する目的で非測定時には固定化GOD膜3
および共役酵素固定化膜4をpH7.0の溶液により湿
潤させておき、測定時にやや酸性の反応基質溶液を点着
することにより、α−アミラーゼ活性の良好な測定およ
び各酵素の良好な保存を達成できる。
However, better measurement results were obtained by using the pH 5.7 BS buffer instead of the pH 7.0 BES buffer. Therefore, it is preferable to keep the reaction substrate solution slightly acidic. Specifically, in order to maintain the activity of each of the above-mentioned enzymes, the immobilized GOD membrane 3 is used at the time of non-measurement.
And the conjugated enzyme-immobilized membrane 4 is moistened with a solution having a pH of 7.0, and a slightly acidic reaction substrate solution is spotted at the time of measurement to ensure good measurement of α-amylase activity and good preservation of each enzyme. Can be achieved.

【0027】[0027]

【実施例2】図4はこの発明のα−アミラーゼ活性測定
用電極装置の他の実施例を概略的に示す縦断面図であ
り、図1の実施例と異なる点は、過酸化水素選択透過膜
2および固定化GOD膜3を積層した状態でキャップ1
eにより下地電極1に装着し、共役酵素固定化膜4およ
び拡散制限膜5を積層した状態で固定化GOD膜3に密
着するようにキャップ1fで取外し可能に装着した点の
みである。
[Embodiment 2] FIG. 4 is a vertical cross-sectional view schematically showing another embodiment of the electrode device for measuring α-amylase activity of the present invention. The difference from the embodiment of FIG. Cap 1 with membrane 2 and immobilized GOD membrane 3 stacked
It is attached only to the base electrode 1 by e, and is detachably attached to the immobilized GOD film 3 in a laminated state of the conjugated enzyme immobilization film 4 and the diffusion limiting film 5 with the cap 1f so as to be detachable.

【0028】したがって、この実施例の場合には、共役
酵素固定化膜4および拡散制限膜5の交換を簡単に達成
できる。この結果、共役酵素固定化膜4よりも著しく寿
命が長い固定化GOD膜3を残したままで必要な膜部分
のみを交換できることになり、図1の実施例と比較して
固定化GOD膜3の有効活用を達成できる。
Therefore, in the case of this embodiment, the exchange of the conjugated enzyme immobilization membrane 4 and the diffusion limiting membrane 5 can be easily achieved. As a result, it is possible to replace only the necessary membrane portion while leaving the immobilized GOD membrane 3 having a significantly longer life than the conjugated enzyme-immobilized membrane 4, and thus the immobilized GOD membrane 3 of the embodiment shown in FIG. Effective utilization can be achieved.

【0029】[0029]

【実施例3】図5はこの発明のα−アミラーゼ活性測定
用電極装置のさらに他の実施例を概略的に示す縦断面図
であり、図1の実施例と異なる点は、拡散制限膜5とし
てα−アミラーゼ、多糖体、2糖体、グルコース等の透
過拡散の制限を主機能とするものを用いた点、および血
球等の妨害物質の分離を主機能とする拡散制限膜6をキ
ャップ1gで取外し可能に装着した点のみである。
[Embodiment 3] FIG. 5 is a vertical sectional view schematically showing still another embodiment of the electrode device for measuring α-amylase activity according to the present invention. The difference from the embodiment of FIG. 1 g of a cap having a diffusion limiting membrane 6 having a main function of limiting the permeation and diffusion of α-amylase, a polysaccharide, a disaccharide, glucose and the like, and a separation of interfering substances such as blood cells. It is only the point that was detachably attached.

【0030】したがって、この実施例の場合には、全血
のように妨害物質を多く含む被検溶液中のα−アミラー
ゼ活性の測定を行なうことにより拡散制限膜6にかなり
目詰りを生じるが、例えば、1回の測定毎に拡散制限膜
6を新しいものと交換することにより高精度のα−アミ
ラーゼ活性の測定を達成できる。また、拡散制限膜6を
交換すれば、拡散制限膜5,6全体としての拡散透過率
が変動することになるが、拡散制限膜5は交換されない
のであるから、拡散透過率の変動を大幅に低減できる。
Therefore, in the case of this embodiment, the diffusion limiting membrane 6 is considerably clogged by measuring the α-amylase activity in a test solution containing a lot of interfering substances such as whole blood. For example, highly accurate measurement of α-amylase activity can be achieved by replacing the diffusion limiting film 6 with a new one for each measurement. Further, if the diffusion limiting film 6 is replaced, the diffusion transmittance of the diffusion limiting films 5 and 6 as a whole changes, but since the diffusion limiting film 5 is not replaced, the fluctuation of the diffusion transmittance is greatly changed. It can be reduced.

【0031】[0031]

【実施例4】図6はこの発明のα−アミラーゼ活性測定
用電極装置のさらに他の実施例を概略的に示す縦断面図
であり、図4の実施例と異なる点は、下地電極1を非測
定位置と測定位置との間で往復動させる、ボールネジ機
構等からなる電極移動機構7をさらに設けた点、および
共役酵素固定化膜4および拡散制限膜5を下地電極1に
対してキャップ1fで取外し可能に装着する代わりに、
非測定状態において固定化GOD膜3から離れた所定位
置に共役酵素固定化膜4および拡散制限膜5を配置し、
測定状態において共役酵素固定化膜4および拡散制限膜
5がこの順に固定化GOD膜3に密着されるようにした
点のみである。
[Embodiment 4] FIG. 6 is a longitudinal sectional view schematically showing still another embodiment of the electrode device for measuring α-amylase activity of the present invention. The difference from the embodiment of FIG. A point further provided with an electrode moving mechanism 7 such as a ball screw mechanism for reciprocating between the non-measurement position and the measurement position, and the cap 1f of the conjugated enzyme immobilization film 4 and the diffusion limiting film 5 with respect to the base electrode 1. Instead of removably attaching with,
In a non-measurement state, the conjugated enzyme immobilization membrane 4 and the diffusion limiting membrane 5 are arranged at predetermined positions apart from the immobilized GOD membrane 3.
The only difference is that the conjugated enzyme-immobilized membrane 4 and the diffusion limiting membrane 5 are brought into close contact with the immobilized GOD membrane 3 in this order in the measurement state.

【0032】したがって、この実施例の場合には、測定
状態においてのみ全ての膜が密着状態になるのでα−ア
ミラーゼ活性の測定を何ら不都合なく達成でき、非測定
状態において共役酵素固定化膜4および拡散制限膜5が
固定化GOD膜3から離れた状態になるので、これらの
膜の交換作業を簡単に達成できる。また、非測定時に下
地電極1の固定化GOD膜3をpH7.0の湿潤液に接
触させることも可能であり、この場合には、長期間にわ
たって非測定状態が継続した場合においてもGODの維
持し続けることができ、また、グルコースの酵素反応に
伴なう溶存酸素量の著しい減少を短時間で回復でき、α
−アミラーゼ活性測定の時間間隔を短縮できる。
Therefore, in the case of this example, since all the membranes are brought into close contact only in the measurement state, the measurement of α-amylase activity can be achieved without any inconvenience, and in the non-measurement state, the conjugated enzyme-immobilized membrane 4 and Since the diffusion limiting film 5 is separated from the immobilized GOD film 3, the replacement work of these films can be easily achieved. It is also possible to bring the immobilized GOD film 3 of the base electrode 1 into contact with a wetting liquid having a pH of 7.0 at the time of non-measurement. In this case, the GOD is maintained even when the non-measurement state continues for a long period of time. And the marked decrease in the amount of dissolved oxygen associated with the enzymatic reaction of glucose can be recovered in a short time.
-The time interval of amylase activity measurement can be shortened.

【0033】[0033]

【実施例5】図7はこの発明のα−アミラーゼ活性測定
用電極装置のさらに他の実施例を概略的に示す縦断面図
であり、図6の実施例と異なる点は、共役酵素固定化膜
4および拡散制限膜5を薄板材8に貼着した点のみであ
る。さらに詳細に説明すると、被検溶液および反応基質
溶液に対する耐性を有する材質からなる薄板材8の所定
位置に、被検溶液および反応基質溶液の通過を許容する
透孔8aが形成されているとともに、透孔8aを覆う状
態で共役酵素固定化膜4および拡散制限膜5が貼着され
ている。そして、両膜4,5は薄板材8の互に異なる面
に貼着され、両膜4,5間に所定のクリアランスが形成
されている。具体的には、共役酵素固定化膜4が下地電
極1に近接する側に貼着されている。
[Embodiment 5] FIG. 7 is a longitudinal sectional view schematically showing still another embodiment of the electrode device for measuring α-amylase activity of the present invention. The difference from the embodiment of FIG. The only difference is that the film 4 and the diffusion limiting film 5 are attached to the thin plate member 8. More specifically, a thin plate 8 made of a material having resistance to the test solution and the reaction substrate solution has a through hole 8a formed at a predetermined position to allow passage of the test solution and the reaction substrate solution. The conjugated enzyme immobilization film 4 and the diffusion limiting film 5 are attached so as to cover the through holes 8a. Both films 4 and 5 are attached to different surfaces of the thin plate member 8 so that a predetermined clearance is formed between the films 4 and 5. Specifically, the conjugated enzyme-immobilized film 4 is attached to the side close to the base electrode 1.

【0034】したがって、この実施例の場合には、薄板
材8を持つだけで、共役酵素固定化膜4、拡散制限膜5
の何れにも触れることなく両膜4,5を新しい膜と交換
でき、体液を被検溶液とする場合における感染事故の発
生を確実に防止できる。また、厚みが著しく薄い膜を直
接取扱うのではなく、薄板材8を取扱うのであるから、
交換等の作業性を著しく高めることができる。
Therefore, in the case of this embodiment, only by having the thin plate material 8, the conjugated enzyme immobilization film 4 and the diffusion limiting film 5 are provided.
Both membranes 4 and 5 can be replaced with new membranes without touching any of them, and the occurrence of an infection accident can be reliably prevented when body fluid is used as the test solution. Further, since the thin plate material 8 is handled not directly handling a film having a remarkably thin thickness,
Workability such as replacement can be significantly improved.

【0035】但し、この実施例において両膜4,5を薄
板材8の同じ側に積層状態で貼着してもよいことはもち
ろんである。この場合には、両膜4,5の密着状態を安
定化でき、α−アミラーゼ活性の測定精度を高めること
ができるのみならず、製造作業を容易化できる。
However, it goes without saying that both the films 4 and 5 may be attached to the same side of the thin plate member 8 in a laminated state in this embodiment. In this case, the adhered state of both membranes 4 and 5 can be stabilized, the accuracy of measurement of α-amylase activity can be improved, and the manufacturing work can be facilitated.

【0036】[0036]

【実施例6】図8はこの発明のα−アミラーゼ活性測定
用電極装置のさらに他の実施例を概略的に示す縦断面図
であり、図7の実施例と異なる点は、薄板材8として著
しく長尺のものを用い、長尺の薄板材8に複数個の透孔
8aを形成して、各透孔8aを覆うように両膜4,5を
貼着した点のみである。尚、空間利用効率を高めた状態
で長尺の薄板材8を保持するために、一方を薄板材8の
供給部9aとし、他方を薄板材8の巻取部9bとし、供
給部9aと巻取部9bとの間を連結するブリッジ部9c
を有するカートリッジ9に薄板材8を収容している。そ
して、ブリッジ部9cの所定位置に被検溶液、反応基質
溶液の貼着を許容する点着部9dおよび下地電極1の侵
入を許容する電極侵入部9eが形成されている。さら
に、薄板材8を所定方向に移動させるための薄板材駆動
機構(図示せず)が設けられている。
[Embodiment 6] FIG. 8 is a vertical sectional view schematically showing still another embodiment of the electrode device for measuring .alpha.-amylase activity of the present invention. The difference from the embodiment of FIG. The only difference is that a remarkably long sheet is used, a plurality of through holes 8a are formed in a long thin plate member 8, and both films 4 and 5 are attached so as to cover each through hole 8a. In order to hold the long thin plate material 8 in a state where the space utilization efficiency is improved, one is used as a supply portion 9a for the thin plate material 8 and the other is used as a winding portion 9b for the thin plate material 8 and is wound with the supply portion 9a. Bridge part 9c connecting between the taking part 9b
The thin plate member 8 is housed in the cartridge 9 having the. Then, a spotting portion 9d that allows the test solution and the reaction substrate solution to be attached and an electrode penetration portion 9e that allows the undercoat electrode 1 to penetrate are formed at predetermined positions of the bridge portion 9c. Further, a thin plate driving mechanism (not shown) for moving the thin plate 8 in a predetermined direction is provided.

【0037】したがって、この実施例の場合には、長尺
の薄板材8に貼着された全ての膜4,5を用いてα−ア
ミラーゼ活性の測定を行なうまでは薄板材8の交換を行
なう必要がなくなる。したがって、薄板材8を交換する
頻度を著しく低減でき、操作性を著しく高めることがで
きる。さらに、交換に伴なって廃棄されるべき薄板材8
はカートリッジ9に収容された状態であるから、廃棄さ
れるべき薄板材8に付着している体液に起因する感染事
故の発生を確実に防止できる。さらにまた、下地電極1
を下降させた状態で薄板材8を所定方向に移動させるの
で、摺擦に伴なう固定化GOD膜3の活性低下を未然に
防止できる。
Therefore, in the case of this embodiment, the thin plate member 8 is exchanged until the α-amylase activity is measured using all the films 4 and 5 attached to the long thin plate member 8. There is no need. Therefore, the frequency of exchanging the thin plate member 8 can be remarkably reduced, and the operability can be remarkably enhanced. Furthermore, the thin plate material 8 that should be discarded along with the replacement
Since the is stored in the cartridge 9, it is possible to reliably prevent the occurrence of an infection accident due to the body fluid adhering to the thin plate material 8 to be discarded. Furthermore, the base electrode 1
Since the thin plate member 8 is moved in a predetermined direction in a state where the is lowered, it is possible to prevent the activity of the immobilized GOD film 3 from being lowered due to the rubbing.

【0038】[0038]

【実施例7】図9はこの発明のα−アミラーゼ活性測定
用電極装置のさらに他の実施例を概略的に示す縦断面図
であり、図8の実施例と異なる点は、長尺の薄板材8に
拡散制限膜5のみを貼着し、ブリッジ部9cの電極侵入
部9eを覆うように共役酵素固定化膜4を貼着した点の
みである。
[Embodiment 7] FIG. 9 is a longitudinal sectional view schematically showing still another embodiment of the electrode device for measuring α-amylase activity of the present invention. The difference from the embodiment of FIG. Only the diffusion limiting film 5 is attached to the plate member 8, and the conjugated enzyme immobilization film 4 is attached so as to cover the electrode penetration portion 9e of the bridge portion 9c.

【0039】したがって、この実施例の場合には、薄板
材8を所定方向に移動させることにより拡散制限膜5の
みを新しい拡散制限膜5と交換でき、薄板材8に貼着さ
れた全ての拡散制限膜5を用いて複数回の測定が行なわ
れる間、1枚の共役酵素固定化膜4の使用を継続する。
この結果、図8の実施例と比較して、カートリッジ9の
交換に伴なって廃棄される共役酵素の量を著しく低減で
きる。また、この実施例においては、共役酵素固定化膜
4がブリッジ部9cの下面に貼着されているので、薄板
材8の移動に伴なってブリッジ部9cの内面と摺擦さ
れ、活性が低下するという不都合の発生を未然に防止で
きる。
Therefore, in the case of this embodiment, only the diffusion limiting film 5 can be replaced with a new diffusion limiting film 5 by moving the thin plate member 8 in a predetermined direction, and all diffusions attached to the thin plate member 8 can be exchanged. While the measurement is performed a plurality of times using the limiting membrane 5, the use of one conjugated enzyme-immobilized membrane 4 is continued.
As a result, the amount of the coupled enzyme discarded along with the replacement of the cartridge 9 can be significantly reduced as compared with the embodiment of FIG. Further, in this example, since the conjugated enzyme-immobilized film 4 is adhered to the lower surface of the bridge portion 9c, the inner surface of the bridge portion 9c is rubbed with the movement of the thin plate member 8 and the activity is reduced. It is possible to prevent the occurrence of the inconvenience.

【0040】尚、この発明は上記の実施例に限定される
ものではなく、例えば、共役酵素を凍結乾燥等により膜
に固定化すること、共役酵素を膜に固定化する代わりに
共役酵素を含む溶液槽を配置することが可能であるほ
か、過酸化水素選択透過膜2を省略することが可能であ
り、さらにキャップ以外の装着補助具、装着補助機構を
用いることが可能であるほか、共役酵素を膜に固定化す
る代わりに共役酵素を含む溶液層を介在させることが可
能であり、さらには、固定化GOD膜3と共役酵素(固
定化膜)との間にも拡散制限膜を配置することが可能で
あるほか、この発明の要旨を変更しない範囲内において
種々の設計変更を施すことが可能である。
The present invention is not limited to the above-mentioned embodiment, and for example, immobilizing the conjugated enzyme on the membrane by freeze-drying or the like, and including the conjugated enzyme instead of immobilizing the conjugated enzyme on the membrane. It is possible to arrange a solution tank, it is possible to omit the hydrogen peroxide selective permeable membrane 2, and it is possible to use a mounting aid and a mounting assist mechanism other than a cap, and a coupled enzyme. It is possible to interpose a solution layer containing a conjugated enzyme instead of immobilizing the enzyme on the membrane, and further, a diffusion limiting membrane is arranged between the immobilized GOD membrane 3 and the conjugated enzyme (immobilized membrane). Besides, it is possible to make various design changes within a range not changing the gist of the present invention.

【0041】[0041]

【発明の効果】以上のように請求項1の発明は、α−ア
ミラーゼ、α−アミラーゼの存在下で2糖体および/ま
たは多糖体に分解される多糖体、2糖体および/または
分解された多糖体の透過拡散が制限されて各酵素の配置
位置に到達するα−アミラーゼ、α−アミラーゼの存在
下で2糖体および/または多糖体に分解される多糖体、
2糖体および/または分解された多糖体の濃度を大幅に
低減できるのみならず、被検溶液に含まれる妨害物質の
透過を確実に阻止でき、α−アミラーゼ、α−アミラー
ゼの存在下で2糖体および/または多糖体に分解される
多糖体、2糖体および/または分解された多糖体の濃度
の大幅な低下に起因して、加水分解により溶存酸素を消
費する単糖体の量をも大幅に低減できるので、測定可能
なα−アミラーゼ活性の上限を著しく高めることができ
るとともに、α−アミラーゼ活性測定精度を大幅に高め
ることができ、さらに、α−アミラーゼ活性測定用電極
装置に対する被検溶液、反応基質の供給についても単に
点着するだけでよく、血球分離操作、濾過作業等が不要
になるので、大幅な操作性の向上を達成できるという特
有の効果を奏する。
As described above, the invention of claim 1 is characterized in that α-amylase, a polysaccharide that is decomposed into a disaccharide and / or a polysaccharide in the presence of α-amylase, a disaccharide and / or a degradation product. Α-amylase that reaches the position of each enzyme by limiting the permeation and diffusion of the polysaccharide, a polysaccharide that is decomposed into a disaccharide and / or a polysaccharide in the presence of α-amylase,
Not only can the concentration of disaccharides and / or decomposed polysaccharides be significantly reduced, but permeation of interfering substances contained in the test solution can be surely blocked, and in the presence of α-amylase and α-amylase, The amount of monosaccharide that consumes dissolved oxygen by hydrolysis is increased due to a large decrease in the concentration of the polysaccharide, which is decomposed into the sugar and / or the polysaccharide, the disaccharide, and / or the decomposed polysaccharide. Since the upper limit of measurable α-amylase activity can be significantly increased, the accuracy of α-amylase activity measurement can be significantly improved, and the electrode device for measuring α-amylase activity can be significantly reduced. The supply of the test solution and the reaction substrate only needs to be spotted, and the blood cell separation operation, the filtration operation, and the like are not required, so that a significant improvement in operability can be achieved.

【0042】請求項2の発明は、被検溶液に基づくα−
アミラーゼ活性の測定を行なうこ.に起因して妨害物質
により目詰りが発生するとともに、目詰りに起因して透
過拡散制限効果が変動するという不都合を、拡散制限膜
を新しいものと交換するという簡単な作業で確実に防止
できるという特有の効果を奏する。請求項3の発明は、
α−アミラーゼ活性測定用電極装置を簡単に一体化で
き、運搬、保管等を著しく容易化できるとともに、各酵
素の活性保持をも簡単に達成できるという特有の効果を
奏する。
The invention of claim 2 is an α-based solution based on a test solution.
Measure amylase activity. It is possible to reliably prevent the inconvenience that clogging occurs due to the interfering substances and the permeation diffusion limiting effect fluctuates due to the clogging with a simple operation of replacing the diffusion limiting film with a new one. Has a unique effect. The invention of claim 3 is
The electrode device for measuring α-amylase activity can be easily integrated, and transportation, storage, etc. can be significantly facilitated, and activity retention of each enzyme can be easily achieved.

【0043】請求項4の発明は、第2の酵素の活性が低
下し、または失活した場合に第2の酵素固定化膜のみを
新しいものと交換すればよく、第1の酵素固定化膜を無
駄に廃棄しなければならないという不都合を確実に防止
できるという特有の効果を奏する。請求項5の発明は、
各膜の配置の自由度を高めることができるとともに、各
膜の寿命等に見合ったタイミングで行なわれる各膜の交
換作業を著しく簡素化できるという特有の効果を奏す
る。
According to the invention of claim 4, when the activity of the second enzyme is reduced or inactivated, only the second enzyme-immobilized membrane is replaced with a new one, and the first enzyme-immobilized membrane is used. The unique effect of reliably preventing the inconvenience of having to discard wastefully is achieved. The invention of claim 5 is
It is possible to increase the degree of freedom in arranging each film, and it is possible to significantly simplify the replacement work of each film which is performed at a timing commensurate with the life of each film.

【0044】請求項6の発明は、被検溶液とα−アミラ
ーゼにより2糖体に分解される反応基質とを拡散制限膜
上に点着するだけで、α−アミラーゼ、α−アミラーゼ
の存在下で2糖体および/または多糖体に分解される多
糖体、2糖体および/または分解された多糖体の透過拡
散が制限されて各酵素の配置位置に到達するα−アミラ
ーゼ、α−アミラーゼの存在下で2糖体および/または
多糖体に分解される多糖体、2糖体および/または分解
された多糖体の濃度を大幅に低減できるのみならず、被
検溶液に含まれる妨害物質の透過を確実に阻止でき、ひ
いては、測定可能なα−アミラーゼ活性の上限を著しく
高めることができるとともに、α−アミラーゼ活性測定
精度を大幅に高めることができ、さらに、α−アミラー
ゼ活性測定用電極装置に対する被検溶液、反応基質の供
給についても単に点着するだけでよいから、血球分離操
作、濾過作業等が不要になるので、大幅な操作性の向上
を達成できるという特有の効果を奏する。
According to the sixth aspect of the present invention, the test solution and the reaction substrate which is decomposed into a disaccharide by α-amylase are simply spotted on the diffusion limiting membrane in the presence of α-amylase and α-amylase. Of α-amylase and α-amylase that reach the position of each enzyme by limiting the permeation / diffusion of the disaccharide and / or the degraded polysaccharide The concentration of polysaccharides, which are decomposed into disaccharides and / or polysaccharides in the presence, can be significantly reduced, and permeation of interfering substances contained in a test solution can be achieved. Can be reliably prevented, and by extension, the upper limit of the measurable α-amylase activity can be significantly increased, and the accuracy of α-amylase activity measurement can be significantly increased. Since the test solution and the supply of the reaction substrate to the tester need only be spotted, the blood cell separation operation, the filtration operation, etc. are not required, so that a significant improvement in operability can be achieved.

【0045】請求項7の発明は、被検溶液中に含まれる
2糖体に起因する反応の終期およびその自転における電
気信号を正確に検出でき、第2回目以降の電気信号の計
測がレート法により行なわれるので、第2回目以降の測
定に関しては反応の終期まで待つ必要がなく、短時間で
α−アミラーゼ活性の測定を達成できるという特有の効
果を奏する。
According to the invention of claim 7, the electric signal at the end of the reaction due to the disaccharide contained in the test solution and its rotation can be accurately detected, and the electric signal after the second time can be measured by the rate method. Therefore, it is not necessary to wait until the end of the reaction for the second and subsequent measurements, and there is a unique effect that the measurement of α-amylase activity can be achieved in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のα−アミラーゼ活性測定用電極装置
の一実施例を概略的に示す縦断面図である。
FIG. 1 is a longitudinal sectional view schematically showing an embodiment of an electrode device for measuring α-amylase activity of the present invention.

【図2】図1の構成のα−アミラーゼ活性測定用電極装
置を用いて被検溶液としての全血中のα−アミラーゼ活
性の測定を行なう場合の作用を説明するフローチャート
である。
FIG. 2 is a flow chart for explaining the action when the α-amylase activity measuring electrode device having the configuration of FIG. 1 is used to measure the α-amylase activity in whole blood as a test solution.

【図3】下地電極からの出力電流の時間変化を示す図で
ある。
FIG. 3 is a diagram showing a time change of an output current from a base electrode.

【図4】この発明のα−アミラーゼ活性測定用電極装置
の他の実施例を概略的に示す縦断面図である。
FIG. 4 is a vertical sectional view schematically showing another embodiment of the electrode device for measuring α-amylase activity of the present invention.

【図5】この発明のα−アミラーゼ活性測定用電極装置
のさらに他の実施例を概略的に示す縦断面図である。
FIG. 5 is a longitudinal sectional view schematically showing still another embodiment of the electrode device for measuring α-amylase activity of the present invention.

【図6】この発明のα−アミラーゼ活性測定用電極装置
のさらに他の実施例を概略的に示す縦断面図である。
FIG. 6 is a longitudinal sectional view schematically showing still another embodiment of the electrode device for measuring α-amylase activity of the present invention.

【図7】この発明のα−アミラーゼ活性測定用電極装置
のさらに他の実施例を概略的に示す縦断面図である。
FIG. 7 is a longitudinal sectional view schematically showing still another embodiment of the electrode device for measuring α-amylase activity of the present invention.

【図8】この発明のα−アミラーゼ活性測定用電極装置
のさらに他の実施例を概略的に示す縦断面図である。
FIG. 8 is a longitudinal sectional view schematically showing still another embodiment of the electrode device for measuring α-amylase activity of the present invention.

【図9】この発明のα−アミラーゼ活性測定用電極装置
のさらに他の実施例を概略的に示す縦断面図である。
FIG. 9 is a longitudinal sectional view schematically showing still another embodiment of the electrode device for measuring α-amylase activity of the present invention.

【符号の説明】[Explanation of symbols]

1 下地電極 3 固定化GOD膜 4 共役酵素
固定化膜 5 拡散制限膜 7 電極移動機構
1 Base Electrode 3 Immobilized GOD Membrane 4 Coupling Enzyme Immobilized Membrane 5 Diffusion Restriction Membrane 7 Electrode Transfer Mechanism

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7235−2J G01N 27/46 336 P ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 7235-2J G01N 27/46 336 P

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電極(1)の測定面に対して所定の相対
位置を保持させて被検溶液中のα−アミラーゼ、α−ア
ミラーゼの存在下で2糖体および/または多糖体に分解
される多糖体、2糖体および/または多糖体の透過拡散
を制限する拡散制限膜(5)を配置してあるとともに、
測定面と拡散制限膜(5)との間に、単糖体の加水分解
反応を行なわせる第1の酵素(3)と、2糖体および/
または多糖体を単糖体に分解する第2の酵素(4)とを
配置してあることを特徴とするα−アミラーゼ活性測定
用電極装置。
1. A predetermined relative position with respect to the measurement surface of an electrode (1) is held and decomposed into a disaccharide and / or a polysaccharide in the presence of α-amylase or α-amylase in a test solution. A diffusion limiting membrane (5) for limiting permeation and diffusion of the polysaccharide, disaccharide and / or polysaccharide
Between the measurement surface and the diffusion limiting membrane (5), a first enzyme (3) for performing a hydrolysis reaction of a monosaccharide, a disaccharide and / or
Alternatively, an electrode device for measuring α-amylase activity, which is provided with a second enzyme (4) that decomposes a polysaccharide into a monosaccharide.
【請求項2】 拡散制限膜(5)が電極(1)に対して
取外し可能に配置されてある請求項1に記載のα−アミ
ラーゼ活性測定用電極装置。
2. The electrode device for measuring α-amylase activity according to claim 1, wherein the diffusion limiting film (5) is detachably arranged with respect to the electrode (1).
【請求項3】 第1の酵素(3)が膜に固定化されてあ
るとともに、第2の酵素(4)も膜に固定化されてあ
り、第2の酵素固定化膜(4)が第1の酵素固定化膜
(3)よりも拡散制限膜(5)に近接する所定位置に配
置されてある請求項1または請求項2に記載のα−アミ
ラーゼ活性測定用電極装置。
3. The first enzyme (3) is immobilized on the membrane and the second enzyme (4) is also immobilized on the membrane, and the second enzyme-immobilized membrane (4) is The α-amylase activity measuring electrode device according to claim 1 or 2, which is arranged at a predetermined position closer to the diffusion limiting film (5) than the enzyme-immobilized film (3).
【請求項4】 第2の酵素固定化膜(4)が電極(1)
に対して取外し可能に配置されてある請求項3に記載の
α−アミラーゼ活性測定用電極装置。
4. The second enzyme-immobilized membrane (4) has an electrode (1).
The α-amylase activity measuring electrode device according to claim 3, wherein the electrode device is detachably arranged.
【請求項5】 電極(1)を所定方向に移動させる電極
移動手段(7)をさらに含んでいるとともに、第1の酵
素固定化膜(3)、第2の酵素固定化膜(4)および拡
散制限膜(5)が、電極(1)の所定方向への所定距離
の移動に追従して互に密着状態となる相対位置関係を保
持した状態で配置されてある請求項3または請求項4に
記載のα−アミラーゼ活性測定用電極装置。
5. A first enzyme-immobilized membrane (3), a second enzyme-immobilized membrane (4) and an electrode moving means (7) for moving the electrode (1) in a predetermined direction. The diffusion limiting film (5) is arranged in a state of maintaining a relative positional relationship in which the diffusion limiting film (5) follows the movement of the electrode (1) in a predetermined direction by a predetermined distance and is in a close contact with each other. An electrode device for measuring α-amylase activity according to item 1.
【請求項6】 電極(1)表面に対して第1の酵素固定
化膜(3)、第2の酵素固定化膜(4)および拡散制限
膜(5)が配置されてなる電極装置に対して被検溶液お
よび非還元末端を保護基で修飾してなる反応基質を所定
の順序で点着し、拡散制限膜(5)により被検溶液に含
まれる妨害物質を分離し、第2の酵素(4)の存在下に
おいて妨害物質が分離された被検溶液および反応基質の
分解反応を行なわせて単糖体を得、第1の酵素(3)の
存在下において単糖体の加水分解反応を行なわせ、単糖
体の加水分解反応により電極(1)から出力される電気
信号を所定時間間隔で少なくとも2回計測し、得られた
複数の電気信号に基づいて被検溶液中のα−アミラーゼ
活性測定信号を得ることを特徴とするα−アミラーゼ活
性測定方法。
6. An electrode device comprising a first enzyme-immobilized membrane (3), a second enzyme-immobilized membrane (4) and a diffusion limiting membrane (5) arranged on the surface of an electrode (1). The reaction solution obtained by modifying the test solution and the non-reducing end with a protecting group is spotted in a predetermined order, and the interfering substance contained in the test solution is separated by the diffusion limiting membrane (5) to obtain the second enzyme. In the presence of (4), the test solution from which the interfering substance is separated and the reaction substrate are decomposed to obtain a monosaccharide, and the monosaccharide is hydrolyzed in the presence of the first enzyme (3). The electrical signal output from the electrode (1) by the hydrolysis reaction of the monosaccharide is measured at least twice at predetermined time intervals, and α- in the test solution is measured based on the obtained electrical signals. A method for measuring α-amylase activity, which comprises obtaining an amylase activity measurement signal.
【請求項7】 第1回目の電気信号の計測がエンドポイ
ント法により行なわれ、第2回目以降の電気信号の計測
がレート法により行なわれる請求項6に記載のα−アミ
ラーゼ活性測定方法。
7. The method for measuring α-amylase activity according to claim 6, wherein the first measurement of the electric signal is performed by the end point method, and the second and subsequent measurement of the electrical signal is performed by the rate method.
JP4031912A 1992-02-19 1992-02-19 Alpha-amylase activation measuring electrode and alpha-amyklase activation measuring method Pending JPH05232076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4031912A JPH05232076A (en) 1992-02-19 1992-02-19 Alpha-amylase activation measuring electrode and alpha-amyklase activation measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4031912A JPH05232076A (en) 1992-02-19 1992-02-19 Alpha-amylase activation measuring electrode and alpha-amyklase activation measuring method

Publications (1)

Publication Number Publication Date
JPH05232076A true JPH05232076A (en) 1993-09-07

Family

ID=12344195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031912A Pending JPH05232076A (en) 1992-02-19 1992-02-19 Alpha-amylase activation measuring electrode and alpha-amyklase activation measuring method

Country Status (1)

Country Link
JP (1) JPH05232076A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169499A (en) * 2007-01-10 2008-07-24 Kurita Water Ind Ltd Method for producing paper by using starch
JP2009264920A (en) * 2008-04-25 2009-11-12 Funai Electric Advanced Applied Technology Research Institute Inc Sensor and biosensor
JP2013054042A (en) * 2012-12-18 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Sensor
CN108548858A (en) * 2018-06-22 2018-09-18 桂林中辉科技发展有限公司 A kind of electrochemistry test paper of quick measurement amylase and its preparation and detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169499A (en) * 2007-01-10 2008-07-24 Kurita Water Ind Ltd Method for producing paper by using starch
JP2009264920A (en) * 2008-04-25 2009-11-12 Funai Electric Advanced Applied Technology Research Institute Inc Sensor and biosensor
JP2013054042A (en) * 2012-12-18 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Sensor
CN108548858A (en) * 2018-06-22 2018-09-18 桂林中辉科技发展有限公司 A kind of electrochemistry test paper of quick measurement amylase and its preparation and detection method

Similar Documents

Publication Publication Date Title
US4795707A (en) Electrochemical sensor having three layer membrane containing immobilized enzymes
US4890620A (en) Two-dimensional diffusion glucose substrate sensing electrode
JP3398598B2 (en) Substrate quantification method and analytical element and measuring device used for the method
US4225410A (en) Integrated array of electrochemical sensors
ES2224614T3 (en) SUBSTRATE AND BIOSENSOR ANALYSIS PROCEDURE.
JPH11509633A (en) Biochemical sensor device and method
JPH0761280B2 (en) Simultaneous measurement of glucose and 1,5-anhydroglucitol
Hintsche et al. Chip biosensors on thin-film metal electrodes
Mascini et al. Clinical uses of enzyme electrode probes
CN107064261A (en) A kind of biology sensor and detection method based on glucose dehydrogenase
CN102419366B (en) Dry chemical quantitative test strip with interference removal, alanine transaminase or aspartate transaminase quantitative test strip and test method
JPH05232076A (en) Alpha-amylase activation measuring electrode and alpha-amyklase activation measuring method
Davis Advances in biomedical sensor technology: a review of the 1985 patent literature
US20010051109A1 (en) Enzymatic analysis system
CA1247700A (en) Two-dimensional diffusion glucose substrate sensing electrode
Keyes et al. Glucose analysis utilizing immobilized enzymes
EP0309256A2 (en) Determination of amylase
JP2648361B2 (en) Permselective membrane and electrode using the same
JPS585642A (en) Enzyme electrode
JPS6257942B2 (en)
EP4342996A1 (en) Alfa-amylase activity biosensor
Urban et al. Biosensors with modified electrodes for in vivo and ex vivo applications
Morelis et al. Rapid and sensitive discriminating determination of acetylcholinesterase activity in amniotic fluid with a choline sensor
Yoda [5] Multienzyme membrane electrodes
JPH0332741B2 (en)