JPH05232010A - Method and device for evaluating dispersion state of functional particulate in toner - Google Patents

Method and device for evaluating dispersion state of functional particulate in toner

Info

Publication number
JPH05232010A
JPH05232010A JP4075165A JP7516592A JPH05232010A JP H05232010 A JPH05232010 A JP H05232010A JP 4075165 A JP4075165 A JP 4075165A JP 7516592 A JP7516592 A JP 7516592A JP H05232010 A JPH05232010 A JP H05232010A
Authority
JP
Japan
Prior art keywords
image
fine powder
toner
functional fine
dispersion state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4075165A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yamaguchi
雄彦 山口
Yoshiji Fujiwara
義嗣 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP4075165A priority Critical patent/JPH05232010A/en
Publication of JPH05232010A publication Critical patent/JPH05232010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To quantitatively evaluate the dispersion state of functional particulates by obtaining the particle size distribution of the functional particulates from the image signal in which the image of molten toner has been picked up. CONSTITUTION:A television camera 2 picks up the image of molten toner that has been magnified for example 1000 times, and a monochrome image signal is sent to an image processor 3. The processor 3 divides it into for example a large number of image element matrices, and binarize them by a given threshold value in accordance with the density of the image, and both the number of regions in which image elements corresponding to the dense part of the image continue, and the numbers of image elements in respective regions are sent to a computer 4 as measurement data. The computer 4 calculates an evaluation value by the calculation formula that has been previously prepared for evaluating the dispersion state of the toner and by the data sent from the processor 3. The result of the calculation is output by an output device 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂中に顔料や荷電制
御剤等の機能性微粉体を分散させる混練工程を経てトナ
ーを製造するに際し、その機能性微粉体の分散状態を評
価するための方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for evaluating the dispersion state of a functional fine powder when a toner is manufactured through a kneading step in which a functional fine powder such as a pigment or a charge control agent is dispersed in a resin. Method and apparatus.

【0002】[0002]

【従来の技術】トナーにおける機能性微粉体の分散状態
を評価する技術として、特開昭61‐122543号公
報に開示されたものがある。これは、溶融状態のトナー
を伸長して薄膜化し、その薄膜片を透過型顕微鏡により
観察することで、機能性微粉体の分散状態を評価するも
のである。
2. Description of the Related Art As a technique for evaluating the dispersion state of functional fine powder in a toner, there is one disclosed in Japanese Patent Laid-Open No. 61-122543. This is to evaluate the dispersion state of the functional fine powder by elongating the molten toner into a thin film and observing the thin film piece with a transmission microscope.

【0003】また、トナーを電子写真式複写機により使
用可能な完成品の状態にした後に、そのトナーを用いて
テストチャートを透光性のシートに複写し、トナーが定
着した透光性シートの分光透過率の最高値と最低値の差
を透明度として測定し、その透明度が高い程に分散状態
が優れていると評価することも行なわれている。
Further, after the toner is made into a state of a finished product which can be used by an electrophotographic copying machine, a test chart is copied onto a light-transmitting sheet using the toner, and the toner is fixed on the light-transmitting sheet. It is also performed that the difference between the maximum value and the minimum value of the spectral transmittance is measured as transparency, and the higher the transparency, the better the dispersion state.

【0004】[0004]

【発明が解決しようとする課題】溶融トナーを薄膜化し
て透過型顕微鏡により観察する場合、分散状態の評価は
肉眼による判断になるため定量的な評価を行なうことが
できないという問題がある。
When thinning the molten toner and observing it with a transmission microscope, there is a problem that the evaluation of the dispersion state cannot be quantitatively evaluated because it is judged by the naked eye.

【0005】また、分散状態の評価を透明度に基づき行
なう場合、電子写真式複写機により透過型シートに定着
させることができるようにトナーを完成品の状態にする
必要がある。そのため、樹脂中に機能性微粉体を分散さ
せる混練工程において分散状態を評価することができ
ず、分散状態の評価結果を混練工程の制御系にフィード
バックすることができないという問題がある。
Further, when the dispersion state is evaluated based on the transparency, it is necessary to put the toner in a finished state so that the toner can be fixed on the transmission type sheet by the electrophotographic copying machine. Therefore, there is a problem that the dispersion state cannot be evaluated in the kneading step of dispersing the functional fine powder in the resin, and the evaluation result of the dispersion state cannot be fed back to the control system of the kneading step.

【0006】本発明は上記従来技術の課題を解決するこ
とのできるトナーにおける機能性微粉体の分散状態評価
方法および評価装置を提供することを目的とする。
An object of the present invention is to provide a method and an apparatus for evaluating the dispersed state of functional fine powder in a toner, which can solve the above-mentioned problems of the prior art.

【0007】[0007]

【課題を解決するための手段】本発明方法の特徴とする
ところは、樹脂中に機能性微粉体を分散させる混練工程
を経てトナーを製造するに際し、溶融トナーを撮像し、
その画像信号を処理して機能性微粉体粒子の粒度分布を
求め、その粒度分布から機能性微粉体の分散状態を評価
する点にある。この場合、溶融トナーの画像信号を画像
の濃淡に応じ2値化し、その2値化した信号から機能性
微粉体粒子の個数と各粒度とを求め、その求めた粒子個
数と各粒度に基づき機能性微粉体の分散状態の評価値を
求めるのが好ましい。
The method of the present invention is characterized in that, when a toner is manufactured through a kneading step of dispersing a functional fine powder in a resin, an image of a molten toner is picked up,
The point is that the image signal is processed to obtain the particle size distribution of the functional fine powder particles, and the dispersion state of the functional fine powder is evaluated from the particle size distribution. In this case, the image signal of the molten toner is binarized according to the density of the image, the number of functional fine powder particles and each particle size are obtained from the binarized signal, and the function is based on the obtained number of particles and each particle size. It is preferable to obtain an evaluation value of the dispersed state of the fine powdery particles.

【0008】本発明装置の特徴とするところは、溶融ト
ナーを撮像する手段と、その画像信号を処理して溶融ト
ナー中の機能性微粉体粒子の粒度分布を求める手段とを
備える点にある。この場合、溶融トナーの画像信号を画
像の濃淡に応じ2値化すると共に2値化した信号から機
能性微粉体粒子の個数と各粒度を求める手段と、その求
めた粒子個数と各粒度に基づき機能性微粉体粒子の分散
状態の評価値を演算する手段とを備えるのが好ましい。
The device of the present invention is characterized in that it is provided with means for picking up the image of the molten toner and means for processing the image signal to obtain the particle size distribution of the functional fine powder particles in the molten toner. In this case, the image signal of the molten toner is binarized according to the lightness and darkness of the image, and a means for obtaining the number of functional fine powder particles and each particle size from the binarized signal, and based on the obtained number of particles and each particle size It is preferable to include means for calculating an evaluation value of the dispersion state of the functional fine powder particles.

【0009】[0009]

【作用】樹脂中に機能性微粉体を分散させるための混練
が充分に行なわれる程に、粒度の小さな機能性微粉体粒
子が樹脂中に多く存在する。これに対し、樹脂と機能性
微粉体との混練が不充分であれば、粒度の小さな機能性
微粉体粒子が少なくなる。よって、混練中の溶融トナー
を撮像し、その画像信号を処理して機能性微粉体粒子の
個数と各粒度すなわち粒度分布を求めることで、機能性
微粉体の分散状態を評価することができる。
Function: A large amount of functional fine powder particles having a small particle size are present in the resin so that the kneading for dispersing the functional fine powder in the resin is sufficiently performed. On the other hand, if the resin and the functional fine powder are not sufficiently kneaded, the number of particles of the functional fine powder having a small particle size will decrease. Therefore, the dispersed state of the functional fine powder can be evaluated by imaging the molten toner during kneading and processing the image signal to obtain the number of functional fine powder particles and each particle size, that is, the particle size distribution.

【0010】溶融トナーの画像は、樹脂部分が薄く機能
性微粉体部分が濃いことから、その画像の濃淡に応じ画
像信号を2値化して処理することで、機能性微粉体粒子
の画像個数と各画像面積を求めることができる。各機能
性微粉体粒子の画像面積は粒度に対応することから機能
性微粉体の粒度分布を求めることができる。
In the image of the molten toner, the resin portion is thin and the functional fine powder portion is dark. Therefore, by binarizing the image signal according to the shade of the image and processing it, the number of images of the functional fine powder particles can be increased. Each image area can be obtained. Since the image area of each functional fine powder particle corresponds to the particle size, the particle size distribution of the functional fine powder can be obtained.

【0011】[0011]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1に示すトナーの分散状態評価装置は、
光学顕微鏡1と、この光学顕微鏡1により拡大された画
像を撮像するテレビカメラ2と、このテレビカメラ2か
ら送られた画像信号を処理する画像処理装置3と、この
画像処理装置3を制御すると共に画像処理装置3から送
られるデータに基づいてトナーの分散状態の評価値を演
算するコンピュータ4と、このコンピュータ4による評
価結果を出力する出力装置5とを備えている。その光学
顕微鏡1の倍率は本実施例では1000倍である。その
テレビカメラ2は本実施例ではモノクロの画像信号を画
像処理装置3に送る。その画像処理装置3は、本実施例
では画像を多数の画素のマトリクスに分割し、画像の濃
淡に応じた一定のしきい値により画像信号を2値化し、
画像の濃い部分に対応する画素が連続する領域の数と各
領域の画素数とを計測データとしてコンピュータ4に送
る。そのコンピュータ4は、トナーの分散状態を評価す
るために予め作成された演算式を記憶し、その演算式と
画像処理装置3から送られるデータにより評価値を演算
する。その出力装置5は、コンピュータ4の演算結果を
表示するモニタやプリンタにより構成される。
The toner dispersion state evaluation apparatus shown in FIG.
The optical microscope 1, a television camera 2 that captures an image magnified by the optical microscope 1, an image processing device 3 that processes an image signal sent from the television camera 2, and the image processing device 3 are controlled. A computer 4 for calculating an evaluation value of the toner dispersion state based on the data sent from the image processing device 3 and an output device 5 for outputting the evaluation result by the computer 4 are provided. The magnification of the optical microscope 1 is 1000 times in this embodiment. The television camera 2 sends a monochrome image signal to the image processing device 3 in this embodiment. In this embodiment, the image processing device 3 divides the image into a matrix of a large number of pixels, binarizes the image signal by a constant threshold value according to the shading of the image,
The number of regions in which pixels corresponding to a dark portion of an image are continuous and the number of pixels in each region are sent to the computer 4 as measurement data. The computer 4 stores an arithmetic expression prepared in advance for evaluating the toner dispersion state, and calculates an evaluation value based on the arithmetic expression and the data sent from the image processing apparatus 3. The output device 5 is composed of a monitor and a printer for displaying the calculation result of the computer 4.

【0013】上記分散状態評価装置を用い、下記の表1
に示す3種類のシアン色トナーA、B、Cの評価を行な
った。なお樹脂と機能性微粉体との混練には2軸押し出
し混練機(池貝鉄工(株)製PCM‐45型)を用い
た。
Using the above dispersion state evaluation device, the following Table 1
The three types of cyan toners A, B, and C shown in (4) were evaluated. A biaxial extrusion kneader (PCM-45 type manufactured by Ikegai Tekko KK) was used for kneading the resin and the functional fine powder.

【0014】[0014]

【表1】 [Table 1]

【0015】機能性微粉体の分散状態の評価手順を図2
に示すフローチャートに基づき説明する。
The procedure for evaluating the dispersed state of the functional fine powder is shown in FIG.
It will be described based on the flowchart shown in FIG.

【0016】まず、評価の対象となるトナーをスライド
グラス上で加熱して溶融し、その上に別のカバーグラス
を重ねて薄膜状に伸長し、評価試料を作成した(ステッ
プ1)。
First, a toner to be evaluated was heated on a slide glass to melt it, and another cover glass was placed on the toner to extend it into a thin film to prepare an evaluation sample (step 1).

【0017】次に、評価試料を光学顕微鏡1により10
00倍に拡大し、その拡大画像をテレビカメラ2により
撮像し、その画像信号を画像処理装置3に入力した(ス
テップ2)。
Next, the evaluation sample was measured by the optical microscope 1 to 10
The image was magnified 00 times, the enlarged image was captured by the television camera 2, and the image signal was input to the image processing device 3 (step 2).

【0018】次に、画像処理装置3により画像信号を2
値化することでラベリングした。本実施例では画像を6
4階調の明度差により認識し、50%の明度をしいき値
として画像信号を2値化した(ステップ3)。すなわ
ち、溶融トナーの拡大画像は画像処理装置3により図3
の(1)に示すように多数の画素のマトリクスに分割さ
れ、溶融トナーは樹脂6部分が淡く機能性微粉体粒子7
部分が濃いことから、図3の(2)に示すような2値画
像に変換される。
Next, the image processing apparatus 3 converts the image signal into 2
Labeled by digitizing. In this embodiment, the image is 6
The image signal was binarized by recognizing the lightness difference of four gradations and setting the lightness of 50% as the threshold value (step 3). That is, the magnified image of the fused toner is displayed by the image processing device 3 in FIG.
As shown in (1) of FIG. 1, the molten toner is divided into a matrix of a large number of pixels, and the resin 6 portion of the molten toner is light and the functional fine powder particles 7 are
Since the portion is dark, it is converted into a binary image as shown in (2) of FIG.

【0019】次に、2値化した信号から機能性微粉体粒
子の個数と各面積とを求め、その求めた粒子個数と各粒
子面積に基づき粒度分布を求めた(ステップ4)。すな
わち、前記2値画像を走査することで、機能性微粉体粒
子7部分に対応する画素が連続する領域7′の個数と、
各領域7′の画素数を求める。その領域個数が機能性微
粉体粒子7の個数に相当し、各領域7′の画素数が各機
能性微粉体粒子7の画像面積に対応し、その画像面積は
各機能性微粉体粒子7の粒度に対応する。
Next, the number of functional fine powder particles and each area were obtained from the binarized signal, and the particle size distribution was obtained based on the obtained number of particles and each particle area (step 4). That is, by scanning the binary image, the number of regions 7'where the pixels corresponding to the functional fine powder particle 7 portion are continuous,
The number of pixels in each area 7'is obtained. The number of regions corresponds to the number of functional fine powder particles 7, the number of pixels in each region 7'corresponds to the image area of each functional fine powder particle 7, and the image area corresponds to that of each functional fine powder particle 7. Corresponds to grain size.

【0020】次に、ステップ4での画像処理に基づき求
めた機能性微粉体粒子の個数と各粒度に対応する計測デ
ータをコンピュータ4の記憶装置に保存した(ステップ
5)。
Next, the number of functional fine powder particles obtained based on the image processing in step 4 and the measurement data corresponding to each particle size were stored in the storage device of the computer 4 (step 5).

【0021】次に、光学顕微鏡1による評価試料の視野
を変更し、上記ステップ2〜ステップ5を繰り返し、計
10視野分の計測データを得た(ステップ6)。
Next, the visual field of the evaluation sample by the optical microscope 1 was changed, and the above steps 2 to 5 were repeated to obtain measurement data for a total of 10 visual fields (step 6).

【0022】次に、コンピュータ4により評価値を算出
した(ステップ7)。本実施例では、機能性微粉体粒子
の各画像面積Sに基づき、次式より各粒子が球形である
と仮想した場合の仮想粒径Dを求めた。
Next, the computer 4 calculates an evaluation value (step 7). In this example, based on each image area S of the functional fine powder particles, a virtual particle diameter D when each particle is assumed to be spherical is calculated from the following equation.

【0023】D=2×(S/π)1/2 D = 2 × (S / π) 1/2

【0024】その仮想粒径Dが1μm以下の粒子数をN
a、全計測粒子個数をNとして、次式により機能性微粉
体の分散状態の評価値Hを求めた。その評価値Hを出力
装置5により出力した(ステップ8)。
The number of particles whose virtual particle diameter D is 1 μm or less is N
The evaluation value H of the dispersed state of the functional fine powder was determined by the following equation, where a is the total number of measured particles and N is the number. The evaluation value H was output by the output device 5 (step 8).

【0025】H=Na/NH = Na / N

【0026】上記求めた評価値Hと、従来技術で説明し
た透明度とを前記表1に示すと共に、その評価値Hと透
明度との関係を図4に示した。これより評価値Hと透明
度とが相関関係にあり、本発明によれば機能性微粉体の
分散状態を定量的に評価できることが確認された。
The evaluation value H obtained above and the transparency described in the prior art are shown in Table 1 above, and the relationship between the evaluation value H and the transparency is shown in FIG. From this, it was confirmed that the evaluation value H and the transparency have a correlation, and that the dispersion state of the functional fine powder can be quantitatively evaluated according to the present invention.

【0027】なお、本発明は上記実施例に限定されるも
のではない。例えば、機能性微粉体の粒度分布を濃淡画
像処理を行なうことにより求めてもよい。具体的には、
溶融トナーの2次元画像を多数の画素のマトリクスに分
割し、各列の列方向に隣合う画素の明度を順次比較す
る。すると、溶融トナーは樹脂部分が淡く機能性微粉体
粒子部分が濃いことから、その明度差または明度比が明
度の減少により一定値以上になる画素から明度差または
明度比が明度の増加により一定値以上になる部分まで
を、その列の機能性微粉体粒子部分としてラベリングで
きる。順次同様に各列について明度比較を行なうこと
で、機能性微粉体粒子部分に対応する画素が連続する領
域の個数すなわち機能性微粉体粒子の個数と、各領域の
画素数すなわち各機能性微粉体粒子の粒度を求めること
ができる。この濃淡画像処理によれば、明度の相対値で
機能性微粉体粒子の個数と粒度を求めることができる長
所がある。
The present invention is not limited to the above embodiment. For example, the particle size distribution of the functional fine powder may be obtained by performing a gradation image processing. In particular,
The two-dimensional image of the fused toner is divided into a matrix of a large number of pixels, and the brightness of pixels adjacent to each other in the column direction is sequentially compared. Then, since the resin portion of the molten toner is light and the functional fine powder particle portion is thick, the brightness difference or the brightness ratio becomes a certain value or more due to the decrease in the brightness, and the brightness difference or the brightness ratio becomes a constant value due to the increase in the brightness. The parts up to the above can be labeled as the functional fine powder particle parts of the row. By performing the lightness comparison for each column in the same manner, the number of regions in which pixels corresponding to the functional fine powder particle portion are continuous, that is, the number of functional fine powder particles, and the number of pixels in each region, that is, each functional fine powder The particle size of the particles can be determined. According to this grayscale image processing, there is an advantage that the number and the particle size of the functional fine powder particles can be obtained by the relative value of the lightness.

【0028】また、カラートナーにあっては、明度のみ
ではトナー粒子と樹脂部分との識別が困難な場合があ
る。そこで、カラー画像から色相に応じてトナー粒子を
識別して分散状態を評価してもよい。具体的には、カラ
ートナー粒子の色相をCとし、赤、緑、青の3原色成分
の色相をそれぞれR、G、Bとし、3原色成分の濃淡強
度をx、y、zとすると、その色相Cは次式で表され
る。
In the case of color toner, it may be difficult to distinguish the toner particles from the resin portion only by the lightness. Therefore, the toner particles may be identified from the color image according to the hue to evaluate the dispersion state. Specifically, assuming that the hue of the color toner particles is C, the hues of the three primary color components of red, green, and blue are R, G, and B, respectively, and the shade intensities of the three primary color components are x, y, and z. The hue C is expressed by the following equation.

【0029】C=xR+yG+zBC = xR + yG + zB

【0030】そこで、まずカラービデオカメラにより溶
融カラートナーを撮像し、その画像信号を画像処理装置
に入力して3原色成分に分解し、各成分毎に異なるメモ
リに記憶する。すなわち赤色成分用メモリR′において
は、赤色画像成分を濃淡強度に応じた多数の画素のマト
リクスとして記憶し、同様に、緑色成分用メモリG′に
おいては、緑色画像成分を濃淡強度に応じた多数の画素
のマトリクスとして記憶し、青色成分用メモリB′にお
いては、青色画像成分を濃淡強度に応じた多数の画素の
マトリクスとして記憶する。
Therefore, first, an image of the fused color toner is picked up by a color video camera, the image signal is input to an image processing apparatus, and it is decomposed into three primary color components, which are stored in different memories for each component. That is, in the red component memory R ', the red image component is stored as a matrix of a large number of pixels according to the intensity of light and shade, and similarly, in the memory G'for the green component, a large number of green image components according to the intensity of light and shade is stored. The pixel B is stored as a matrix of pixels, and the blue component memory B ′ stores a blue image component as a matrix of a large number of pixels according to the intensity of light and shade.

【0031】次に、評価対象のカラートナー粒子の色相
Coを、以下のように一定の幅を有するものと設定す
る。その色相Coに一定の幅を持たせるのは正確に一定
値Cとして検出するのは精度上困難なためである。
Next, the hue Co of the color toner particles to be evaluated is set to have a certain width as follows. The hue Co has a certain width because it is difficult to accurately detect the hue Co as the constant value C.

【0032】 Co=(x1〜x2)R+(y1〜y2)G+(z1〜z2)BCo = (x1 to x2) R + (y1 to y2) G + (z1 to z2) B

【0033】次に、赤色成分用メモリR′に記憶された
画素からx1〜x2の濃淡強度を有するものを抽出し、
緑色成分用メモリG′に記憶された画素からy1〜y2
の濃淡強度を有するものを抽出し、青色成分用メモリ
B′に記憶された画素からz1〜z2の濃淡強度を有す
るものを抽出する。
Next, from the pixels stored in the red component memory R ', those having a gray scale intensity of x1 to x2 are extracted,
From the pixels stored in the green component memory G ′, y1 to y2
Of the pixels having the intensity of z and z2 are extracted from the pixels stored in the memory B'for the blue component.

【0034】次に、抽出された赤色画像成分画素の集合
R″と緑色画像成分画素の集合G″と青色画像成分画素
の集合B″の積R″∩G″∩B″で表される部分を、評
価対象とするカラートナー粒子部分としてラベリングす
る。これにより、ラベリングされた画素が連続する領域
の個数すなわちカラートナー粒子の個数と、各領域の画
素数すなわち各カラートナー粒子の粒度を求めることが
できる。
Next, the portion represented by the product R "∩G" ∩B "of the set R" of the extracted red image component pixels, the set G "of the green image component pixels and the set B" of the blue image component pixels. Are labeled as color toner particle portions to be evaluated. Thereby, the number of regions where the labeled pixels are continuous, that is, the number of color toner particles, and the number of pixels in each region, that is, the particle size of each color toner particle can be obtained.

【0035】[0035]

【発明の効果】本発明方法によれば、トナーにおける機
能性微粉体の分散状態を樹脂と機能性微粉体との混練工
程において定量的に評価でき、混練工程の制御系に評価
結果をフィードバックし、例えば供給樹脂温度、混練機
のスクリュー回転数、混練機内でのトナー滞留時間等を
制御することで、機能性微粉体を良好に分散させること
ができる。本発明装置によれば本発明方法を実施するこ
とができる。
According to the method of the present invention, the dispersion state of the functional fine powder in the toner can be quantitatively evaluated in the kneading step of the resin and the functional fine powder, and the evaluation result is fed back to the control system of the kneading step. For example, the functional fine powder can be well dispersed by controlling the temperature of the supplied resin, the screw rotation speed of the kneading machine, the toner retention time in the kneading machine, and the like. According to the device of the present invention, the method of the present invention can be carried out.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の分散状態評価装置の構成説明
FIG. 1 is an explanatory diagram of a configuration of a distributed state evaluation device according to an embodiment of the present invention.

【図2】本発明の実施例の分散状態評価手順を示すフロ
ーチャート
FIG. 2 is a flowchart showing a distributed state evaluation procedure according to the embodiment of this invention.

【図3】本発明の実施例の画像処理の説明図FIG. 3 is an explanatory diagram of image processing according to the embodiment of this invention.

【図4】分散状態の評価値と透明度との関係を示す図FIG. 4 is a diagram showing a relationship between a dispersion state evaluation value and transparency.

【符号の説明】[Explanation of symbols]

2 テレビカメラ 3 画像処理装置 2 TV camera 3 Image processing device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 樹脂中に機能性微粉体を分散させる混練
工程を経てトナーを製造するに際し、溶融トナーを撮像
し、その画像信号を処理して機能性微粉体粒子の粒度分
布を求め、その粒度分布から機能性微粉体の分散状態を
評価することを特徴とするトナーにおける機能性微粉体
の分散状態評価方法。
1. When manufacturing a toner through a kneading step of dispersing a functional fine powder in a resin, an image of a molten toner is picked up and an image signal thereof is processed to obtain a particle size distribution of the functional fine powder particle. A method for evaluating the dispersion state of functional fine powder in a toner, characterized by evaluating the dispersion state of functional fine powder from particle size distribution.
【請求項2】 溶融トナーの画像信号を画像の濃淡に応
じ2値化し、その2値化した信号から機能性微粉体粒子
の個数と各粒度とを求め、その求めた粒子個数と各粒度
に基づき機能性微粉体の分散状態の評価値を求めること
を特徴とする請求項1に記載のトナーにおける機能性微
粉体の分散状態評価方法。
2. The image signal of the molten toner is binarized according to the density of the image, the number of functional fine powder particles and each particle size are obtained from the binarized signal, and the obtained number of particles and each particle size are used. The method for evaluating the dispersion state of functional fine powder in a toner according to claim 1, wherein an evaluation value of the dispersion state of functional fine powder is obtained based on the above.
【請求項3】 溶融トナーを撮像する手段と、その画像
信号を処理して溶融トナー中の機能性微粉体粒子の粒度
分布を求める手段とを備えることを特徴とするトナーに
おける機能性微粉体の分散状態評価装置。
3. A functional fine powder in a toner, comprising: a means for picking up an image of the molten toner; and a means for processing an image signal thereof to obtain a particle size distribution of the functional fine powder particles in the molten toner. Distributed state evaluation device.
【請求項4】 溶融トナーの画像信号を画像の濃淡に応
じ2値化すると共に2値化した信号から機能性微粉体粒
子の個数と各粒度を求める手段と、その求めた粒子個数
と各粒度に基づき機能性微粉体粒子の分散状態の評価値
を演算する手段とを備えることを特徴とする請求項3に
記載のトナーにおける機能性微粉体の分散状態評価装
置。
4. A means for binarizing an image signal of a molten toner in accordance with the lightness and darkness of an image, and a means for finding the number of functional fine powder particles and each particle size from the binarized signal, and the obtained number of particles and each particle size. 4. A dispersion state evaluation device for functional fine powder in toner according to claim 3, further comprising means for calculating an evaluation value of the dispersion state of the functional fine powder particles.
JP4075165A 1992-02-25 1992-02-25 Method and device for evaluating dispersion state of functional particulate in toner Pending JPH05232010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4075165A JPH05232010A (en) 1992-02-25 1992-02-25 Method and device for evaluating dispersion state of functional particulate in toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4075165A JPH05232010A (en) 1992-02-25 1992-02-25 Method and device for evaluating dispersion state of functional particulate in toner

Publications (1)

Publication Number Publication Date
JPH05232010A true JPH05232010A (en) 1993-09-07

Family

ID=13568322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4075165A Pending JPH05232010A (en) 1992-02-25 1992-02-25 Method and device for evaluating dispersion state of functional particulate in toner

Country Status (1)

Country Link
JP (1) JPH05232010A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203118A (en) * 2010-03-25 2011-10-13 Nippon Steel Corp Method for discriminating brightness of fine particles
CN104075965A (en) * 2014-07-02 2014-10-01 北京机械设备研究所 Method for measuring granularity of microscopic image particles segmented on basis of watershed
JP2018048841A (en) * 2016-09-20 2018-03-29 株式会社東芝 Degradation information acquisition device, degradation information acquisition system, degradation information acquisition method, and degradation information acquisition program
KR20210108831A (en) * 2020-02-26 2021-09-03 주식회사 엘지에너지솔루션 Quantitative analytical method for solubility of polyvinylidenefluoride(pvdf)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203118A (en) * 2010-03-25 2011-10-13 Nippon Steel Corp Method for discriminating brightness of fine particles
CN104075965A (en) * 2014-07-02 2014-10-01 北京机械设备研究所 Method for measuring granularity of microscopic image particles segmented on basis of watershed
CN104075965B (en) * 2014-07-02 2016-08-24 北京机械设备研究所 A kind of micro-image grain graininess measuring method based on watershed segmentation
JP2018048841A (en) * 2016-09-20 2018-03-29 株式会社東芝 Degradation information acquisition device, degradation information acquisition system, degradation information acquisition method, and degradation information acquisition program
KR20210108831A (en) * 2020-02-26 2021-09-03 주식회사 엘지에너지솔루션 Quantitative analytical method for solubility of polyvinylidenefluoride(pvdf)

Similar Documents

Publication Publication Date Title
US5200817A (en) Conversion of an RGB color scanner into a colorimetric scanner
US20080285840A1 (en) Defect inspection apparatus performing defect inspection by image analysis
JP3809838B2 (en) Image highlight correction method using image source specific HSV color coordinates, image highlight correction program, and image acquisition system
US8064691B2 (en) Method for identifying color in machine and computer vision applications
JP2000513466A (en) Color pattern evaluation system for randomly directed products
Meyer et al. Electronic image analysis of crop residue cover on soil
Tantaswadi et al. Machine vision for automated visual inspection of cotton quality in textile industries using color isodiscrimination contour
CN104423027A (en) Microscope
JPH05232010A (en) Method and device for evaluating dispersion state of functional particulate in toner
JPH0792104A (en) Method for inspecting defective point of object
JP7154786B2 (en) Image processing device, image processing method and program
JP3851538B2 (en) Image display apparatus and method, and image processing system
EP1300802A1 (en) Process of identification of shadows in an image and image obtained using the process
JP2003216928A (en) Normal/defective confection deciding system
JP3344731B2 (en) Chestnut shape identification method
US11825211B2 (en) Method of color inspection by using monochrome imaging with multiple wavelengths of light
US11354821B2 (en) Image processing method and apparatus
JPH0993443A (en) Color-monochromatic image conversion method and edge position detection method for object to be inspected
US20160320603A1 (en) Method for generating a contrast image of an object structure and apparatuses relating thereto
JP3941403B2 (en) Image density unevenness detection method and inspection apparatus
JP2010278680A (en) Specific color detection circuit
JP2886251B2 (en) Product inspection equipment
JP2779784B2 (en) Brightness index measurement method for glass products, etc.
JP3912063B2 (en) Detection method of image shading unevenness
JP3504040B2 (en) Color unevenness identification method for color display and automatic identification device by the method