JPH05231940A - Measuring method of surface color tone - Google Patents

Measuring method of surface color tone

Info

Publication number
JPH05231940A
JPH05231940A JP3268271A JP26827191A JPH05231940A JP H05231940 A JPH05231940 A JP H05231940A JP 3268271 A JP3268271 A JP 3268271A JP 26827191 A JP26827191 A JP 26827191A JP H05231940 A JPH05231940 A JP H05231940A
Authority
JP
Japan
Prior art keywords
wavelength
measured
light
wavelength range
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3268271A
Other languages
Japanese (ja)
Other versions
JP2606028B2 (en
Inventor
Kozo Maeda
孝三 前田
Masaki Takenaka
正樹 竹中
Mitsuo Hoku
光男 保久
Mamoru Inaba
護 稲葉
Shinsuke Watanabe
真介 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP26827191A priority Critical patent/JP2606028B2/en
Publication of JPH05231940A publication Critical patent/JPH05231940A/en
Application granted granted Critical
Publication of JP2606028B2 publication Critical patent/JP2606028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure a surface color tone of a substance to be measured which has the color tone of an achromatic color system and is in movement, by measuring reflectances in three wavelengths (narrow wavelength bands) in a specific wavelength region of a visible light and by determining an average value of gradients of the reflectances among these three wavelength bands. CONSTITUTION:Three wavelengths (narrow wavelength bands) are selected from a reflected light in a visible light region of a substance to be measured and reflectances are determined. In other words, a central wavelength is selected from a wavelength range of 480 to 550nm and a reflectance in a wavelength band of + or -10nm or below in relation to the central wavelength is measured. Next, the central wavelength is selected from the wavelength range of 550 to 620nm and the reflectance in the wavelength band of + or -10nm or below in relation to this central wavelength is measured. Subsequently, the central wavelength is selected from the wavelength range of 620 to 700nm and the reflectance in the wavelength band of + or -10nm or below in relation to the central wavelength is measured. An average value of gradients (reflectance difference (%)/wavelength difference (nm) between central wavelengths) of the reflectances among these three wavelength bands is made a measured value of a surface color tone of the substance to be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ティンフリ−スチ−ル
(以下、TFSという)等の無彩色系の物体の表面色調
測定に好適な測色方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a colorimetric method suitable for measuring the surface color tone of an achromatic object such as tin-free steel (hereinafter referred to as TFS).

【0002】[0002]

【従来の技術】TFSは巾方向と長さ方向で色調が異な
るという異方性をもっている。このため、その測色を行
う場合の照明には光源からの直接光は使用できず、測定
点に対し全方向から光を照射する散乱光照明を行う必要
がある。散乱光照明が可能な測色計として、投受光がO
−dまたはd−O方式とよばれる積分球方式の測色計が
知られている。しかしながら、従来の積分球方式の測色
計は被測定物を検出部に密着させて外光の影響を受けな
いようにする必要があり、移動中の被測定物の測色はで
きない。これは光源からの直接照明に対して、従来の積
分球による散乱光照明では被測定物の反射光量が1/2
0〜1/100と極めて小さく、外光との光量差が小さ
くなるためである。したがって、この方式を通板するT
FSストリップの測色方法には適用できない。
2. Description of the Related Art TFS has anisotropy in that color tones differ in the width direction and the length direction. Therefore, the direct light from the light source cannot be used for the illumination when performing the colorimetry, and it is necessary to perform the scattered light illumination that irradiates the measurement point with light from all directions. As a colorimeter capable of scattered light illumination,
An integrating sphere type colorimeter called -d or d-O type is known. However, in the conventional integrating sphere colorimeter, it is necessary to bring the object to be measured in close contact with the detection unit so as not to be affected by external light, and the color of the object to be measured cannot be measured while moving. Compared to direct illumination from a light source, the amount of reflected light from the DUT is 1/2 in conventional scattered light illumination using an integrating sphere.
This is because it is extremely small, 0 to 1/100, and the difference in the amount of light with the outside light is small. Therefore, T which passes through this system
It cannot be applied to the FS strip colorimetric method.

【0003】このようなことから、本出願人は先に特願
平1−331038号として、移動する被測定物につい
てもその表面色調の絶体的評価を可能とする測色方法を
提案した。この方法は、被測定物の分光反射率曲線の勾
配、具体的には、分光反射率曲線の反射率がピ−クとな
る波長から可視光の最長波長までの波長領域における適
当な波長範囲の反射率曲線の勾配をもって物体の色調を
区別できるとの知見に基づき、被測定物の分光反射率曲
線を求め、この分光反射曲線の反射率がピ−クの波長か
ら可視光の最長波長までの波長領域において、波長差1
00nm以上の波長領域における波長に対する反射率曲
線の平均勾配を求め、この平均勾配をもって被測定物表
面色調の測定値とするというものである。このような方
法によれば、移動するTFSのような無彩色系の物体の
色調でも、目視評価と高度の相関性をもって測色するこ
とが可能であり、このため、特にTFSの表面色調の規
格化、製造管理、品質管理に多大な効果をもたらし得る
ものである。
In view of the above, the present applicant has previously proposed, as Japanese Patent Application No. 1-331038, a colorimetric method which enables the perfect evaluation of the surface color tone of a moving object to be measured. This method, the slope of the spectral reflectance curve of the object to be measured, specifically, the reflectance of the spectral reflectance curve peak of the wavelength from the wavelength to the longest wavelength of visible light in the appropriate wavelength range Based on the knowledge that the color tone of an object can be distinguished by the slope of the reflectance curve, the spectral reflectance curve of the DUT is determined, and the reflectance of this spectral reflectance curve is from the peak wavelength to the longest wavelength of visible light. 1 wavelength difference in the wavelength range
The average gradient of the reflectance curve with respect to the wavelength in the wavelength region of 00 nm or more is obtained, and this average gradient is used as the measured value of the color tone of the surface of the object to be measured. According to such a method, it is possible to measure the color tone of an achromatic object such as a moving TFS with a high degree of correlation with the visual evaluation. It is possible to bring about great effects on manufacturing, production control, and quality control.

【0004】[0004]

【発明が解決しようとする課題】しかし、この方法で
は、可視光の波長領域で10〜20nm毎に分光反射率
を測定してその勾配を計算する必要があり、このような
測定をオンラインで可能とするような装置は非常に複雑
且つ高価なものとならざるを得ない。本発明は以上のよ
うな課題を解決するためになされたもので、TFS等の
ような無彩色系の色調を有する移動中の被測定物の表面
色調でも、オンラインで簡易に測色することができる方
法を提供しようとするものである。
However, in this method, it is necessary to measure the spectral reflectance at every 10 to 20 nm in the wavelength range of visible light and calculate the gradient, and such a measurement can be performed online. Such a device must be very complicated and expensive. The present invention has been made to solve the above problems, and it is possible to easily perform online colorimetry even on the surface color tone of a moving object to be measured having an achromatic color tone such as TFS. It seeks to provide a way to do it.

【0005】[0005]

【課題を解決するための手段】本発明者らは、可視光の
特定の波長領域における3つの波長(狭波長帯域)にお
ける反射率を求め、この波長域間での反射率の勾配(反
射率差(%)/中心波長間の波長差(nm))の平均値
が上記特願平1−331038号に係る測色方法で求め
られる反射率曲線の平均勾配と高い相関を有することを
見出し、本発明を完成させたものである。
Means for Solving the Problems The inventors of the present invention have found the reflectances of three wavelengths (narrow wavelength bands) in a specific wavelength range of visible light, and have a gradient of the reflectances (reflectances between these wavelength ranges). It was found that the average value of (difference (%) / wavelength difference between central wavelengths (nm)) has a high correlation with the average gradient of the reflectance curve obtained by the colorimetric method according to Japanese Patent Application No. 1-3331038. The present invention has been completed.

【0006】すなわち、本発明は、被測定物の可視光域
の反射光から、480〜550nmの波長範囲に中心波
長を有し、該中心波長に対して±10nm以下の波長域
における反射率と、550〜620nmの波長範囲に中
心波長を有し、該中心波長に対して±10nm以下の波
長域における反射率と、620〜700nmの波長範囲
に中心波長を有し、該中心波長に対して±10nm以下
の波長域における反射率とをそれぞれ測定し、この3つ
波長域間での反射率の勾配(反射率差(%)/中心波長
間の波長差(nm))の平均値をもって被測定物表面色
調の測定値とすることを特徴とする表面色調の測色方法
である。
That is, the present invention has a center wavelength in the wavelength range of 480 to 550 nm from the reflected light in the visible light range of an object to be measured and a reflectance in a wavelength range of ± 10 nm or less with respect to the center wavelength. , With a center wavelength in the wavelength range of 550 to 620 nm, a reflectance in a wavelength range of ± 10 nm or less with respect to the center wavelength, and a center wavelength in the wavelength range of 620 to 700 nm, and with respect to the center wavelength. The reflectance in the wavelength range of ± 10 nm or less is measured, and the average value of the gradient of the reflectance (reflectance difference (%) / wavelength difference (nm) between central wavelengths) between these three wavelength ranges is measured. A surface color tone colorimetric method characterized in that a measured value of a surface color tone of a measurement object is used.

【0007】また、このような本発明法は以下のような
方法により容易に実施できる。 被測定物に散乱光を照射し、赤成分、緑成分および青
成分の受光特性を狭帯域にしたカラ−カメラで被測定物
の反射光を捕え、上記各反射率を測定する。 被測定物に散乱光を照射し、被測定物の反射光を分光
器で分光し、この分光した光から複数箇所に開口部を施
したスリット板で上記3つの波長域の光を抽出して、そ
れぞれの反射率を測定する。 また、被測定物への散乱光の照射は、複数の光源を異な
る方向に設置した積分球照明で行うことができる。
Further, such a method of the present invention can be easily carried out by the following method. The object to be measured is irradiated with scattered light, and the reflected light of the object to be measured is captured by a color camera in which the light receiving characteristics of the red component, the green component, and the blue component are narrow band, and the respective reflectances are measured. The measured light is irradiated with scattered light, the reflected light of the measured light is dispersed by a spectroscope, and the light in the above three wavelength regions is extracted from the dispersed light with a slit plate having openings at multiple locations. , And measure the reflectance of each. The scattered light can be applied to the object to be measured by integrating sphere illumination in which a plurality of light sources are installed in different directions.

【0008】[0008]

【作用】本発明法において物体の測色値とする反射率の
平均勾配は、上記特願平1−331038号に係る測定
方法で求められる反射率曲線の平均勾配、すなわち、可
視光領域の波長差100nm以上の分光反射率曲線に関
して、10〜20nm単位の波長に対する反射率の単回
帰で求めた勾配と非常に高い相関を示す。
In the method of the present invention, the average gradient of reflectance as the colorimetric value of an object is the average gradient of the reflectance curve obtained by the measuring method according to Japanese Patent Application No. 1-331038, that is, the wavelength in the visible light region. Regarding the spectral reflectance curve with a difference of 100 nm or more, it shows a very high correlation with the gradient obtained by simple regression of reflectance with respect to wavelengths of 10 to 20 nm.

【0009】表1は、上記特願平1−331038号の
測定方法で求められる反射率曲線の平均勾配に基づく測
色値と本発明法による測色値を比較して示したものであ
る。この測定試験では、AからJまでの10枚のTFS
サンプルについてJIS Z 8722-1981 条件bに従いC光、
視野2度、0−45度(入射角−反射角)の条件で分光
反射率を測定した。特願平1−331038号の方法で
は、波長480nm〜700nm間を10nm間隔で反
射率−波長の勾配(10nm間隔での反射率差(%)/
10(nm))を求め、これらの平均値を更に1000
nm当りの反射率差の勾配に補正した数値を求め、これ
を測色値とした。
Table 1 shows a comparison between the colorimetric values based on the average gradient of the reflectance curve obtained by the measuring method of Japanese Patent Application No. 1-3331038 and the colorimetric values according to the method of the present invention. In this measurement test, 10 sheets of TFS from A to J
About the sample C light according to JIS Z 8722-1981 condition b
The spectral reflectance was measured under the conditions of a visual field of 2 degrees and an angle of 0-45 degrees (incident angle-reflection angle). According to the method of Japanese Patent Application No. 1-331038, a reflectance-wavelength gradient (reflectance difference (%) / 10 nm interval / wavelength 480 nm to 700 nm at 10 nm intervals).
10 (nm)), and the average value of these is further 1000
A numerical value corrected to the gradient of the reflectance difference per nm was obtained and used as a colorimetric value.

【0010】一方、本発明法では、可視光波長域である
480〜700nmにおいて、480〜550nmの波
長範囲から500nm、550〜620nmの波長範囲
から600nm、620〜700nmの波長範囲から7
00nmという各中心波長をそれぞれ選択(すなわち、
100nm間隔で中心波長を選択)し、各中心波長に対
して±10nm以下の狭波長域における反射率から、各
波長域間の反射率の勾配(反射率差(%)/100(n
m))を求め、この勾配の平均値を更に1000nm当
りの反射率差の勾配に補正した数値を求め、これを測色
値とした。
On the other hand, according to the method of the present invention, in the visible light wavelength range of 480 to 700 nm, the wavelength range of 480 to 550 nm is 500 nm, the wavelength range of 550 to 620 nm is 600 nm, and the wavelength range of 620 to 700 nm is 7 nm.
Select each center wavelength of 00 nm (ie,
The central wavelength is selected at 100 nm intervals), and from the reflectance in the narrow wavelength range of ± 10 nm or less with respect to each central wavelength, the gradient of the reflectance between the wavelength ranges (reflectance difference (%) / 100 (n
m)) was obtained, and the average value of this gradient was further corrected to the gradient of the reflectance difference per 1000 nm to obtain a numerical value, which was taken as a colorimetric value.

【0011】また、可視光波長域である480〜700
nmにおいて、480〜550nmの波長範囲から53
0nm、550〜620nmの波長範囲から580n
m、620〜700nmの波長範囲から630nmとい
う各中心波長をそれぞれ選択(すなわち、50nm間隔
で中心波長を選択)し、各中心波長に対して±10nm
以下の狭波長域における反射率から、各波長域間の反射
率の勾配(反射率差(%)/50(nm))を求め、こ
れを測色値とした。
Further, the wavelength range of visible light is 480 to 700.
nm from the wavelength range of 480 to 550 nm, 53
580n from the wavelength range of 0 nm and 550 to 620 nm
± 10 nm with respect to each center wavelength by selecting each center wavelength of 630 nm from the wavelength range of m, 620 to 700 nm (that is, selecting the center wavelength at intervals of 50 nm).
From the reflectance in the following narrow wavelength region, the gradient of the reflectance between the respective wavelength regions (reflectance difference (%) / 50 (nm)) was determined and used as the colorimetric value.

【0012】表1からも明らかなように、特願平1−3
31038号の方法で得られる測色値と本発明法により
得られる測色値とは高い相関があり、特定の波長範囲か
ら選択された3つの狭波長域での反射率に基づき求めら
れた測色値でも、十分に表面色調の測定が可能であるこ
とが判る。
As is clear from Table 1, Japanese Patent Application No. 1-3
There is a high correlation between the colorimetric value obtained by the method of No. 31038 and the colorimetric value obtained by the method of the present invention, and the colorimetric value obtained based on the reflectance in three narrow wavelength ranges selected from a specific wavelength range. It can be seen that the surface color tone can be sufficiently measured even with the color value.

【0013】なお、本発明法においては、上記のように
して選択される3つの中心波長の波長差を50nm以上
とすることが好ましい。中心波長間の波長差が50nm
未満では上記特願平1−331038号の方法で得られ
る測色値と、本発明法により得られる測色値との相関が
低下し、精度の良い測色値が得られない。また、本発明
法では、上記3つの波長域間の反射率に基づく平均勾配
値をさらに500nm以上(例えば1000nm)当り
反射率差の勾配に補正した値を測定値とすることが好ま
しい。これは、上記3つの波長域間の反射率に基づく平
均勾配値は非常に小さく、本発明法による測色装置での
測色値の表示等で、その取扱いが繁雑になるからであ
る。
In the method of the present invention, the wavelength difference between the three central wavelengths selected as described above is preferably 50 nm or more. The wavelength difference between the central wavelengths is 50 nm
If the amount is less than the above, the correlation between the colorimetric value obtained by the method of Japanese Patent Application No. 1-3331038 and the colorimetric value obtained by the method of the present invention decreases, and accurate colorimetric values cannot be obtained. Further, in the method of the present invention, it is preferable to use a value obtained by further correcting the average gradient value based on the reflectance between the above three wavelength ranges to the gradient of the reflectance difference per 500 nm or more (for example, 1000 nm). This is because the average gradient value based on the reflectance between the above three wavelength regions is very small, and the handling becomes complicated when displaying the colorimetric value by the colorimetric apparatus according to the present invention.

【0014】カラーカメラは、その視野における各画素
毎に可視光の波長域を赤成分(R)、緑成分(G)、青
成分(B)に分割し、それぞれの波長域の光量に相当す
るR、G、B値を電圧出力するものである。したがっ
て、カラーカメラのR、G、B受光特性を特定の波長を
中心として狭帯域にし、可視光の波長域において分光反
射率が均一な白色でカラーカメラのR、G、B出力が同
じになるようにすることにより、上述した特定波長付近
の分光反射率を測定することができる。例えば、Rに6
20〜700nmの波長範囲に中心波長を有し、該中心
波長に対し±10nm以下の波長域で受光する特性をも
たせ、Gに550〜620nmの波長範囲に中心波長を
有し、該中心波長に対し±10nm以下の波長域で受光
する特性をもたせ、Bに480〜550nmの波長範囲
に中心波長を有し、該中心波長に対し±10nm以下の
波長域で受光する特性を持たせ、前記中心波長それぞれ
における分光反射率を測定すれば、先に述べた被測定物
の表面色調が測定できる。
The color camera divides the wavelength range of visible light into red component (R), green component (G), and blue component (B) for each pixel in its field of view, and corresponds to the amount of light in each wavelength region. The R, G, and B values are output as a voltage. Therefore, the R, G, and B light receiving characteristics of the color camera are narrowed around a specific wavelength, and the R, G, and B outputs of the color camera are the same in white with a uniform spectral reflectance in the visible light wavelength range. By doing so, the spectral reflectance in the vicinity of the specific wavelength described above can be measured. For example, 6 for R
It has a center wavelength in the wavelength range of 20 to 700 nm and has a characteristic of receiving light in a wavelength range of ± 10 nm or less with respect to the center wavelength, and G has a center wavelength in the wavelength range of 550 to 620 nm and In contrast, B has a characteristic of receiving light in a wavelength range of ± 10 nm or less, B has a center wavelength in a wavelength range of 480 to 550 nm, and has a characteristic of receiving light in a wavelength range of ± 10 nm or less with respect to the center wavelength, By measuring the spectral reflectance at each wavelength, the surface color tone of the measured object can be measured.

【0015】また、検出器として可視波長域(例えば4
00〜800nm)の分光器を使用して被測定物の表面
からの反射光を分光し、620〜700nmの波長範囲
と、550〜620nmの波長範囲と、480〜550
nmの波長範囲のそれぞれの波長範囲で中心波長を選択
し、例えば、前記中心波長を630nm(R)、580
nm(G)、530nm(B)として、分光したこれら
の波長位置に±10nm以下の波長域が通過可能な幅の
スリットを設け、このスリットを通過した光の強度を測
定できるようにし、可視光の波長域において分光反射率
が均一な白色で検出器のR,G,B出力が同じになるよ
うにすることにより、530,580,630nmにお
ける分光反射率が測定でき、先に述べた被測定物の表面
色調が測定できる。
As a detector, a visible wavelength range (for example, 4
The reflected light from the surface of the object to be measured is dispersed by using a spectroscope (00-800 nm), a wavelength range of 620-700 nm, a wavelength range of 550-620 nm, and a wavelength range of 480-550.
The center wavelength is selected in each wavelength range of the wavelength range of nm, and for example, the center wavelength is set to 630 nm (R), 580
nm (G), 530 nm (B), a slit having a width that allows passage of a wavelength range of ± 10 nm or less is provided at these spectral positions, and the intensity of light that has passed through this slit can be measured. The spectral reflectances at 530, 580, and 630 nm can be measured by making the R, G, and B outputs of the detector the same in a white color with a uniform spectral reflectance in the wavelength range of The surface color of an object can be measured.

【0016】測色用の照明には散乱光を用いる。散乱光
は、例えば箱内に複数本の蛍光灯を取り付けて照明箱と
し、スリガラスを用いて光を散乱させることにより発生
させる。そして、前記照明箱をカラーカメラを若しくは
検出器中心として4方向に配置することによって、被測
定物の測色位置にあらゆる方向からの散乱光を照射する
ことできる。また、散乱光を積分球照明で照射する場合
には、積分球に照射する光源の光量を、例えば積分球に
対し多方向から光を入射させることによって大きくし、
積分球内で散乱光をつくってカラーカメラ若しくは検出
器の視野を照明すれば、被測定物の測定位置に反射光の
強度を測定するに充分な光量の散乱光を照射することが
できる。
Scattered light is used for the colorimetric illumination. The scattered light is generated by, for example, mounting a plurality of fluorescent lamps in the box to form an illumination box and scattering the light using frosted glass. By disposing the illumination box in four directions with the color camera or the detector center, scattered light from all directions can be applied to the colorimetric position of the measured object. Further, when the scattered light is irradiated by the integrating sphere illumination, the light amount of the light source for irradiating the integrating sphere is increased, for example, by making light incident on the integrating sphere from multiple directions,
By illuminating the visual field of the color camera or the detector by creating scattered light in the integrating sphere, it is possible to irradiate the measurement position of the object to be measured with a sufficient amount of scattered light for measuring the intensity of reflected light.

【0017】[0017]

【実施例】本発明の一実施例を図面に基づき説明する。
図1は本発明の実施に供される表面色調測定装置の構成
図、図2は同装置を構成するカラーカメラの原理図、図
3は同カラーカメラの特性図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of a surface color tone measuring apparatus used for carrying out the present invention, FIG. 2 is a principle diagram of a color camera constituting the apparatus, and FIG. 3 is a characteristic diagram of the color camera.

【0018】本発明法では、図1に示すように被測定物
1(例えば、表面色調が無彩色系物体)に対し、照明箱
3a、3b、3c、3dによってカラーカメラ2を中心
に4方向から散乱光を照射し、照射位置における被測定
物1の反射光をカラーカメラ2で受光する。カラーカメ
ラ2は、図2に示すようにレンズ6を通して受光した光
のうち、まずダイクロイックミラー7aで青(B)成分
の波長域の光のみを反射させ、他の波長域の光を通過さ
せる。次いで、ダイクロイックミラー7bで緑(G)成
分の波長域の光を反射させ、他の波長域の光を通過させ
る。ダイクロイックミラー7bを通過した光は、フィル
ター8で赤(R)成分の波長域のみを通過させる。ダイ
クロイックミラー7a、7bで反射した光とフィルター
8を通過した光の光量を受光素子9a、9b、9cで測
定する。
In the method of the present invention, as shown in FIG. 1, the object to be measured 1 (for example, an object whose surface color tone is achromatic) is illuminated by the illumination boxes 3a, 3b, 3c and 3d in four directions centering on the color camera 2. The scattered light is emitted from the device, and the reflected light of the DUT 1 at the irradiation position is received by the color camera 2. Of the light received through the lens 6 as shown in FIG. 2, the color camera 2 first reflects only the light in the wavelength range of the blue (B) component by the dichroic mirror 7a and allows the light in other wavelength ranges to pass through. Then, the dichroic mirror 7b reflects light in the wavelength range of the green (G) component and allows light in other wavelength ranges to pass through. The light passing through the dichroic mirror 7b is passed through the filter 8 only in the wavelength region of the red (R) component. The light amounts of the light reflected by the dichroic mirrors 7a, 7b and the light passing through the filter 8 are measured by the light receiving elements 9a, 9b, 9c.

【0019】図3はカラーカメラ2の受光特性の一例を
示している。図2におけるダイクロイックミラー7a、
7bの反射特性とフィルタ8の特性を、特定の波長、例
えばBについては480〜550nmの波長範囲で中心
波長を選択し、Gについては550〜620nmの波長
範囲で中心波長を選択し、Rについては620〜700
nmの波長範囲で中心波長を選択し、これら各中心波長
における受光帯域を中心波長に対して±10nm以下程
度に狭くすることによって、図3に示すようなカラーカ
メラ2の特性が得られる。
FIG. 3 shows an example of light receiving characteristics of the color camera 2. The dichroic mirror 7a in FIG.
As for the reflection characteristic of 7b and the characteristic of the filter 8, a central wavelength is selected in a wavelength range of 480 to 550 nm for a specific wavelength, for example, B, a central wavelength is selected in a wavelength range of 550 to 620 nm for G, and R is selected for R. Is 620-700
The characteristics of the color camera 2 as shown in FIG. 3 are obtained by selecting the center wavelength in the wavelength range of nm and narrowing the light receiving band at each of the center wavelengths to about ± 10 nm or less with respect to the center wavelength.

【0020】したがって、図1に示すカラーカメラ2の
受光特性を上述したR、G、Bの中心波長の選択に従っ
て、例えば、Rを700nm、Gを600nm、Bを5
00nmに選択する。これにより被測定物1からの反射
光を受光したカラ−カメラ2は、反射光の波長域が50
0nm、600nm、700nm付近の反射率に相当す
るB、G、R出力を得ることができる。B、G、R出力
はカメラコントロ−ラ4を通して演算装置5に送られ、
この演算装置5では可視光域の波長500、600、7
00nmを中心波長とする波長域での反射率による単回
帰で反射率の平均勾配を求め、これを被測定物1の表面
色調の測色値として出力する。また、この方法では、上
記500、600、700nmを各中心波長とする波長
域での反射率の平均値で被測定物1の表面の明度を評価
することもできる。
Therefore, according to the selection of the center wavelengths of R, G, and B described above regarding the light receiving characteristics of the color camera 2 shown in FIG. 1, for example, R is 700 nm, G is 600 nm, and B is 5 nm.
Select 00 nm. As a result, the color camera 2 that receives the reflected light from the DUT 1 has a reflected light wavelength range of 50.
It is possible to obtain B, G, and R outputs corresponding to reflectances near 0 nm, 600 nm, and 700 nm. The B, G and R outputs are sent to the arithmetic unit 5 through the camera controller 4,
In this arithmetic unit 5, wavelengths 500, 600, 7 in the visible light range
The average slope of the reflectance is obtained by simple regression based on the reflectance in the wavelength range having a center wavelength of 00 nm, and this is output as the colorimetric value of the surface color tone of the DUT 1. Further, in this method, the brightness of the surface of the DUT 1 can be evaluated by the average value of the reflectances in the wavelength regions having the respective central wavelengths of 500, 600 and 700 nm.

【0021】次に、照明に積分球、検出器に分光器をそ
れぞれ使用した場合の実施例について説明する。図4お
よび図5は表面色調検査装置を積分球と分光器で構成し
た場合の構成図、図6は検出器の原理図、図7は分光器
を使用した検出器の受光特性を示す図面である。
Next, an embodiment in which an integrating sphere is used for illumination and a spectroscope is used for the detector will be described. FIG. 4 and FIG. 5 are configuration diagrams of the surface color tone inspection device configured by an integrating sphere and a spectroscope, FIG. 6 is a principle diagram of the detector, and FIG. 7 is a drawing showing a light receiving characteristic of the detector using the spectroscope. is there.

【0022】図4および図5において、表面色調が無彩
色系の被測定物1に対し、積分球照明装置10によって
散乱光を照射する。積分球照明装置10は、積分球本体
11と、被測定物1に大きな照射光量を照射できるよう
にするための複数の光源12a,12b,12cを有
し、これらの光源12a,12b,12cからの照射光
を異なる方向、例えば120°ずつずらした位置から積
分球本体11の内部に取り込んで積分球本体11の内部
で散乱させ、この散乱光を照射側開口部Oから取り出す
ことによって被測定物1に散乱光を照射することができ
る。積分球本体11の内面には、反射率の高い例えば硫
酸バリウムのような白色体を塗布し、散乱光の減衰を最
小限にしている。
In FIG. 4 and FIG. 5, the integrating sphere illumination device 10 irradiates the DUT 1 whose surface color tone is achromatic with scattered light. The integrating sphere illuminating device 10 has an integrating sphere body 11 and a plurality of light sources 12a, 12b, 12c for irradiating the DUT 1 with a large irradiation light amount, and from these light sources 12a, 12b, 12c. Of the irradiation light is taken into the inside of the integrating sphere body 11 from different positions, for example, at positions shifted by 120 ° and scattered inside the integrating sphere body 11, and the scattered light is taken out from the irradiation side opening O to be measured. 1 can be irradiated with scattered light. The inner surface of the integrating sphere body 11 is coated with a white material having a high reflectance, such as barium sulfate, to minimize the attenuation of scattered light.

【0023】被測定物1からの反射光は積分球本体11
の照射側開口部Oから取り込み、受光側開口部Iを通し
て検出器20に入射させる。検出器20は集光部21、
分光部22、受光部23からなり、前記入射光は集光部
21を通して分光部22に導かれる。入射光はこの分光
部22で、可視波長領域例えば400〜800nmの波
長帯で分光され、480〜550nmの波長範囲と、5
50〜620nmの波長範囲と、620〜700nmの
波長範囲のそれぞれの波長範囲で中心波長が例えば53
0、580、630nmの光を抽出して受光部23に導
く。受光部23では前記中心波長の光の強度を測定し、
電気信号に変換する。
The reflected light from the DUT 1 is the integrating sphere body 11
The light is taken in from the irradiation side opening O and is made incident on the detector 20 through the light receiving side opening I. The detector 20 has a light collecting unit 21,
The spectroscopic section 22 and the light receiving section 23 are provided, and the incident light is guided to the spectroscopic section 22 through the condensing section 21. The incident light is dispersed by the spectroscopic unit 22 in the visible wavelength region, for example, in the wavelength band of 400 to 800 nm, and the wavelength range of 480 to 550 nm and 5
The center wavelength is, for example, 53 in the respective wavelength ranges of 50 to 620 nm and 620 to 700 nm.
Light of 0, 580, and 630 nm is extracted and guided to the light receiving unit 23. The light receiving section 23 measures the intensity of the light of the central wavelength,
Convert to electrical signal.

【0024】図6によれば集光部21に入射した光はレ
ンズ24で集光され、スリット25を通って再度レンズ
26で平行光にされた後、分光部22に入り、分光器2
7により例えば400〜800nmの波長帯で分光さ
れ、この分光した光がスリット板28に照射される。ス
リット板28には特定波長の位置、例えば530nm、
580nm、630nmの位置にそれぞれスリットS
a,Sb,Scが開口されており、これらのスリットS
a,Sb,Scの開口幅によって、受光波長帯域を例え
ば20nm程度に決定できる。前記スリットSa,S
b,Scを通過した光を受光素子29a,29b,29
cで受光し、それぞれの通過光の強度に相当する電気信
号に変換する。これらの電気信号は増幅器30に送ら
れ、さらに取扱が容易な電気信号、例えば反射率が0〜
100%に対して直流電圧で0〜10vのBa,Ga,
Raに変換される。被測定物1を予め反射率が既知の標
準板を用いて測定すれば、被測定物1の反射率に相当す
る電気信号Ba,Ga,Raが得られる。
According to FIG. 6, the light incident on the condenser 21 is condensed by the lens 24, is collimated again by the lens 26 through the slit 25, then enters the spectroscope 22, and the spectroscope 2 is used.
7, the light is dispersed in the wavelength band of, for example, 400 to 800 nm, and the split light is applied to the slit plate 28. The slit plate 28 has a specific wavelength position, for example, 530 nm,
Slits S at 580 nm and 630 nm, respectively
a, Sb, Sc are opened, and these slits S
The light receiving wavelength band can be determined to be, for example, about 20 nm by the aperture widths of a, Sb, and Sc. The slits Sa, S
The light passing through b and Sc receives the light receiving elements 29a, 29b, 29.
The light is received by c and converted into an electric signal corresponding to the intensity of each passing light. These electric signals are sent to the amplifier 30, and the electric signals which are easy to handle, for example, the reflectance is 0 to 0.
DC, 0 to 10V Ba, Ga,
Converted to Ra. If the DUT 1 is measured using a standard plate whose reflectance is known in advance, electric signals Ba, Ga, Ra corresponding to the reflectance of the DUT 1 are obtained.

【0025】図7は、分光器を使用した検出器20の受
光特性の一例を示している。図6における分光器27の
分光範囲を例えば可視光域の400〜800nmとし、
特定の波長、例えばBaについては480〜550nm
の波長範囲で中心波長を選択し、Gaについては550
〜620nmの波長範囲で中心波長を選択し、Raにつ
いては620〜700nmの波長範囲で中心波長を選択
し、これらの各中心波長における受光帯域を中心波長に
対して±10nm以下程度に狭くなるような開口幅のス
リットSa,Sb,Scを上記各特波長の位置に設ける
ことにより、図7に示すような分光器を使用した検出器
20の特性が得られる。
FIG. 7 shows an example of the light receiving characteristic of the detector 20 using a spectroscope. The spectral range of the spectroscope 27 in FIG. 6 is, for example, 400 to 800 nm in the visible light range,
Specific wavelength, eg 480-550 nm for Ba
Select the center wavelength in the wavelength range of
The central wavelength is selected in the wavelength range of 620 nm to 620 nm, the central wavelength is selected in the wavelength range of 620 to 700 nm for Ra, and the light receiving band at each of these central wavelengths is narrowed to about ± 10 nm or less with respect to the central wavelength. By providing the slits Sa, Sb, and Sc having different aperture widths at the positions of the respective special wavelengths, the characteristics of the detector 20 using the spectroscope as shown in FIG. 7 can be obtained.

【0026】以上により図4および図5における被測定
物1の反射光から、例えば波長帯域530nm、580
nm、630nm付近の反射率に相当する電気信号B
a,Ga,Ra出力を得ることができる。電気信号B
a,Ga,Ra出力は演算装置5に送られ、この演算装
置5では、可視光域の波長530nm、580nm、6
30nmとそれぞれの波長における反射率の単回帰で分
光反射率の平均勾配(反射率差%/50nm)を求め、
この平均値を更に1000nm当りの反射率差に補正し
た値で被測定物1の表面色調を評価する。また、530
nm、580nm、630nmでの反射率の平均値で被
測定物1の表面の明度を評価することもできる。そし
て、以上説明した本発明法による表面色調の測色方法に
よれば、例えばTFSの連続製造設備等においては、測
色値と明度に國値を設定することにより、オンラインで
の色調調整のガイダンスや異常警報の発信が可能であ
る。
From the above, from the reflected light of the DUT 1 in FIGS. 4 and 5, for example, wavelength bands of 530 nm and 580
signal B corresponding to the reflectance in the vicinity of nm and 630 nm
It is possible to obtain a, Ga and Ra outputs. Electric signal B
The a, Ga, and Ra outputs are sent to the arithmetic unit 5, and in the arithmetic unit 5, wavelengths in the visible light range of 530 nm, 580 nm, 6
The average slope (reflectance difference% / 50 nm) of the spectral reflectance is obtained by single regression of reflectance at 30 nm and each wavelength,
The surface color tone of the DUT 1 is evaluated by a value obtained by further correcting the average value to the reflectance difference per 1000 nm. Also, 530
The brightness of the surface of the DUT 1 can also be evaluated by the average value of the reflectance at nm, 580 nm, and 630 nm. According to the surface color tone measuring method according to the present invention described above, for example, in a continuous manufacturing facility of TFS or the like, by setting the country value in the color measuring value and the brightness, an online tone adjusting guidance is provided. It is also possible to issue an abnormal alarm.

【0027】次に、以上のような測色方法を用いた測定
試験例を説明する。この測定試験では、通常ブリキ用冷
延鋼板の表面に、金属クロム量70〜130mg/
2、水和クロム酸化物量10〜20mg/m2(Cr量
換算)のクロメ−ト皮膜を形成させたTFSサンプルを
試験材として用い、まず、これらサンプルについて複数
名で目視評価を行い、表面色調の良好なものから劣るも
のの順にA、B、C、Dに等級分類を行った。
Next, an example of measurement test using the above colorimetric method will be described. In this measurement test, the amount of metallic chromium is usually 70 to 130 mg /
m 2 and a hydrated chromium oxide amount of 10 to 20 mg / m 2 (in terms of Cr amount), a TFS sample on which a chromate film was formed was used as a test material. The grades were classified into A, B, C, and D in the order of good color tone to poor color tone.

【0028】このTFSサンプルについて、上述した図
1の構成のカラ−カメラを用いた本発明の測色法によ
り、反射光の可視光波長域480〜700nmにおい
て、480〜550nmの波長範囲から500nm、5
50〜620nmの波長範囲から600nm、620〜
700nmの波長範囲から700nmの各波長を100
nm間隔でそれぞれ中心波長として選択し、この中心波
長に対して±10nm以下の波長域の反射率に基づき、
各波長域間での反射率の勾配(反射率差(%)/100
(nm))を求め、その平均値を更に1000nm当り
の反射率差の勾配に補正した数値を測色値として求め
た。
With respect to this TFS sample, in the visible light wavelength range of 480 to 700 nm of reflected light, from the wavelength range of 480 to 550 nm, 500 nm, 5
From the wavelength range of 50 to 620 nm, 600 nm, 620 to 620
From the wavelength range of 700 nm to each wavelength of 700 nm is 100
Each is selected as a central wavelength at an interval of nm, and based on the reflectance in the wavelength range of ± 10 nm or less with respect to this central wavelength,
Gradient of reflectance between each wavelength range (reflectance difference (%) / 100
(Nm)), and the average value was further corrected to the gradient of the reflectance difference per 1000 nm to obtain a colorimetric value.

【0029】また、上述した図4および図5の構成によ
る本発明の測色法により、反射光の可視光波長域480
〜700nmにおいて、480〜550nmの波長範囲
から530nm、550〜620nmの波長範囲から5
80nm、620〜700nmの波長範囲から630n
mの各波長を50nm間隔でそれぞれ中心波長として選
択し、この中心波長に対して±10nm以下の波長域の
反射率に基づき、各波長域間での反射率の勾配(反射率
差(%)/50(nm))を求め、その平均値をさらに
1000nm当りの反射率差の勾配に補正した数値を測
色値として求めた。
In addition, the visible light wavelength range 480 of the reflected light is obtained by the colorimetric method of the present invention having the above-described configurations of FIGS. 4 and 5.
˜700 nm, the wavelength range from 480 to 550 nm is 530 nm, and the wavelength range from 550 to 620 nm is 5
630n from the wavelength range of 80nm, 620-700nm
Each wavelength of m is selected as a center wavelength at intervals of 50 nm, and the gradient of the reflectance between the wavelength ranges (reflectance difference (%)) based on the reflectance in the wavelength range of ± 10 nm or less with respect to the center wavelength. / 50 (nm)) was obtained, and the average value was further corrected to the gradient of reflectance difference per 1000 nm to obtain a colorimetric value.

【0030】図8は、このようにして求めた測色値と前
記目視評価との関係を示している。同図によれば、本発
明による測色値に段階的な閾値を設けることによって、
目視判定で分類したA、B、C、Dの等級を完全に分離
でき、本発明による方法でTFSの表面色調の等級分類
が可能であることが判る。
FIG. 8 shows the relationship between the colorimetric value thus obtained and the visual evaluation. According to the figure, by providing a stepwise threshold value for the colorimetric value according to the present invention,
It can be seen that the grades of A, B, C and D classified by visual judgment can be completely separated, and that the surface color tone of TFS can be classified by the method according to the present invention.

【0031】次に、以上のような測色方法を用いたTF
Sの製造設備におけるオンライン測定試験例について説
明する。この測定試験では、TFS製造設備において、
通常ブリキ用冷延鋼板の表面に、金属クロム量70〜1
30mg/m2、水和クロム酸化物量8〜20mg/m2
(Cr量換算)の範囲で付着量を変化させた皮膜を形成
し、或いは塗油量を0〜10mg/m2の範囲で変化さ
せること等によって表面色調を変更し、TFS製造設備
の最終工程であるコイル巻取直前で本発明法の測色方法
によりTFSの表面色調を測定した。また、前記測定位
置からサンプルを切り出し、このサンプルを特願平1−
331038号に示される測色法(以下、「比較法」と
いう)による表面色調の測定値と比較した。
Next, TF using the above-described colorimetric method
An online measurement test example in the S manufacturing facility will be described. In this measurement test, in the TFS manufacturing facility,
The amount of metallic chrome on the surface of a cold rolled steel sheet for tin is 70 to 1
30 mg / m 2 , hydrated chromium oxide amount 8 to 20 mg / m 2
The surface color tone is changed by forming a film in which the amount of adhesion is changed in the range of (Cr amount conversion) or changing the amount of oil coating in the range of 0 to 10 mg / m 2 , and the final step of the TFS manufacturing facility. Immediately before the coil winding, the surface color tone of TFS was measured by the color measurement method of the present invention. Further, a sample is cut out from the measurement position, and this sample is used in Japanese Patent Application No.
It was compared with the measured value of the surface color tone by the colorimetric method shown in No. 331038 (hereinafter referred to as "comparative method").

【0032】図9ないし図12は、本発明法によるTF
S表面色調の測定値と比較法によるTFS表面色調の測
定値との関係を示している。これらのうち図9と図10
がカラーカメラによるオンライン試験、図11と図12
が分光器を使用したオンライン試験によるものである。
これらによれば、本発明法によるTFS表面色調の測色
値と比較法によるTFS表面色調の測色値には高い相関
が得られており、オンラインでのTFS表面色調の測色
に本発明法による測色値を用いても信頼性の高い測定値
が得られ、表面色調に関して製造上の調整が可能である
ことが判る。
9 to 12 show TF according to the method of the present invention.
The relationship between the measured value of S surface color tone and the measured value of TFS surface color tone by the comparison method is shown. Of these, FIG. 9 and FIG.
Is an online test with a color camera, Fig. 11 and Fig. 12
Is based on an online test using a spectroscope.
According to these, a high correlation is obtained between the colorimetric value of the TFS surface color tone by the method of the present invention and the colorimetric value of the TFS surface color tone by the comparison method, and the method of the present invention is used for the online colorimetric measurement of the TFS surface color tone. It can be seen that a highly reliable measurement value can be obtained even by using the colorimetric value according to, and the surface color tone can be adjusted in manufacturing.

【0033】[0033]

【発明の効果】以上のように本発明によれば、TFSス
トリップのような表面色調が無彩色系で且つ移動する物
体であっても、その表面色調を高精度に測定することが
できる。このような本発明の測色方法は、被測定物の反
射光の3つの波長における反射率だけで被測定物の色調
を測定でき、また、被測定物に散乱光を照射しつつ、カ
ラ−カメラ若しくは分光器を有する検出器を利用して容
易に実施できるため、簡易且つ安価な設備よりオンライ
ンで色調管理および色調調整を行うことができるという
効果がある。このため、TFS製造ライン等において表
面品質情報が製造中に把握でき、品質の安定化や歩留向
上等に多大や効果がある。
As described above, according to the present invention, even an object such as a TFS strip whose surface color tone is an achromatic system and which is moving can be measured with high accuracy. In such a colorimetric method of the present invention, the color tone of the measured object can be measured only by the reflectances of the reflected light of the measured object at the three wavelengths, and the color tone can be measured while irradiating the measured object with scattered light. Since it can be easily implemented by using a camera or a detector having a spectroscope, there is an effect that color tone management and color tone adjustment can be performed online with simple and inexpensive equipment. For this reason, the surface quality information can be grasped during the manufacturing in the TFS manufacturing line or the like, which is very effective in stabilizing the quality and improving the yield.

【0034】[0034]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に供される表面色調測定装置の一
例を示す構成図
FIG. 1 is a configuration diagram showing an example of a surface color tone measuring device used for carrying out the present invention.

【図2】図1で使用されるカラーカメラの原理図FIG. 2 is a principle diagram of the color camera used in FIG.

【図3】図1で使用されるカラーカメラの特性図FIG. 3 is a characteristic diagram of the color camera used in FIG.

【図4】本発明の実施に供される表面色調測定装置の他
の例を示す構成図
FIG. 4 is a configuration diagram showing another example of the surface color tone measuring device used for carrying out the present invention.

【図5】図4のV−V線に沿う断面図5 is a sectional view taken along line VV of FIG.

【図6】図4に示す分光器を使用した検出器の原理図6 is a principle diagram of a detector using the spectroscope shown in FIG.

【図7】図4に示す分光器を使用した検出器の受光特性
を示す図面
FIG. 7 is a drawing showing a light receiving characteristic of a detector using the spectroscope shown in FIG.

【図8】本発明の実施例で求められた測色値と目視評価
との関係を示す図面
FIG. 8 is a diagram showing a relationship between a colorimetric value obtained in an example of the present invention and visual evaluation.

【図9】本発明法によるTFS表面色調の測色値と比較
法によるTFS表面色調の測色値との関係を示す図面
FIG. 9 is a drawing showing the relationship between the colorimetric value of TFS surface color tone by the method of the present invention and the colorimetric value of TFS surface color tone by the comparison method.

【図10】本発明法によるTFS表面色調の測色値と比
較法によるTFS表面色調の測色値との関係を示す図面
FIG. 10 is a drawing showing the relationship between the colorimetric value of TFS surface color tone by the method of the present invention and the colorimetric value of TFS surface color tone by the comparison method.

【図11】本発明法によるTFS表面色調の測色値と比
較法によるTFS表面色調の測色値との関係を示す図面
FIG. 11 is a drawing showing the relationship between the colorimetric value of TFS surface color tone by the method of the present invention and the colorimetric value of TFS surface color tone by the comparison method.

【図12】本発明法によるTFS表面色調の測色値と比
較法によるTFS表面色調の測色値との関係を示す図面
FIG. 12 is a drawing showing the relationship between the colorimetric value of TFS surface color tone by the method of the present invention and the colorimetric value of TFS surface color tone by the comparison method.

【符号の説明】[Explanation of symbols]

1…被測定物、2…カラーカメラ、3a,3b,3c,
3d…照明箱、4…カメラコントローラ、5…演算装
置、6…レンズ、7a,7b…ダイクロイックミラー、
8…フィルター、9a,9b,9c…受光素子、10…
積分球照明装置、11…積分球本体、12a,12b,
12c…光源、20…検出器、21…集光部、22…分
光部、23…受光部、24…レンズ、25…スリット
板、26…レンズ、27…分光器、28…スリット板、
29a,29b,29c…受光素子、O…照射側開口
部、I…受光側開口部、Sa,Sb,Sc…スリット
1 ... Object to be measured, 2 ... Color camera, 3a, 3b, 3c,
3d ... Illumination box, 4 ... Camera controller, 5 ... Computing device, 6 ... Lens, 7a, 7b ... Dichroic mirror,
8 ... Filter, 9a, 9b, 9c ... Light receiving element, 10 ...
Integrating sphere lighting device, 11 ... Integrating sphere body, 12a, 12b,
12c ... Light source, 20 ... Detector, 21 ... Condensing part, 22 ... Spectral part, 23 ... Light receiving part, 24 ... Lens, 25 ... Slit plate, 26 ... Lens, 27 ... Spectrometer, 28 ... Slit plate,
29a, 29b, 29c ... Light receiving element, O ... Irradiation side opening, I ... Light receiving side opening, Sa, Sb, Sc ... Slit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲葉 護 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 渡辺 真介 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mamoru Inaba 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Shinsuke Watanabe 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Main Steel Pipe Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の可視光域の反射光から、48
0〜550nmの波長範囲に中心波長を有し、該中心波
長に対して±10nm以下の波長域における反射率と、
550〜620nmの波長範囲に中心波長を有し、該中
心波長に対して±10nm以下の波長域における反射率
と、620〜700nmの波長範囲に中心波長を有し、
該中心波長に対して±10nm以下の波長域における反
射率とをそれぞれ測定し、この3つ波長域間での反射率
の勾配(反射率差(%)/中心波長間の波長差(n
m))の平均値をもって被測定物表面色調の測定値とす
ることを特徴とする表面色調の測色方法。
1. From the reflected light in the visible light range of the measured object, 48
Having a center wavelength in the wavelength range of 0 to 550 nm and a reflectance in a wavelength range of ± 10 nm or less with respect to the center wavelength;
It has a center wavelength in the wavelength range of 550 to 620 nm, a reflectance in a wavelength range of ± 10 nm or less with respect to the center wavelength, and a center wavelength in the wavelength range of 620 to 700 nm,
The reflectance in the wavelength range of ± 10 nm or less with respect to the central wavelength is measured, and the gradient of the reflectance (reflectance difference (%) / wavelength difference between the central wavelengths (n
A method for measuring the surface color tone, wherein the average value of m)) is used as the measured value of the surface color tone of the object to be measured.
【請求項2】 被測定物に散乱光を照射し、赤成分、緑
成分および青成分の受光特性を狭帯域にしたカラ−カメ
ラで被測定物の反射光を捕え、480〜550nmの波
長範囲に中心波長を有し、該中心波長に対して±10n
m以下の波長域における反射率と、550〜620nm
の波長範囲に中心波長を有し、該中心波長に対して±1
0nm以下の波長域における反射率と、620〜700
nmの波長範囲に中心波長を有し、該中心波長に対して
±10nm以下の波長域における反射率とをそれぞれ測
定することを特徴とする請求項1に記載の表面色調の測
色方法。
2. A reflected light of an object to be measured is captured by a color camera which irradiates the object to be measured with scattered light and narrows the light receiving characteristics of the red component, the green component and the blue component, and has a wavelength range of 480 to 550 nm. Has a central wavelength at ± 10n with respect to the central wavelength
reflectance in the wavelength range of m or less and 550 to 620 nm
Has a center wavelength in the wavelength range of
Reflectance in the wavelength range of 0 nm or less, 620 to 700
The surface color tone colorimetry method according to claim 1, wherein the surface color tone has a center wavelength in a wavelength range of nm and the reflectance in a wavelength range of ± 10 nm or less with respect to the center wavelength is measured.
【請求項3】 被測定物に散乱光を照射し、被測定物の
反射光を分光器で分光し、複数箇所に開口部を施したス
リット板により、前記分光した光から、480〜550
nmの波長範囲に中心波長を有し、該中心波長に対して
±10nm以下の波長域の光と、550〜620nmの
波長範囲に中心波長を有し、該中心波長に対して±10
nm以下の波長域の光と、620〜700nmの波長範
囲に中心波長を有し、該中心波長に対して±10nm以
下の波長域の光とを抽出して、それぞれの反射率を測定
することを特徴とする請求項1に記載の表面色調の測色
方法。
3. An object to be measured is irradiated with scattered light, the reflected light of the object to be measured is dispersed by a spectroscope, and a slit plate having openings at a plurality of locations provides 480 to 550 of the separated light.
having a center wavelength in the wavelength range of nm, light in the wavelength range of ± 10 nm or less with respect to the center wavelength, and having a center wavelength in the wavelength range of 550 to 620 nm and having a center wavelength of ± 10 nm.
measuring the reflectance of each of the light having a wavelength range of nm or less and the light having a center wavelength in the wavelength range of 620 to 700 nm and having a wavelength range of ± 10 nm or less with respect to the center wavelength. The surface color tone colorimetry method according to claim 1.
【請求項4】 被測定物に、複数の光源を異なる方向に
設置した積分球照明で散乱光を照射することを特徴とす
る請求項2または3に記載の表面色調の測色方法。
4. The surface color tone colorimetry method according to claim 2, wherein the object to be measured is irradiated with scattered light by integrating sphere illumination in which a plurality of light sources are installed in different directions.
JP26827191A 1991-05-14 1991-09-19 Surface color measurement Expired - Fee Related JP2606028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26827191A JP2606028B2 (en) 1991-05-14 1991-09-19 Surface color measurement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13826891 1991-05-14
JP3-138268 1991-05-14
JP26827191A JP2606028B2 (en) 1991-05-14 1991-09-19 Surface color measurement

Publications (2)

Publication Number Publication Date
JPH05231940A true JPH05231940A (en) 1993-09-07
JP2606028B2 JP2606028B2 (en) 1997-04-30

Family

ID=26471362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26827191A Expired - Fee Related JP2606028B2 (en) 1991-05-14 1991-09-19 Surface color measurement

Country Status (1)

Country Link
JP (1) JP2606028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151778A1 (en) * 2015-03-24 2016-09-29 大塚電子株式会社 Reference light source device used for calibratiom of spectral luminance meter and calibration method using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151778A1 (en) * 2015-03-24 2016-09-29 大塚電子株式会社 Reference light source device used for calibratiom of spectral luminance meter and calibration method using same
US10330530B2 (en) 2015-03-24 2019-06-25 Otsuka Electronics Co., Ltd. Reference light source device used for calibration of spectral luminance meter and calibration method using same

Also Published As

Publication number Publication date
JP2606028B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US4703187A (en) Method and apparatus for the determination of the thickness of transparent layers of lacquer
JPH0933222A (en) Film-thickness measuring apparatus
Liang et al. A new multi-spectral imaging system for examining paintings
JP2009520184A (en) Apparatus and method for illuminator independent color measurement
EP0758083A2 (en) Method and device for spectral remission and transmission measurement
CN210346910U (en) Hyperspectral color measuring system
JPH0420845A (en) Method for measuring gloss irregularity
EP0169664B1 (en) Apparatus for determining the degree of oxidation of an oxide coating
DE102005038034B3 (en) Apparatus and method for inspecting the surface of a wafer
JP2918386B2 (en) How to measure the print area ratio of printed originals, especially plates
JP2606028B2 (en) Surface color measurement
JPH11160028A (en) Film thickness measuring apparatus and film thickness measuring method
DE19628303C2 (en) Method and device for recording spectral remissions
JP3933581B2 (en) Method and apparatus for surface evaluation
DE3204146A1 (en) Method of measuring the composition and local concentration of substances at surfaces
US9347823B2 (en) Absolute measurement method and apparatus thereof for non-linear error
US2046958A (en) Colorimeter
JP2000314612A (en) Measurement method for film thickness of light transmission film and film thickness measuring device
JPS6048029B2 (en) How to measure the amount of reduction in halftone dot film
JPH07120323A (en) Measuring apparatus for surface color of metal
JPH02234104A (en) Interference filter inspector
RU2196985C2 (en) Method determining composition of milk
CN217358748U (en) Device for improving accuracy of spectral imager and spectral imaging system
US1494548A (en) Photometer
US5748304A (en) Measuring instrument for reflectometric measurements

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees