JPH05231860A - Interatomic force microscope and its scanning method - Google Patents

Interatomic force microscope and its scanning method

Info

Publication number
JPH05231860A
JPH05231860A JP3309692A JP3309692A JPH05231860A JP H05231860 A JPH05231860 A JP H05231860A JP 3309692 A JP3309692 A JP 3309692A JP 3309692 A JP3309692 A JP 3309692A JP H05231860 A JPH05231860 A JP H05231860A
Authority
JP
Japan
Prior art keywords
probe
force microscope
scanning
atomic force
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3309692A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kado
博行 加道
Takao Toda
隆夫 任田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3309692A priority Critical patent/JPH05231860A/en
Publication of JPH05231860A publication Critical patent/JPH05231860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To obtain an interatomic force microscope which is provided with a probe composed of an acicular crystal having a high aspect ratio and can accurately measures a sample without receiving any influence from a frictional force in the initial stage of horizontal scanning. CONSTITUTION:This microscope is provided with a probe 1 composed of an acicular crystal and at least a runway section 4 in which no picturing is made in the initial stage of each horizontal scanning for raster scanning. Then the unevenness on the surface of a sample is pictured except the runway section.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子間力顕微鏡(以後
AFMと記す)とその走査方法に関し、とりわけ先端曲
率が小さく、アスペクト比の大きい探針を有するAFM
とその走査方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomic force microscope (hereinafter referred to as AFM) and its scanning method, and more particularly to an AFM having a probe having a small tip curvature and a large aspect ratio.
And its scanning method.

【0002】[0002]

【従来の技術】近年、固体表面を原子オーダで観察でき
る装置としてAFMが開発されている。AFMでは微小
な力を検出するために、図3に示すような探針11を有
する長さ100μmから200μm程度のカンチレバー
12が必要である。試料観察はラスター走査により行
う。従来、前記探針としては、カンチレバー先端のエッ
ジ部分を探針として用いたもの、結晶のエッチピットを
鋳型として利用し作製したもの、異方性エッチングによ
り作製したもの[ジャーナル・オブ・バキューム・サイ
エンス・アンド・テクノロジーA8(1990年)第3386頁から
3396頁(J. Vac. Sci. Technol. A8, 3386-3396, 199
0)]等が使用されている。AFMの分解能は前記探針の
先端曲率半径に依存し、曲率半径が小さいほど分解能は
上がる。現在のところ20nmから30nmの曲率半径
の探針が作製され、この探針を用いてマイカ等の原子像
が観察されている。
2. Description of the Related Art In recent years, an AFM has been developed as an apparatus for observing a solid surface in atomic order. In the AFM, in order to detect a minute force, a cantilever 12 having a probe 11 as shown in FIG. 3 and having a length of about 100 μm to 200 μm is required. The sample is observed by raster scanning. Conventionally, as the above-mentioned probe, one using the edge portion of the cantilever tip as a probe, one prepared by using a crystal etch pit as a template, one prepared by anisotropic etching [Journal of Vacuum Science・ And Technology A8 (1990) From page 3386
Page 3396 (J. Vac. Sci. Technol. A8, 3386-3396, 199
0)] etc. are used. The resolution of the AFM depends on the radius of curvature of the tip of the probe, and the smaller the radius of curvature, the higher the resolution. At present, a probe with a radius of curvature of 20 nm to 30 nm is manufactured, and an atomic image of mica or the like is observed using this probe.

【0003】しかし、AFMの用途としては、試料表面
の原子レベルでの観察と同時に、ナノメータあるいはミ
クロンオーダでの凹凸の大きな試料観察がある。このよ
うな試料観察の場合、特にグレーティング等の深い溝形
状を有する試料では、前記のような探針では、探針が溝
部の底まで届かず正確な形状測定が困難であり、このよ
うな用途においては、探針の先端曲率が小さいのと同時
に、溝部の底まで届くような、高アスペクト比の探針が
必要となり、針状結晶を利用した探針が有望である。
However, as an application of the AFM, there is an observation of the sample surface at the atomic level, and at the same time, an observation of the sample having large irregularities on the order of nanometers or microns. In the case of such a sample observation, particularly for a sample having a deep groove shape such as a grating, the above-mentioned probe cannot reach the bottom of the groove portion and accurate shape measurement is difficult. In (1), a probe having a high aspect ratio that reaches the bottom of the groove at the same time as the tip curvature of the probe is small is required, and a probe using needle crystals is promising.

【0004】[0004]

【発明が解決しようとする課題】探針を試料に接触さ
せ、試料表面に垂直に発生する斥力を検出するAFMに
おいて、高アスペクト比の探針を用いて、試料表面をラ
スター走査する場合、各横方向走査の初期に、試料と探
針間に発生する摩擦力の影響が大きくなる。この摩擦力
のために、カンチレバーにはねじれが生じ、各横方向走
査初期には、試料表面の凹凸を精度良く測定することは
困難であった。
In an AFM in which a probe is brought into contact with a sample and a repulsive force generated perpendicularly to the sample surface is detected, when a sample surface is raster-scanned using a probe with a high aspect ratio, At the beginning of the horizontal scanning, the influence of the frictional force generated between the sample and the probe becomes large. Due to this frictional force, the cantilever is twisted, and it is difficult to accurately measure the unevenness of the sample surface at the initial stage of each lateral scanning.

【0005】本発明は、このような高アスペクト比の探
針を有する原子間力顕微鏡の問題を解決するため、試料
表面の凹凸を精度良く観察することが可能な原子間力顕
微鏡とその走査方法を提供することを目的とする。
In order to solve the problem of the atomic force microscope having such a high aspect ratio probe, the present invention is an atomic force microscope capable of observing unevenness of a sample surface with high accuracy and a scanning method thereof. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】根元の径と長さとの比が
1対2以上の探針を具備し、少なくとも各水平方向走査
の初期に画像化しない助走区間を設けて、ラスター走査
し、前記助走区間以外の試料表面の凹凸を画像化する。
Means for Solving the Problems A probe having a ratio of a diameter of a root to a length of 1: 2 or more is provided, and a run-up section which is not imaged is provided at least in the initial stage of each horizontal scanning, and raster scanning is performed. The unevenness of the sample surface other than the run-up section is imaged.

【0007】[0007]

【作用】前記の走査方法によれば、高アスペクト比の探
針が摩擦力に大きく影響された各横方向走査の初期の範
囲は、画像化されず、摩擦力の影響がなくなった範囲の
み画像化され、精度良く試料表面の凹凸を測定すること
が可能となる。
According to the above-mentioned scanning method, the initial range of each lateral scan in which the high aspect ratio probe is greatly affected by the frictional force is not imaged, and only the range where the influence of the frictional force disappears is imaged. As a result, it becomes possible to accurately measure the unevenness of the sample surface.

【0008】[0008]

【実施例】以下、実施例を用いて本発明をさらに具体的
に説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0009】図1は、本発明のAFMの走査方法の説明
図である。探針1の走査は試料表面を横方向(X方向)
に1ライン分の往復走査2を行った後、縦方向(Y方
向)3に移動し、再び横方向に往復走査するラスター走
査を行っている。前記ラスター走査の各横方向走査の初
期に、助走区間4を設け、残りの区間を画像化領域5と
する。図2に、前記走査方法を用いた本発明のAFMの
概略図を示す。AFM用探針7には、Si34薄膜で作
製されたカンチレバー6の先端部分に設けた酸化亜鉛の
テトラポッド形状の針状結晶を用いた。前記針状結晶の
アスペクト比は約20である。力は、前記探針7を試料
8に接触させた時に発生する斥力が一定になるように制
御した。走査は、トライポッド形に組み合わせた圧電体
を用い、前記圧電体に固定した試料8を走査する。前記
走査は、横方向(X方向)走査用圧電体9に観察したい
領域以上の領域を走査できるような三角波形の電圧を印
加し、前記三角波形電圧の1周期後に縦方向(Y方向)
走査用圧電体10にステップ状の電圧を印加するラスタ
ー走査を行った。前記AFMを用いて、液晶用ポリイミ
ド配向膜を観察した。走査は、横方向に700nm、縦
方向に500nmの範囲を行い、前記横方向走査の初期
の200nmは助走区間であり、この領域は摩擦力の影
響が大きく像が歪むために画像化せずに、残りの500
nm×500nmの領域を画像化した。この走査方法に
より、配向膜表面に形成された溝が精度良く観察され
た。
FIG. 1 is an explanatory diagram of the AFM scanning method of the present invention. The probe 1 scans the sample surface laterally (X direction).
After performing the reciprocal scanning 2 for one line, the raster scanning is performed by moving in the vertical direction (Y direction) 3 and reciprocally scanning in the horizontal direction again. At the beginning of each lateral scan of the raster scan, the run-up section 4 is provided, and the remaining section is the imaging area 5. FIG. 2 shows a schematic view of the AFM of the present invention using the above scanning method. For the AFM probe 7, a tetrapod-shaped acicular crystal of zinc oxide provided at the tip of the cantilever 6 made of a Si 3 N 4 thin film was used. The aspect ratio of the needle crystals is about 20. The force was controlled so that the repulsive force generated when the probe 7 was brought into contact with the sample 8 was constant. For the scanning, a piezoelectric body combined in a tripod type is used, and the sample 8 fixed to the piezoelectric body is scanned. In the scanning, a voltage with a triangular waveform is applied to the piezoelectric body 9 for scanning in the horizontal direction (X direction) so that a region larger than the region to be observed can be scanned.
Raster scanning was performed by applying a stepwise voltage to the scanning piezoelectric body 10. Using the AFM, a polyimide alignment film for liquid crystal was observed. Scanning is performed in the range of 700 nm in the horizontal direction and 500 nm in the vertical direction, and 200 nm at the initial stage of the horizontal scanning is the run-up section. 500 remaining
The area of nm x 500 nm was imaged. By this scanning method, the groove formed on the surface of the alignment film was accurately observed.

【0010】なお、摩擦力の影響を除くための助走区間
は、探針形状、探針材料、カンチレバー形状、測定する
試料の材料や走査速度などにより異る。本実施例では、
100nm以上の助走区間が必要であった。アスペクト
比が本実施例の探針より小さな探針を用いた場合には、
助走区間が100nm以下で摩擦力の影響は取り除け
た。さらに、アスペクト比が2以下の探針では、摩擦力
の影響はAFM像には現れず、助走区間は必要なかっ
た。
The run-up section for removing the influence of the frictional force varies depending on the probe shape, the probe material, the cantilever shape, the material of the sample to be measured, the scanning speed, and the like. In this example,
An approach section of 100 nm or more was required. When a probe having an aspect ratio smaller than that of the present embodiment is used,
The influence of frictional force was eliminated when the run-up area was 100 nm or less. Further, with a probe having an aspect ratio of 2 or less, the influence of frictional force did not appear in the AFM image, and the approach section was not necessary.

【0011】また、前記酸化亜鉛のテトラポッド形状の
針状結晶を作製すること自体は、たとえば亜鉛微粒子表
面を水中で酸化後、酸素雰囲気中で加熱する方法[ジャ
ーナル・オブ・クリスタル・グロース102(1990年)第965
頁から第973頁(J. Crystal Growth 102, 965-973, 199
0)]などが知られているが、本発明方法はこのような公
知の技術を広く応用することもできる。
The production of the tetrapod-shaped acicular crystals of zinc oxide itself is, for example, a method of oxidizing the surface of zinc fine particles in water and then heating in an oxygen atmosphere [Journal of Crystal Growth 102 ( 1990) No. 965
Pages 973 (J. Crystal Growth 102, 965-973, 199
0)] and the like are known, but the method of the present invention can widely apply such known techniques.

【0012】さらに、本実施例では、カンチレバー材料
にSi34膜を用いたが、SiO2薄膜や、タングステ
ンや金などの金属薄膜を用いることができる。
Further, in this embodiment, the Si 3 N 4 film is used as the cantilever material, but a SiO 2 thin film or a metal thin film such as tungsten or gold can be used.

【0013】さらに、テトラポッド形状の針状結晶とし
ては、酸化亜鉛を主成分とするものだけではなく、セレ
ン化亜鉛を主成分とするものを用いても同様の効果が得
られる。
Further, as the tetrapod-shaped acicular crystals, not only those containing zinc oxide as a main component but also those containing zinc selenide as a main component can achieve the same effect.

【0014】さらに、針状結晶としては、SiC、Al
23、W、黒鉛、Fe、Cu、B、Sn、Pb、In、
チタン酸カリウム等の機械的強度の強い針状結晶を用い
ることができる。ただし、これらのは結晶は、二次元針
状結晶であるため、カンチレバーの作製歩止まりは、テ
トラポッド形状の針状結晶に比べ悪くなる。
Further, as needle crystals, SiC, Al
2 O 3 , W, graphite, Fe, Cu, B, Sn, Pb, In,
Needle-like crystals having high mechanical strength such as potassium titanate can be used. However, since these crystals are two-dimensional needle crystals, the production yield of cantilevers is worse than that of tetrapod-shaped needle crystals.

【0015】[0015]

【発明の効果】本発明によれば、高アスペクト比の探針
を有し、横方向走査初期の摩擦力の影響を受けず、試料
を精度良く測定できる原子間力顕微鏡が得らた。
According to the present invention, an atomic force microscope having a high aspect ratio probe and capable of accurately measuring a sample without being affected by a frictional force at the initial stage of lateral scanning was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる実施例の原子間力顕微鏡の走査
方法の説明図
FIG. 1 is an explanatory diagram of a scanning method of an atomic force microscope according to an embodiment of the present invention.

【図2】本発明にかかる実施例の原子間力顕微鏡の概略
を示す斜視図
FIG. 2 is a perspective view showing an outline of an atomic force microscope according to an embodiment of the present invention.

【図3】従来の原子間力顕微鏡用カンチレバーの概略を
示す斜視図
FIG. 3 is a perspective view showing an outline of a conventional cantilever for an atomic force microscope.

【符号の説明】[Explanation of symbols]

1 探針 2 横方向(X方向)走査 3 縦方向(Y方向)走査 4 助走区間 5 画像化領域 6 カンチレバー 7 酸化亜鉛探針 8 試料 9 水平方向(X方向)走査用圧電体 10 垂直方向(Y方向)走査用圧電体 11 探針 12 カンチレバー 1 probe 2 horizontal (X direction) scanning 3 vertical (Y direction) scanning 4 run-up area 5 imaging area 6 cantilever 7 zinc oxide probe 8 sample 9 horizontal (X direction) scanning piezoelectric 10 vertical ( Y direction) Piezoelectric body for scanning 11 Probe 12 Cantilever

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】試料表面を横方向に走査する位置を変えな
がら、前記横方向走査を繰り返すラスター走査を行う原
子間力顕微鏡の走査方法において、少なくとも前記各横
方向走査の初期に助走区間を設けていることを特徴とす
る原子間力顕微鏡の走査方法。
1. In a scanning method of an atomic force microscope, wherein a raster scan is repeated to repeat the horizontal scan while changing the position of the horizontal scan on the sample surface, at least an initial run section is provided at the beginning of each horizontal scan. And a scanning method of an atomic force microscope.
【請求項2】根元の径と長さとの比が1対2以上の探針
を具備し、少なくとも各横方向走査の初期に画像化しな
い助走区間を設けて、ラスター走査し、前記助走区間以
外の試料表面の凹凸を画像化することを特徴とする原子
間力顕微鏡。
2. A probe having a ratio of the diameter of the root to a length of 1: 2 or more is provided, and at least an initial run section not imaged is provided at the initial stage of each lateral scan, and raster scanning is performed, except for the run section. An atomic force microscope characterized by imaging the unevenness of the sample surface of.
【請求項3】探針が針状結晶で形成されていることを特
徴とする請求項2に記載の原子間力顕微鏡。
3. The atomic force microscope according to claim 2, wherein the probe is formed of a needle crystal.
【請求項4】針状結晶が、酸化亜鉛を主成分とするテト
ラポッド形状であることを特徴とする請求項3に記載の
原子間力顕微鏡。
4. The atomic force microscope according to claim 3, wherein the acicular crystals have a tetrapod shape containing zinc oxide as a main component.
【請求項5】針状結晶が、セレン化亜鉛を主成分とする
テトラポッド形状であることを特徴とする請求項3に記
載の原子間力顕微鏡。
5. The atomic force microscope according to claim 3, wherein the acicular crystals have a tetrapod shape containing zinc selenide as a main component.
JP3309692A 1992-02-20 1992-02-20 Interatomic force microscope and its scanning method Pending JPH05231860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3309692A JPH05231860A (en) 1992-02-20 1992-02-20 Interatomic force microscope and its scanning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3309692A JPH05231860A (en) 1992-02-20 1992-02-20 Interatomic force microscope and its scanning method

Publications (1)

Publication Number Publication Date
JPH05231860A true JPH05231860A (en) 1993-09-07

Family

ID=12377136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3309692A Pending JPH05231860A (en) 1992-02-20 1992-02-20 Interatomic force microscope and its scanning method

Country Status (1)

Country Link
JP (1) JPH05231860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054631A1 (en) * 2004-11-17 2006-05-26 Pioneer Corporation Recording medium, recording device and method, reproducing device and method and computer program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054631A1 (en) * 2004-11-17 2006-05-26 Pioneer Corporation Recording medium, recording device and method, reproducing device and method and computer program

Similar Documents

Publication Publication Date Title
US5204531A (en) Method of adjusting the size of the area scanned by a scanning probe
EP1141673B1 (en) Method and device for simultaneously determining the adhesion, friction, and other material properties of a sample surface
Sulchek et al. High-speed atomic force microscopy in liquid
US5811017A (en) Cantilever for use in a scanning probe microscope and method of manufacturing the same
JPH0642953A (en) Interatomic force microscope
EP0530473B1 (en) Cantilever for atomic force microscope and method of manufacturing the same
Serry et al. Characterization and Measurement of Microcomponents with the Atomic Force Microscope (AFM)
US7009414B2 (en) Atomic force microscope and method for determining properties of a sample surface using an atomic force microscope
JPH1090287A (en) Probe for interatomic force microscope and its manufacture
JPH05231860A (en) Interatomic force microscope and its scanning method
Kado et al. Observation of contact holes by atomic force microscopy with a ZnO whisker tip
JP2653313B2 (en) Cantilever for atomic force microscope and method of manufacturing the same
Microscopy Atomic force microscopy
Fantner Atomic Force Microscopy
JP2622322B2 (en) Method of manufacturing probe for atomic force microscope
JP3008583B2 (en) Atomic force microscope and control method thereof
Hou et al. RETRACTED ARTICLE: Study on Fast and Nanoscale Imaging by High-Resolution Microscopy
Hatano et al. A near-field scanning optical microscope which measures both constant-height and constant-gap images
JPH0658754A (en) Measuring method for probe shape
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
Kado et al. Observation of the bottom surface of contact holes by hopping scanning atomic force microscopy with a ZnO whisker tip
Zeinzinger Investigation and estimation of uncertainties in scanning probe microscopy
Serry et al. 4 Characterization and Measurement of Microcomponents with the Atomic Force Microscope (AFM)
Rodgers et al. Application of the atomic force microscope to integrated circuit failure analysis
JPH1194851A (en) Scanning probe microscope