JPH05231264A - Fuel injection valve - Google Patents

Fuel injection valve

Info

Publication number
JPH05231264A
JPH05231264A JP22290492A JP22290492A JPH05231264A JP H05231264 A JPH05231264 A JP H05231264A JP 22290492 A JP22290492 A JP 22290492A JP 22290492 A JP22290492 A JP 22290492A JP H05231264 A JPH05231264 A JP H05231264A
Authority
JP
Japan
Prior art keywords
needle
fuel
sliding member
top surface
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22290492A
Other languages
Japanese (ja)
Other versions
JP2842070B2 (en
Inventor
Yasuhiro Yamamoto
康博 山本
Tomoji Ishikawa
友二 石川
Koichi Yokoyama
浩一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22290492A priority Critical patent/JP2842070B2/en
Publication of JPH05231264A publication Critical patent/JPH05231264A/en
Application granted granted Critical
Publication of JP2842070B2 publication Critical patent/JP2842070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To prevent the occurrence of secondary injection phenomenon by a method wherein a fuel pressure in a pressure control chamber is decreased through reduction of the volume of the pressure control chamber to lower a needle, and during the stop of injection of fuel, the closing speed of the needle. CONSTITUTION:A slide member 23 is integrally formed on the top surface of a needle 4, and the slide member 23 is slidably inserted in a fuel hole 22 through which a back pressure chamber 20 is communicated to a pressure control chamber 13. When a piezoelectric element 8 is contracted to raise a piston 6 and a fuel pressure in a pressure control chamber 13 is reduced and the needle 4 is raised, a fuel pressure in an annular chamber 24 formed around the slide member 23 is increased and the increase speed of the needle 4 is reduced. On the contrary, when the piezoelectric element 8 is expanded to increase a fuel pressure in the pressure control chamber 13 and the needle 4 is lowered, a negative pressure is generated in the annular chamber 24 around the slide member 23, resulting in reduction of the opening speed of the needle 4. Thus, secondary injection phenomenon is prevented from occurring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料噴射弁に関する。FIELD OF THE INVENTION The present invention relates to a fuel injection valve.

【0002】[0002]

【従来の技術】ニードルの頂面上に背圧室を形成すると
共にニードルの頂面に対向する背圧室の頂面の中央部を
燃料孔を介して圧力制御室に連結し、燃料で満たされた
圧力制御室の容積をアクチュエータにより制御して圧力
制御室の容積が増大せしめられたときにはニードルが上
昇してノズル口を開口すると共にこのときニードルの頂
面が背圧室頂面の周縁部に当接してニードルの最大リフ
ト量が規制され、圧力制御室の容積が減少せしめられた
ときにはニードルが閉弁方向に付勢されてノズル口を閉
鎖する燃料噴射弁が公知である(特開昭60−1369
号公報参照)。
2. Description of the Related Art A back pressure chamber is formed on the top surface of a needle, and the central portion of the top surface of the back pressure chamber, which faces the top surface of the needle, is connected to a pressure control chamber through a fuel hole and filled with fuel. When the volume of the pressure control chamber is controlled by an actuator to increase the volume of the pressure control chamber, the needle rises to open the nozzle port, and at this time, the top surface of the needle is the peripheral portion of the back pressure chamber top surface. There is known a fuel injection valve that abuts against the needle to regulate the maximum lift amount of the needle, and when the volume of the pressure control chamber is reduced, the needle is urged in the valve closing direction to close the nozzle port. 60-1369
(See the official gazette).

【0003】この燃料噴射弁では圧力制御室の容積が増
大せしめられてニードルの頂面に作用する燃料圧が低下
せしめられるとニードルが上昇し、その結果ニードルが
ノズル口を開口するので燃料噴射が開始される。次いで
圧力制御室の容積が減少せしめられると今度はニードル
の頂面に作用する燃料圧、即ち背圧室内の燃料圧が上昇
せしめられる。その結果ニードルが閉弁方向に付勢させ
てノズル口を閉鎖し、斯くして燃料噴射が停止せしめら
れる。
In this fuel injection valve, when the volume of the pressure control chamber is increased and the fuel pressure acting on the top surface of the needle is decreased, the needle rises, and as a result, the needle opens the nozzle opening, so that fuel injection is performed. Be started. Then, when the volume of the pressure control chamber is decreased, the fuel pressure acting on the top surface of the needle, that is, the fuel pressure in the back pressure chamber is increased. As a result, the needle urges in the valve closing direction to close the nozzle port, and thus the fuel injection is stopped.

【0004】[0004]

【発明が解決しようとする課題】ところでこの燃料噴射
弁では燃料噴射を停止すべく圧力制御室の容積が減少せ
しめられてもニードルがただちに下降せず、斯くして背
圧室内の燃料圧が急激に上昇する。その結果背圧室内の
燃料圧が高圧となるためにニードルが高速度で閉弁方向
に付勢されることになる。しかしながらこのようにニー
ドルが高速度で閉弁方向に付勢されるとニードルが高速
度で弁座に衝突するために衝突作用の反力によりニード
ルは閉弁した後に再び開弁し、斯くして好ましくない、
いわゆる2次噴射現象を生じることになる。
By the way, in this fuel injection valve, the needle does not immediately descend even if the volume of the pressure control chamber is reduced in order to stop the fuel injection, so that the fuel pressure in the back pressure chamber suddenly increases. Rise to. As a result, the fuel pressure in the back pressure chamber becomes high, so that the needle is urged at a high speed in the valve closing direction. However, when the needle is biased at a high speed in the valve closing direction in this way, the needle collides with the valve seat at a high speed, so that the reaction force of the collision action causes the needle to close and then open again. Unfavorable,
A so-called secondary injection phenomenon will occur.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によれば、ニードルの頂面上に背圧室を形成
すると共にニードルの頂面に対向する背圧室の頂面の中
央部を燃料孔を介して圧力制御室に連結し、燃料で満た
された圧力制御室の容積をアクチュエータにより制御し
て圧力制御室の容積が増大せしめられたときにはニード
ルが上昇してノズル口を開口すると共にこのときニード
ルの頂面が背圧室頂面の周縁部に当接してニードルの最
大リフト量が規制され、圧力制御室の容積が減少せしめ
られたときにはニードルが閉弁方向に付勢されてノズル
口を閉鎖する燃料噴射弁において、少くともニードルの
下降時にはニードルの頂面中央部に一体的に連結されて
ニードルと共に下降する摺動部材を燃料孔内に摺動可能
に挿入して摺動部材周りのニードル頂面周辺部と背圧室
頂面周辺部間に摺動部材により圧力制御室から分離され
た環状室を形成するようにしている。
In order to solve the above problems, according to the present invention, a back pressure chamber is formed on the top surface of the needle and the top surface of the back pressure chamber facing the top surface of the needle is formed. The central part is connected to the pressure control chamber through the fuel hole, and when the volume of the pressure control chamber filled with fuel is controlled by the actuator and the volume of the pressure control chamber is increased, the needle rises and the nozzle port is opened. At the same time as opening, the top surface of the needle abuts the peripheral edge of the top surface of the back pressure chamber to regulate the maximum lift amount of the needle, and when the volume of the pressure control chamber is reduced, the needle is biased in the valve closing direction. In the fuel injection valve that closes the nozzle opening by being slidably inserted into the fuel hole, at least when the needle descends, a sliding member that is integrally connected to the center of the top surface of the needle and descends together with the needle is slidably inserted. Sliding part And so as to form an annular chamber which is separated from the pressure control chamber by a sliding member between the needle top surface peripheral portion and the back pressure chamber top surface perimeter around.

【0006】また、本発明によれば上記問題点を解決す
るために摺動部材がニードルの頂面中央部に固定されて
いる。更に本発明によれば上記問題点を解決するため
に、圧力制御室と摺動部材間に位置する燃料孔の断面積
を摺動部材が摺動する燃料孔部分の断面積よりも小さく
している。
Further, according to the present invention, in order to solve the above problems, the sliding member is fixed to the center of the top surface of the needle. Further, according to the present invention, in order to solve the above problems, the cross-sectional area of the fuel hole located between the pressure control chamber and the sliding member is made smaller than the cross-sectional area of the fuel hole portion on which the sliding member slides. There is.

【0007】更に本発明によれば上記問題点を解決する
ために、摺動部材がニードルとは別個に形成されると共
に摺動部材がばね力により常時ピストン頂面中央部に圧
接され、摺動部材内に摺動部材の上端面から下端面まで
延びる絞り通路を形成している。
Further, according to the present invention, in order to solve the above-mentioned problems, the sliding member is formed separately from the needle, and the sliding member is constantly pressed against the central portion of the top surface of the piston by the spring force to slide. A throttle passage extending from the upper end surface to the lower end surface of the sliding member is formed in the member.

【0008】[0008]

【作用】請求項1に記載の発明では圧力制御室の容積が
減少せしめられて圧力制御室内の燃料圧が上昇するとニ
ードルが下降する。このとき摺動部材周りの環状室内に
は一時的に大きな負圧が発生するためにこの負圧によっ
てニードルには上向きの力が作用し、斯くしてニードル
の下降速度が低下せしめられる。
According to the first aspect of the invention, when the volume of the pressure control chamber is reduced and the fuel pressure in the pressure control chamber rises, the needle descends. At this time, since a large negative pressure is temporarily generated in the annular chamber around the sliding member, an upward force acts on the needle due to this negative pressure, and thus the descending speed of the needle is reduced.

【0009】請求項2に記載の発明でもニードルが下降
する際に摺動部材周りの環状室内には一時的に大きな負
圧が発生するためにニードルの下降速度が低下せしめら
れる。更に請求項2に記載の発明では圧力制御室の燃料
圧が低下してニードルが上昇する際に摺動部材周りの環
状室内には一時的に大きな正圧が発生し、それによって
ニードルの上昇速度が低下せしめられる。
According to the second aspect of the invention as well, when the needle descends, a large negative pressure is temporarily generated in the annular chamber around the sliding member, so that the descending speed of the needle is reduced. Further, in the invention according to claim 2, when the fuel pressure in the pressure control chamber is lowered and the needle is raised, a large positive pressure is temporarily generated in the annular chamber around the sliding member, whereby the rising speed of the needle is increased. Is reduced.

【0010】請求項3に記載の発明でもニードルが下降
する際に摺動部材周りの環状室内には一時的に大きな負
圧が発生するためにニードルの下降速度が低下せしめら
れる。更に請求項3の発明では圧力制御室と摺動部材間
に位置する燃料孔の断面積が摺動部材の位置する燃料孔
部分の断面積よりも小さくされているので圧力制御室の
燃料圧が上昇したときに燃料がこの断面積の小さい燃料
孔部分内を高速で流れ、このときの燃料の慣性によって
摺動部材が位置する燃料孔部分内の燃料圧が断面積を小
さくしなかった場合に比べて高くなる。それによってニ
ードルの下降開始時期が安定化せしめられる。
Also in the invention according to claim 3, when the needle descends, a large negative pressure is temporarily generated in the annular chamber around the sliding member, so that the descending speed of the needle is reduced. Further, in the invention of claim 3, since the cross-sectional area of the fuel hole located between the pressure control chamber and the sliding member is smaller than the cross-sectional area of the fuel hole portion where the sliding member is located, the fuel pressure in the pressure control chamber is When the fuel flows at a high speed in the fuel hole portion with a small cross-sectional area when it rises, and the fuel pressure in the fuel hole portion where the sliding member is located does not reduce the cross-sectional area due to the inertia of the fuel at this time, It will be higher than that. This stabilizes the time when the needle starts descending.

【0011】請求項4に記載の発明では圧力制御室の容
積が減少せしめられて圧力制御室内の燃料圧が上昇する
と摺動部材がニードル頂面に圧接された状態でニードル
が下降する。従って請求項4に記載の発明でもニードル
が下降する際に摺動部材周りの環状室内には一時的に大
きな負圧が発生するためにニードルの下降速度が低下せ
しめられる。更に請求項4に記載の発明では圧力制御室
の燃料圧が低下したときに摺動部材がニードル頂面から
離れ、摺動部材周りの環状室内の燃料が摺動部材に形成
された絞り通路を介して燃料孔内に流出する。このとき
の流出速度は絞り通路の断面積によって変化し、絞り通
路の断面積が大きいときには流出速度が速いために環状
室内の燃料圧がただちに低下してニードルは急速に上昇
し、これに対して絞り通路の断面積が小さいときには流
出速度が遅いために環状室内の燃料圧はゆっくりと低下
してニードルが比較的低速で上昇する。
According to the fourth aspect of the invention, when the volume of the pressure control chamber is reduced and the fuel pressure in the pressure control chamber rises, the needle descends with the sliding member pressed against the needle top surface. Therefore, also in the invention described in claim 4, when the needle descends, a large negative pressure is temporarily generated in the annular chamber around the sliding member, so that the descending speed of the needle is reduced. Further, in the invention according to claim 4, when the fuel pressure in the pressure control chamber is reduced, the sliding member is separated from the needle top surface, and the fuel in the annular chamber around the sliding member passes through the throttle passage formed in the sliding member. Through the fuel holes. The outflow velocity at this time changes depending on the cross-sectional area of the throttle passage, and when the cross-sectional area of the throttle passage is large, the outflow velocity is high, so the fuel pressure in the annular chamber immediately decreases and the needle rapidly rises. When the cross-sectional area of the throttle passage is small, the outflow velocity is slow, so the fuel pressure in the annular chamber slowly drops and the needle rises at a relatively low speed.

【0012】[0012]

【実施例】図1を参照すると1は燃料噴射弁ハウジン
グ、2はその先端部にノズル口3を具えたノズルホル
ダ、4はノズルホルダ2内に配置されたニードル、5は
ハウジング1内に嵌着されたピストンホルダ、6はピス
トンホルダ5のピストン挿入孔7内に摺動可能に挿入さ
れたピストン、8はディスク状圧電素子板の積層体から
なる圧電素子、9は圧電素子8を案内するためのスリー
ブ、10は圧電素子ホルダを夫々示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, 1 is a fuel injection valve housing, 2 is a nozzle holder having a nozzle port 3 at its tip, 4 is a needle arranged in the nozzle holder 2, and 5 is a housing fitted in the housing 1. The attached piston holder, 6 is a piston slidably inserted in the piston insertion hole 7 of the piston holder 5, 8 is a piezoelectric element made of a laminated body of disk-shaped piezoelectric element plates, and 9 is a guide for the piezoelectric element 8. Sleeves 10 for indicating the piezoelectric element holders, respectively.

【0013】ピストンホルダ5および圧電素子ホルダ1
0はハウジング1に螺着されたリテーナ11によってハ
ウジング1内の正規の位置に固定され、ノズルホルダ2
はハウジング1に螺着されたリテーナ12によってハウ
ジング1内の正規の位置に固定される。ピストンホルダ
5内に形成されたピストン挿入孔7内にはピストン6の
下端面により画定された圧力制御室13が形成され、こ
の圧力制御室13内にはピストン6を上方に向けて押圧
する皿ばね14が挿入されている。
Piston holder 5 and piezoelectric element holder 1
0 is fixed to a regular position in the housing 1 by a retainer 11 screwed to the housing 1, and the nozzle holder 2
Is fixed to a regular position in the housing 1 by a retainer 12 screwed to the housing 1. A pressure control chamber 13 defined by the lower end surface of the piston 6 is formed in the piston insertion hole 7 formed in the piston holder 5, and a plate for pressing the piston 6 upward is formed in the pressure control chamber 13. The spring 14 is inserted.

【0014】一方、ニードル4の円錐状受圧面15周り
には燃料溜まり16が形成される。この燃料溜まり16
は一方ではノズル口3に連結され、他方では燃料供給口
18に連結される。図1および図2(A)に示されるよ
うにニードル4の頂面19上には背圧室20が形成さ
れ、背圧室20の頂面21の中央部には上方に延びる燃
料孔22が形成される。この燃料孔22は圧力制御室1
3内に連結される。また、背圧室20の頂面21の周辺
部は環状をなす平坦面から形成されている。ニードル4
の頂面19上には円柱状の摺動部材23が一体形成され
ており、この摺動部材23は燃料孔22内に摺動可能に
挿入されている。従って摺動部材23周りの背圧室20
の頂面21の周辺部とニードル4の頂面19の周辺部間
には環状室24が形成される。
On the other hand, a fuel reservoir 16 is formed around the conical pressure receiving surface 15 of the needle 4. This fuel pool 16
Is connected to the nozzle port 3 on the one hand and to the fuel supply port 18 on the other hand. As shown in FIGS. 1 and 2 (A), a back pressure chamber 20 is formed on the top surface 19 of the needle 4, and a fuel hole 22 extending upward is formed in the central portion of the top surface 21 of the back pressure chamber 20. It is formed. The fuel hole 22 is formed in the pressure control chamber 1
Connected within 3. Further, the peripheral portion of the top surface 21 of the back pressure chamber 20 is formed of an annular flat surface. Needle 4
A cylindrical sliding member 23 is integrally formed on the top surface 19 of the sliding member 23, and the sliding member 23 is slidably inserted into the fuel hole 22. Therefore, the back pressure chamber 20 around the sliding member 23
An annular chamber 24 is formed between the periphery of the top surface 21 of the needle 4 and the periphery of the top surface 19 of the needle 4.

【0015】一方、燃料溜まり16と環状室24間に位
置するニードル4の膨大部とノズルホルダ2間には環状
をなす間隙25が形成されており、この間隙25は燃料
溜まり16と環状室24の頂面周縁部とを連通する絞り
通路を形成している。従って燃料供給口18から燃料溜
まり16内に供給された高圧燃料の一部が絞り通路25
を介して環状室24内に供給される。なお、圧力制御室
13および燃料孔22も高圧の燃料で満たされている。
On the other hand, an annular gap 25 is formed between the enlarged portion of the needle 4 located between the fuel reservoir 16 and the annular chamber 24 and the nozzle holder 2, and this gap 25 is formed between the fuel reservoir 16 and the annular chamber 24. Forming a throttle passage communicating with the peripheral portion of the top surface of the. Therefore, a part of the high-pressure fuel supplied from the fuel supply port 18 into the fuel reservoir 16 is partially discharged into the throttle passage 25.
Is supplied into the annular chamber 24 via. The pressure control chamber 13 and the fuel hole 22 are also filled with high-pressure fuel.

【0016】圧電素子8に充電された電荷が放電されて
圧電素子8が軸線方向に収縮すると図2(B)に示すよ
うにピストン6が上昇せしめられる。ピストン6が上昇
せしめられてもニードル4はただちに上昇せず、従って
このとき圧力制御室13および燃料孔22内の燃料圧が
急激に低下する。従って圧力制御室13内の燃料圧が低
下すると摺動部材23の頂面に加わる燃料圧がただちに
低下することになる。摺動部材23の頂面に加わる燃料
圧が低下するとニードル4は受圧面15に加わる燃料圧
によって上昇せしめられ、その結果ニードル4がノズル
口3を開口するために燃料噴射が開始される。
When the electric charge charged in the piezoelectric element 8 is discharged and the piezoelectric element 8 contracts in the axial direction, the piston 6 is raised as shown in FIG. 2 (B). Even if the piston 6 is raised, the needle 4 does not immediately rise, and at this time, the fuel pressure in the pressure control chamber 13 and the fuel hole 22 sharply drops. Therefore, when the fuel pressure in the pressure control chamber 13 decreases, the fuel pressure applied to the top surface of the sliding member 23 immediately decreases. When the fuel pressure applied to the top surface of the sliding member 23 decreases, the needle 4 is raised by the fuel pressure applied to the pressure receiving surface 15, and as a result, the needle 4 opens the nozzle port 3 to start fuel injection.

【0017】ニードル4が上昇すると環状室24内の燃
料が圧縮されて環状室24内が高圧となる。その結果ニ
ードル4が上昇すると環状室24内の燃料によりニード
ル4に下向きの力が与えられる。次いで環状室24内の
燃料は摺動部材23と燃料孔22間の間隙を通って燃料
孔22内に流出し、それに伴なってニードル4が上昇す
る。従ってニードル4の上昇速度が低下せしめられるこ
とになる。次いでニードル4は図2(B)に示されるよ
うにニードル4の最大リフト量を規制する環状室24の
頂面に当接するがこのときのニードル4の速度は遅く、
斯くしてニードル4が環状室24の頂面に衝突してはね
返るのが阻止される。
When the needle 4 rises, the fuel inside the annular chamber 24 is compressed and the inside of the annular chamber 24 becomes high pressure. As a result, when the needle 4 moves up, the fuel in the annular chamber 24 exerts a downward force on the needle 4. Next, the fuel in the annular chamber 24 flows into the fuel hole 22 through the gap between the sliding member 23 and the fuel hole 22, and the needle 4 rises accordingly. Therefore, the ascending speed of the needle 4 is reduced. Next, the needle 4 comes into contact with the top surface of the annular chamber 24 that regulates the maximum lift amount of the needle 4 as shown in FIG. 2B, but the speed of the needle 4 at this time is low,
Thus, the needle 4 is prevented from hitting and bouncing against the top surface of the annular chamber 24.

【0018】一方、圧電素子8に電荷が充電されて圧電
素子8が軸線方向に伸長すると図2(A)に示されるよ
うにピストン6が下降せしめられ、その結果圧力制御室
13の容積が減少せしめられる。圧力制御室13の容積
が減少せしめられてもニードル4はただちに下降せず、
斯くして圧力制御室13および燃料孔22内の燃料圧が
上昇する。その結果ニードル4は閉弁方向に付勢され、
斯くしてニードル4が下降を開始する。
On the other hand, when the piezoelectric element 8 is charged with electric charge and the piezoelectric element 8 expands in the axial direction, the piston 6 is lowered as shown in FIG. 2 (A), and as a result, the volume of the pressure control chamber 13 decreases. Be punished. Even if the volume of the pressure control chamber 13 is reduced, the needle 4 does not immediately descend,
Thus, the fuel pressure in the pressure control chamber 13 and the fuel hole 22 increases. As a result, the needle 4 is biased in the valve closing direction,
Thus, the needle 4 starts descending.

【0019】ニードル4が下降を開始すると環状室24
の容積が大巾に増大する。ニードル4が下降している
間、環状室24内にはほとんど燃料が流入せず、しかも
上述したように環状室24の容積が大巾に増大するので
環状室24内は負圧となる。その結果、この負圧によっ
てニードル4には上向きの力が作用する。ニードル4が
下降するにつれて圧力制御室13および燃料孔22内の
燃料圧は若干低下し、しかもニードル4が下降するほど
環状室24内の負圧が大きくなるのでニードル4の閉弁
速度が低下せしめられる。その結果、ニードル4が弁座
に当接するときの速度が遅くなるためにニードル4が弁
座ではね返ることがなくなり、斯くして2次噴射現象が
生じるのを阻止することができることになる。
When the needle 4 starts descending, the annular chamber 24
Greatly increases the volume of. While the needle 4 is descending, almost no fuel flows into the annular chamber 24, and as described above, the volume of the annular chamber 24 greatly increases, so that the inside of the annular chamber 24 becomes a negative pressure. As a result, this negative pressure exerts an upward force on the needle 4. The fuel pressure in the pressure control chamber 13 and the fuel hole 22 slightly decreases as the needle 4 descends, and the negative pressure in the annular chamber 24 increases as the needle 4 descends, so that the valve closing speed of the needle 4 decreases. Be done. As a result, the speed at which the needle 4 comes into contact with the valve seat becomes slower, so that the needle 4 does not bounce at the valve seat, and thus it is possible to prevent the secondary injection phenomenon from occurring.

【0020】ニードル4が弁座に当接して燃料噴射が停
止せしめられると燃料孔22内の燃料は摺動部材23の
外周面周りを通って環状室24内に徐々に流出し、斯く
して圧力制御室13および燃料孔22内の燃料圧は環状
室24内の燃料圧とほぼ等しくなる。図3に別の実施例
を示す。なお、図3(A)はピストン6が下降せしめら
れたときを示しており、図3(B)はピストン6が上昇
せしめられたときを示している。
When the needle 4 abuts on the valve seat and the fuel injection is stopped, the fuel in the fuel hole 22 gradually flows out into the annular chamber 24 through the periphery of the outer peripheral surface of the sliding member 23. The fuel pressure in the pressure control chamber 13 and the fuel hole 22 becomes substantially equal to the fuel pressure in the annular chamber 24. FIG. 3 shows another embodiment. 3 (A) shows the time when the piston 6 is lowered, and FIG. 3 (B) shows the time when the piston 6 is raised.

【0021】この実施例では摺動部材23がニードル4
とは別個に形成されており、この摺動部材23は燃料孔
22内に挿入された圧縮ばね26のばね力によって常時
ニードル4の頂面中央部に圧接せしめられる。この実施
例ではピストン6が下降したときには摺動部材23がニ
ードル4と一体となって下降するために環状室24内に
大きな負圧が発生し、斯くしてニードル4の下降速度が
低下せしめられる。これに対してピストン6が上昇した
ときには圧縮ばね26のばね力の強さによって摺動部材
23の動きが異なる。
In this embodiment, the sliding member 23 is the needle 4
The sliding member 23 is always pressed against the central portion of the top surface of the needle 4 by the spring force of the compression spring 26 inserted in the fuel hole 22. In this embodiment, when the piston 6 descends, the sliding member 23 descends integrally with the needle 4, so that a large negative pressure is generated in the annular chamber 24, and thus the descending speed of the needle 4 is reduced. .. On the other hand, when the piston 6 moves up, the movement of the sliding member 23 varies depending on the strength of the spring force of the compression spring 26.

【0022】即ち、圧縮ばね26のばね力が強いときに
は図3(A)に示す状態からピストン6が上昇しても摺
動子23はニードル23の頂面上に圧接され続ける。次
いでニードル23が上昇するとそれに伴なって摺動部材
23が上昇する。これに対して圧縮ばね26のばね力が
弱いときには図3(A)に示す状態からピストン6が上
昇するとそれに伴なって摺動部材23も上昇し、次いで
ニードル4が上昇する。
That is, when the spring force of the compression spring 26 is strong, the slider 23 continues to be pressed against the top surface of the needle 23 even if the piston 6 rises from the state shown in FIG. Next, when the needle 23 moves up, the sliding member 23 moves up accordingly. On the other hand, when the spring force of the compression spring 26 is weak, when the piston 6 rises from the state shown in FIG. 3A, the sliding member 23 also rises accordingly, and then the needle 4 rises.

【0023】図4は更に別の実施例を示す。なお、図4
(A)はピストン6が下降せしめられたときを示してお
り、図4(B)はピストン6が上昇せしめられたときを
示している。この実施例では図1および図2に示す実施
例と同様に摺動部材23がニードル4の頂面上に一体形
成されているので基本的にはニードル4は第1図および
第2図に示す実施例と同様な動き方をする。即ち、図4
(A)に示す状態からピストン6が上昇せしめられたと
きにはニードル4が上昇を開始すると環状室24内の燃
料圧が上昇するためにニードル4の上昇速度が低下せし
められ、図4(B)に示す状態からピストン6が下降せ
しめられたときにはニードル4が下降する間、環状室2
4内には大きな負圧が発生するためにニードル4の下降
速度が低下せしめられる。
FIG. 4 shows another embodiment. Note that FIG.
4A shows the time when the piston 6 is lowered, and FIG. 4B shows the time when the piston 6 is raised. In this embodiment, as in the embodiment shown in FIGS. 1 and 2, the sliding member 23 is integrally formed on the top surface of the needle 4, so basically the needle 4 is shown in FIGS. 1 and 2. The same movement as in the embodiment is performed. That is, FIG.
When the piston 6 is raised from the state shown in (A), when the needle 4 starts to rise, the fuel pressure in the annular chamber 24 rises, so that the rising speed of the needle 4 is reduced, and FIG. When the piston 6 is lowered from the state shown, while the needle 4 is descending, the annular chamber 2
Since a large negative pressure is generated in the needle 4, the descending speed of the needle 4 is reduced.

【0024】しかしながらこの実施例では圧力制御室1
3と摺動部材23間に位置する燃料孔部分22aの径は
摺動部材23が摺動する燃料孔部分22bの径よりも小
さく形成されており、即ち圧力制御室13と摺動部材2
3が摺動する燃料孔部分22bとの間には絞り通路22
aが設けられており、この絞り通路22aを設けたこと
によってニードル4の動作が図1および図2に示すニー
ドル4の動作と若干異なっている。
However, in this embodiment, the pressure control chamber 1
3 and the sliding member 23, the diameter of the fuel hole portion 22a located between the sliding member 23 and the sliding member 23 is smaller than the diameter of the fuel hole portion 22b on which the sliding member 23 slides.
The throttle passage 22 between the fuel hole portion 22b on which the sliding member 3 slides.
a is provided, and the operation of the needle 4 is slightly different from the operation of the needle 4 shown in FIGS. 1 and 2 due to the provision of the throttle passage 22a.

【0025】即ち、圧力制御室13および燃料孔部分2
2bのような2つの部屋を絞り通路22aのような管路
で接続した場合には一方の部屋の圧力を上昇させると各
部屋内の圧力は振動しながら次第に平衡状態となる。即
ち、一方の部屋の圧力を上昇させるとこの部屋内の燃料
が管路内を高速度で流れ、管路内を流れる燃料の慣性に
よって他方の部屋内の圧力は平衡状態になったときの圧
力も一時的に高くなる。云い換えると2つの部屋を管路
により連結すると一方の部屋の圧力を上昇させたときに
他方の部屋の圧力を管路を設けない場合、即ち2つの部
屋を直接接続した場合に比べて一時的に高くすることが
できる。従って図4に示されるような絞り通路22aを
設けると図4(B)に示す状態からピストン6が下降し
たときに燃料孔部分22b内の燃料圧は絞り通路22b
を設けない場合に比較して高くなり、斯くしてこのとき
ニードル4は絞り通路22bを設けない場合に比べて閉
弁方向に大きな力で付勢されることになる。
That is, the pressure control chamber 13 and the fuel hole portion 2
When two chambers such as 2b are connected by a conduit such as the throttle passage 22a, when the pressure in one chamber is increased, the pressure in each chamber oscillates and gradually reaches an equilibrium state. That is, when the pressure in one room is increased, the fuel in this room flows at a high speed in the pipeline, and the pressure in the other room becomes a pressure at the equilibrium state due to the inertia of the fuel flowing in the pipeline. Will also be temporarily higher. In other words, when two rooms are connected by a pipeline, the pressure in one room is increased when the pressure in the other room is not provided, that is, when the two rooms are directly connected. Can be high. Therefore, when the throttle passage 22a as shown in FIG. 4 is provided, when the piston 6 descends from the state shown in FIG. 4 (B), the fuel pressure in the fuel hole portion 22b is reduced by the throttle passage 22b.
In comparison with the case where the throttle passage 22b is not provided, the needle 4 is biased with a large force in the valve closing direction as compared with the case where the throttle passage 22b is not provided.

【0026】ところでニードル4が閉弁方向に付勢され
る力は燃料孔部分22b内の燃料圧と燃料溜まり16内
の燃料圧との差圧で決まり、燃料溜まり16内の燃料圧
は燃料の噴射作用により発生する圧力波によって脈動し
ているが燃料孔部分22b内の燃料圧が高められると燃
料圧が高められた分だけニードル4の閉弁方向の付勢力
は燃料溜まり16内の圧力脈動の影響を受けなくなる。
その結果、圧電素子8が伸長せしめられてから燃料噴射
が停止されるまでの時間が常に一定し、斯くして良好な
噴射量調量精度を得ることができることになる。なお、
この場合、下降初期のニードル4の下降速度は速くなる
がニードル4が下降すれば環状室24内に大きな負圧が
発生するのでニードル4の弁座への衝突速度は低下せし
められ、斯くしてニードル4の弁座でのはね返りが抑制
される。従ってニードル4の閉弁方向への付勢力が高め
られてもニードル4は弁座からはね返ることがなく、斯
くして良好な噴射量調量精度を確保しつつ2次噴射の発
生を阻止することができることになる。
The force for urging the needle 4 in the valve closing direction is determined by the pressure difference between the fuel pressure in the fuel hole portion 22b and the fuel pressure in the fuel pool 16, and the fuel pressure in the fuel pool 16 is the fuel pressure. Although it is pulsating due to the pressure wave generated by the injection action, when the fuel pressure in the fuel hole portion 22b is increased, the urging force of the needle 4 in the valve closing direction is increased by the amount by which the fuel pressure is increased. Will not be affected by.
As a result, the time from the expansion of the piezoelectric element 8 to the stop of the fuel injection is always constant, and thus a good injection amount adjustment accuracy can be obtained. In addition,
In this case, the descending speed of the needle 4 in the initial stage of descending becomes faster, but when the needle 4 descends, a large negative pressure is generated in the annular chamber 24, so that the collision speed of the needle 4 with respect to the valve seat is reduced, thus Rebound of the needle 4 at the valve seat is suppressed. Therefore, even if the urging force of the needle 4 in the valve closing direction is increased, the needle 4 does not bounce from the valve seat, thus preventing generation of secondary injection while ensuring good injection amount adjustment accuracy. You will be able to

【0027】図5および図6に更に別の実施例を示す。
なお、図5は燃料噴射弁全体を示しており、図6(A)
はピストン6が下降したところを示しており、図6
(B)はピストン6が上昇したところを示している。こ
の実施例では摺動部材23がニードル4とは別個に形成
されており、しかもこの摺動部材23は中空円筒状をな
している。この摺動部材23は燃料孔22内に配置され
た圧縮ばね26のばね力によって常時ニードル4の頂面
中央部に圧接されており、この摺動部材23によって環
状室24が画定される。なお、ニードル4の頂面19上
には圧縮ばね26の下端部が摺動部材23の頂部から脱
落しないようにするためのピン27が固定されている。
図6(A)に示されるように摺動部材23はその下方部
に小径部を有し、この小径部の上端部には環状をなす受
圧面28が形成されている。
FIG. 5 and FIG. 6 show still another embodiment.
Note that FIG. 5 shows the entire fuel injection valve, and FIG.
Indicates that the piston 6 has descended.
(B) shows that the piston 6 has risen. In this embodiment, the sliding member 23 is formed separately from the needle 4, and the sliding member 23 has a hollow cylindrical shape. The sliding member 23 is constantly pressed against the central portion of the top surface of the needle 4 by the spring force of the compression spring 26 arranged in the fuel hole 22, and the sliding member 23 defines the annular chamber 24. A pin 27 is fixed on the top surface 19 of the needle 4 to prevent the lower end of the compression spring 26 from falling off the top of the sliding member 23.
As shown in FIG. 6 (A), the sliding member 23 has a small diameter portion at its lower portion, and an annular pressure receiving surface 28 is formed at the upper end of this small diameter portion.

【0028】圧電素子8に充電された電荷が放電されて
圧電素子8が軸線方向に収縮すると図6(B)に示すよ
うにピストン6が上昇せしめられる。ピストン6が上昇
せしめられてもニードル4はただちに上昇せず、従って
このとき圧力制御室13および燃料孔22内の燃料圧が
急激に低下して環状室24内の燃料圧よりもかなり低く
なる。その結果、摺動部材23の受圧面28に作用する
環状室24内の燃料圧によって摺動部材23がただちに
上昇せしめられ、即ち摺動部材23がニードル4の頂面
19からただちに離れ、斯くして環状室24内の燃料圧
も急激に低下する。従って圧力制御室13内の燃料圧が
低下するとニードル4の頂面19全体に加わる燃料圧が
ただちに低下することになる。
When the electric charge charged in the piezoelectric element 8 is discharged and the piezoelectric element 8 contracts in the axial direction, the piston 6 is raised as shown in FIG. 6 (B). Even if the piston 6 is raised, the needle 4 does not immediately rise, so that at this time, the fuel pressure in the pressure control chamber 13 and the fuel hole 22 drops sharply and becomes considerably lower than the fuel pressure in the annular chamber 24. As a result, the sliding member 23 is immediately raised by the fuel pressure in the annular chamber 24 acting on the pressure receiving surface 28 of the sliding member 23, that is, the sliding member 23 is immediately separated from the top surface 19 of the needle 4, and As a result, the fuel pressure in the annular chamber 24 also drops sharply. Therefore, when the fuel pressure in the pressure control chamber 13 decreases, the fuel pressure applied to the entire top surface 19 of the needle 4 immediately decreases.

【0029】ニードル4の頂面19に加わる燃料圧が低
下するとニードル4は受圧面15に加わる燃料圧によっ
て上昇せしめられ、その結果ニードル4がノズル口3を
開口するために燃料噴射が開始される。ニードル4が上
昇すると圧力制御室13および燃料孔22内の燃料圧が
若干上昇し、このとき環状室24内の燃料圧が圧力制御
室13および燃料孔22内の燃料圧よりも高くなれば摺
動部材23がニードル4の頂面19から離れるのでニー
ドル4が上昇している間は環状室24内の燃料圧は圧力
制御室13および燃料孔22内の燃料圧とほぼ等しい圧
力に維持される。即ち、この実施例ではニードル4が上
昇するときにはニードル4の頂面19に作用する圧力は
摺動部材23が設けられていない場合とほぼ等しくな
り、斯くしてニードル4は急速に上昇せしめられること
になる。次いでニードル4は図6(B)に示されるよう
にニードル4の最大リフト量を規制する背圧室20の頂
面21の周辺部に当接して停止する。
When the fuel pressure applied to the top surface 19 of the needle 4 is lowered, the needle 4 is raised by the fuel pressure applied to the pressure receiving surface 15, and as a result, the needle 4 opens the nozzle port 3 to start fuel injection. .. When the needle 4 rises, the fuel pressure in the pressure control chamber 13 and the fuel hole 22 slightly rises, and when the fuel pressure in the annular chamber 24 becomes higher than the fuel pressure in the pressure control chamber 13 and the fuel hole 22 at this time, the sliding occurs. Since the moving member 23 moves away from the top surface 19 of the needle 4, the fuel pressure in the annular chamber 24 is maintained at a pressure substantially equal to the fuel pressure in the pressure control chamber 13 and the fuel hole 22 while the needle 4 is rising. .. That is, in this embodiment, when the needle 4 rises, the pressure acting on the top surface 19 of the needle 4 becomes almost equal to that when the sliding member 23 is not provided, and thus the needle 4 is rapidly raised. become. Next, as shown in FIG. 6B, the needle 4 comes into contact with the peripheral portion of the top surface 21 of the back pressure chamber 20 that regulates the maximum lift amount of the needle 4 and stops.

【0030】一方、圧電素子8に電荷が充電されて圧電
素子8が軸線方向に伸長すると図6(A)に示されるよ
うにピストン6が下降せしめられ、その結果圧力制御室
13の容積が減少せしめられる。圧力制御室13の容積
が減少せしめられてもニードル4はただちに下降せず、
斯くして圧力制御室13および燃料孔22内の燃料圧が
上昇する。このとき摺動部材23は摺動部材23の頂面
に加わる燃料圧によってニードル4の頂面19に強力に
圧接せしめらる。また、圧力上昇した燃料圧が摺動部材
23の中心に形成されている円孔29を通ってニードル
頂面19上に作用する。その結果ニードル4は閉弁方向
に付勢され、斯くしてニードル4が下降を開始する。
On the other hand, when the piezoelectric element 8 is charged with electric charge and the piezoelectric element 8 expands in the axial direction, the piston 6 is lowered as shown in FIG. 6 (A), and as a result, the volume of the pressure control chamber 13 decreases. Be punished. Even if the volume of the pressure control chamber 13 is reduced, the needle 4 does not immediately descend,
Thus, the fuel pressure in the pressure control chamber 13 and the fuel hole 22 increases. At this time, the sliding member 23 strongly presses against the top surface 19 of the needle 4 by the fuel pressure applied to the top surface of the sliding member 23. Further, the increased fuel pressure acts on the needle top surface 19 through the circular hole 29 formed at the center of the sliding member 23. As a result, the needle 4 is biased in the valve closing direction, and thus the needle 4 starts descending.

【0031】ニードル4が下降を開始すると環状室24
の容積が大巾に増大する。ニードル4が下降している
間、摺動部材23はニードル4の頂面19上に強力に圧
接され続けるので環状室24内にはほとんど燃料が流入
せず、しかも上述したように環状室24の容積が大巾に
増大するので環状室24内は負圧となる。その結果、こ
の負圧によってニードル4には上向きの力が作用する。
ニードル4が下降するにつれて圧力制御室13および燃
料孔22内の燃料圧は若干低下し、しかもニードル4が
下降するほど環状室24内の負圧が大きくなるのでニー
ドル4の閉弁速度が低下せしめられる。その結果、ニー
ドル4が弁座に当接するときの速度が遅くなるためにニ
ードル4が弁座ではね返ることがなくなり、斯くして2
次噴射現象が生じるのを阻止することができることにな
る。
When the needle 4 starts descending, the annular chamber 24
Greatly increases the volume of. While the needle 4 is descending, the sliding member 23 continues to be strongly pressed against the top surface 19 of the needle 4, so that almost no fuel flows into the annular chamber 24. Since the volume greatly increases, the inside of the annular chamber 24 becomes a negative pressure. As a result, this negative pressure exerts an upward force on the needle 4.
The fuel pressure in the pressure control chamber 13 and the fuel hole 22 slightly decreases as the needle 4 descends, and the negative pressure in the annular chamber 24 increases as the needle 4 descends, so that the valve closing speed of the needle 4 decreases. Be done. As a result, the speed at which the needle 4 comes into contact with the valve seat becomes slower, so that the needle 4 does not bounce at the valve seat, thus
It is possible to prevent the next injection phenomenon from occurring.

【0032】ニードル4が弁座に当接して燃料噴射が停
止せしめられると圧力制御室13および燃料孔22内の
燃料は摺動部材23の外周面周りを通って環状室24内
に徐々に流出し、斯くして圧力制御室13および燃料孔
22内の燃料圧は環状室24内の燃料圧とほぼ等しくな
る。図7は摺動部材23の別の実施例を示しており、こ
の実施例では摺動部材23はその全長に亘って一様な断
面形状の中空円筒体から形成されている。このような形
状の摺動部材23を用いても環状室24内の燃料圧は摺
動部材23とニードル4の頂面19間にもかなり作用す
るので圧力制御室13内の燃料圧が低下したときには摺
動部材23はニードル4の頂面から離れ、斯くして低下
した燃料圧がニードル4の頂面19の全体に作用するこ
とになる。
When the needle 4 comes into contact with the valve seat and the fuel injection is stopped, the fuel in the pressure control chamber 13 and the fuel hole 22 gradually flows into the annular chamber 24 around the outer peripheral surface of the sliding member 23. Therefore, the fuel pressure in the pressure control chamber 13 and the fuel hole 22 becomes substantially equal to the fuel pressure in the annular chamber 24. FIG. 7 shows another embodiment of the sliding member 23. In this embodiment, the sliding member 23 is formed of a hollow cylindrical body having a uniform sectional shape over its entire length. Even if the sliding member 23 having such a shape is used, the fuel pressure in the annular chamber 24 considerably acts between the sliding member 23 and the top surface 19 of the needle 4, so that the fuel pressure in the pressure control chamber 13 decreases. At times, the sliding member 23 separates from the top surface of the needle 4, and thus the reduced fuel pressure acts on the entire top surface 19 of the needle 4.

【0033】図8は摺動部材23の更に別の実施例を示
している。この実施例では摺動部材23の上方部にも小
径部が形成されており、この小径部によって圧縮ばね2
6の下端部の脱落が阻止されている。従ってこの実施例
では図5から図7に示すようなピン27を設ける必要が
なくなる。図9に更に別の実施例を示す。なお、図9
(A)はピストン6が下降したところを示しており、図
9(B)はピストン6が上昇したところを示している。
FIG. 8 shows still another embodiment of the sliding member 23. In this embodiment, a small diameter portion is also formed above the sliding member 23, and the compression spring 2 is formed by this small diameter portion.
The lower end of 6 is prevented from falling off. Therefore, in this embodiment, it is not necessary to provide the pin 27 as shown in FIGS. FIG. 9 shows still another embodiment. Note that FIG.
9A shows the piston 6 lowered, and FIG. 9B shows the piston 6 raised.

【0034】この実施例では図5および図6に示す実施
例と同様に摺動部材23がニードル4とは別個に形成さ
れ、摺動部材23内には円孔29が形成されているがこ
の実施例では図5および図6に示す実施例と異なって円
孔29内に絞り通路30が形成されている。このような
絞り通路30を設けても図9(B)に示す状態からピス
トン6が下降した際には摺動部材23がニードル4の頂
面19上に圧接されるので環状室24内には大きな負圧
が発生し、斯くしてニードル4の下降速度が低下せしめ
られる。従ってニードル4が下降する際のニードル4の
動作は図5および図6に示される実施例と同じになる。
In this embodiment, as in the embodiment shown in FIGS. 5 and 6, the sliding member 23 is formed separately from the needle 4, and the circular hole 29 is formed in the sliding member 23. In the embodiment, unlike the embodiment shown in FIGS. 5 and 6, the throttle passage 30 is formed in the circular hole 29. Even if such a throttle passage 30 is provided, when the piston 6 descends from the state shown in FIG. 9B, the sliding member 23 is pressed against the top surface 19 of the needle 4, so that the annular chamber 24 has A large negative pressure is generated, so that the descending speed of the needle 4 is reduced. Therefore, the operation of the needle 4 when the needle 4 descends is the same as that of the embodiment shown in FIGS. 5 and 6.

【0035】しかしながら円孔29内に絞り通路30を
設けるとニードル4が上昇する際のニードル4の動作が
図5および図6に示される実施例と若干異なる。即ち、
ピストン6が上昇して圧力制御室13内の燃料圧が低下
すると依然として高圧となっている絞り通路30下方の
円孔29内の燃料圧によって摺動部材23がニードル4
の頂面19から離れ、斯くして絞り通路30下方の円孔
29内の燃料および環状室24内の燃料が絞り通路30
を介して燃料孔22内に流出を開始する。しかしながら
この場合、絞り通路30の絞り作用によって絞り通路3
0下方の円孔29内の燃料圧および環状室24内の燃料
圧、即ちニードル4の頂面全体に作用する燃料圧は比較
的ゆっくりと低下し、斯くしてニードル4の上昇速度が
低下せしめられることになる。なお、この場合、ニード
ル4の上昇速度は絞り通路30の断面積を変えることに
よって任意に変化させることができる。従ってこの実施
例ではニードル4の上昇速度を遅くしてニードル4のは
ね返りを阻止しうるばかりでなく、絞り通路30の断面
積を変えることによって燃料噴射開弁時における燃料噴
射率の立上りを任意に変化させることができる。
However, when the throttle passage 30 is provided in the circular hole 29, the operation of the needle 4 when the needle 4 rises is slightly different from the embodiment shown in FIGS. 5 and 6. That is,
When the piston 6 rises and the fuel pressure in the pressure control chamber 13 decreases, the fuel pressure in the circular hole 29 below the throttle passage 30, which is still high, causes the sliding member 23 to move the needle 4
Away from the top surface 19 of the throttle passage 30 and thus the fuel in the circular hole 29 below the throttle passage 30 and the fuel in the annular chamber 24
And starts to flow into the fuel hole 22 through. However, in this case, the throttling passage 30 causes the throttling passage 3 to move.
The fuel pressure in the lower circular hole 29 and the fuel pressure in the annular chamber 24, that is, the fuel pressure acting on the entire top surface of the needle 4, decreases relatively slowly, and thus the rising speed of the needle 4 decreases. Will be In this case, the rising speed of the needle 4 can be arbitrarily changed by changing the cross-sectional area of the throttle passage 30. Therefore, in this embodiment, not only the rising speed of the needle 4 can be slowed to prevent the rebound of the needle 4, but also the rising of the fuel injection rate at the time of opening the fuel injection can be arbitrarily changed by changing the cross-sectional area of the throttle passage 30. Can be changed.

【0036】図10は図9の摺動部材23の別の実施例
を示している。なお、図10(A)はピストン6が下降
したところを示しており、図10(B)はピストン6が
上昇したところを示している。この実施例では摺動部材
23の外周面下端部に円錐状の受圧面28が形成され
る。従って圧力制御室6内の燃料圧が低下したときには
絞り通路30下方の円孔29内の燃料圧に加えて受圧面
28に加わる燃料圧によって摺動部材23がニードル4
の頂面から離れる。その他のニードル4の動作について
は図9に示す実施例と同じであるので説明を省略する。
FIG. 10 shows another embodiment of the sliding member 23 of FIG. It should be noted that FIG. 10A shows the piston 6 lowered, and FIG. 10B shows the piston 6 raised. In this embodiment, a conical pressure receiving surface 28 is formed at the lower end of the outer peripheral surface of the sliding member 23. Therefore, when the fuel pressure in the pressure control chamber 6 decreases, the sliding member 23 causes the sliding member 23 to move by the fuel pressure in the pressure receiving surface 28 in addition to the fuel pressure in the circular hole 29 below the throttle passage 30.
Away from the top of. The other operation of the needle 4 is the same as that of the embodiment shown in FIG.

【0037】[0037]

【発明の効果】燃料噴射停止時にニードルの閉弁速度を
遅くして2次噴射現象の発生を阻止することができる。
EFFECTS OF THE INVENTION When the fuel injection is stopped, the needle closing speed can be slowed to prevent the secondary injection phenomenon from occurring.

【図面の簡単な説明】[Brief description of drawings]

【図1】燃料噴射弁の側面断面図である。FIG. 1 is a side sectional view of a fuel injection valve.

【図2】図1に示す燃料噴射弁のA部の拡大側面断面図
である。
FIG. 2 is an enlarged side sectional view of a portion A of the fuel injection valve shown in FIG.

【図3】別の実施例を示す燃料噴射弁の一部の拡大側面
断面図である。
FIG. 3 is an enlarged side sectional view of a part of a fuel injection valve showing another embodiment.

【図4】更に別の実施例を示す燃料噴射弁の一部の拡大
側面断面図である。
FIG. 4 is an enlarged side sectional view of a part of a fuel injection valve showing still another embodiment.

【図5】燃料噴射弁の更に別の実施例を示す側面断面図
である。
FIG. 5 is a side sectional view showing still another embodiment of the fuel injection valve.

【図6】図5に示す燃料噴射弁のA部の拡大側面断面図
である。
6 is an enlarged side sectional view of a portion A of the fuel injection valve shown in FIG.

【図7】更に別の実施例を示す燃料噴射弁の一部の拡大
側面断面図である。
FIG. 7 is an enlarged side sectional view of a part of the fuel injection valve showing still another embodiment.

【図8】更に別の実施例を示す燃料噴射弁の一部の拡大
側面断面図である。
FIG. 8 is an enlarged side sectional view of a part of the fuel injection valve showing still another embodiment.

【図9】更に別の実施例を示す燃料噴射弁の一部の拡大
側面断面図である。
FIG. 9 is an enlarged side sectional view of a part of the fuel injection valve showing still another embodiment.

【図10】更に別の実施例を示す燃料噴射弁の一部の拡
大側面断面図である。
FIG. 10 is an enlarged side sectional view of a part of the fuel injection valve showing still another embodiment.

【符号の説明】[Explanation of symbols]

4…ニードル 6…ピストン 8…圧電素子 13…圧力制御室 20…背圧室 22…燃料孔 23…摺動部材 24…環状室 4 ... Needle 6 ... Piston 8 ... Piezoelectric element 13 ... Pressure control chamber 20 ... Back pressure chamber 22 ... Fuel hole 23 ... Sliding member 24 ... Annular chamber

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ニードルの頂面上に背圧室を形成すると
共にニードルの頂面に対向する背圧室の頂面の中央部を
燃料孔を介して圧力制御室に連結し、燃料で満たされた
圧力制御室の容積をアクチュエータにより制御して圧力
制御室の容積が増大せしめられたときにはニードルが上
昇してノズル口を開口すると共にこのときニードルの頂
面が背圧室頂面の周縁部に当接してニードルの最大リフ
ト量が規制され、圧力制御室の容積が減少せしめられた
ときにはニードルが閉弁方向に付勢されてノズル口を閉
鎖する燃料噴射弁において、少くともニードルの下降時
にはニードルの頂面中央部に一体的に連結されてニード
ルと共に下降する摺動部材を上記燃料孔内に摺動可能に
挿入して該摺動部材周りのニードル頂面周辺部と背圧室
頂面周辺部間に該摺動部材により圧力制御室から分離さ
れた環状室を形成するようにした燃料噴射弁。
1. A back pressure chamber is formed on the top surface of a needle, and a central portion of the top surface of the back pressure chamber facing the top surface of the needle is connected to a pressure control chamber via a fuel hole and filled with fuel. When the volume of the pressure control chamber is controlled by an actuator to increase the volume of the pressure control chamber, the needle rises to open the nozzle port, and at this time, the top surface of the needle is the peripheral portion of the back pressure chamber top surface. When the maximum lift amount of the needle is abutted against the fuel injection valve and the volume of the pressure control chamber is reduced, the needle is biased in the valve closing direction to close the nozzle opening. A sliding member, which is integrally connected to the central portion of the top surface of the needle and descends together with the needle, is slidably inserted into the fuel hole, and the peripheral portion of the needle top surface around the sliding member and the back pressure chamber top surface. Between the peripheral parts A fuel injection valve configured to form an annular chamber separated from a pressure control chamber by a moving member.
【請求項2】 上記摺動部材がニードルの頂面中央部に
固定されている請求項1に記載の燃料噴射弁。
2. The fuel injection valve according to claim 1, wherein the sliding member is fixed to the central portion of the top surface of the needle.
【請求項3】 上記圧力制御室と上記摺動部材間に位置
する上記燃料孔の断面積を該摺動部材が摺動する燃料孔
部分の断面積よりも小さくした請求項1の記載の燃料噴
射弁。
3. The fuel according to claim 1, wherein a cross-sectional area of the fuel hole located between the pressure control chamber and the sliding member is smaller than a cross-sectional area of a fuel hole portion on which the sliding member slides. Injection valve.
【請求項4】 上記摺動部材がニードルとは別個に形成
されると共に該摺動部材がばね力により常時ピストン頂
面中央部に圧接され、該摺動部材内に該摺動部材の上端
面から下端面まで延びる絞り通路を形成した請求項1に
記載の燃料噴射弁。
4. The sliding member is formed separately from the needle, and the sliding member is constantly pressed against the central portion of the top surface of the piston by a spring force so that the sliding member has an upper end surface in the sliding member. The fuel injection valve according to claim 1, wherein a throttle passage extending from the bottom to the bottom surface is formed.
JP22290492A 1991-12-25 1992-08-21 Fuel injection valve Expired - Lifetime JP2842070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22290492A JP2842070B2 (en) 1991-12-25 1992-08-21 Fuel injection valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34297791 1991-12-25
JP3-342977 1991-12-25
JP22290492A JP2842070B2 (en) 1991-12-25 1992-08-21 Fuel injection valve

Publications (2)

Publication Number Publication Date
JPH05231264A true JPH05231264A (en) 1993-09-07
JP2842070B2 JP2842070B2 (en) 1998-12-24

Family

ID=26525159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22290492A Expired - Lifetime JP2842070B2 (en) 1991-12-25 1992-08-21 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP2842070B2 (en)

Also Published As

Publication number Publication date
JP2842070B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
JP2733847B2 (en) Electromagnetically operated leakage control valve
US11105437B2 (en) Combined inlet and outlet check valve seat
WO2018003254A1 (en) Control valve for variable-capacity compressor
US6267350B1 (en) Valve having a mechanism for controlling a nonlinear force
KR20040014329A (en) Solenoid operated pressure control valve
JP2018003878A (en) Variable capacity type compressor control valve
JPH05231264A (en) Fuel injection valve
JP6600604B2 (en) Control valve for variable displacement compressor
JP3227471B2 (en) Piston type pilot type 2-way solenoid valve
JP4023804B2 (en) Injector for internal combustion engine
JP2002349383A (en) Fuel injection valve
JP3099546B2 (en) Fuel injection valve
JP4968180B2 (en) Injector
JP2950031B2 (en) Fuel injection valve
JPH05215038A (en) Fuel injection valve for internal combustion engine
JPH0693937A (en) Fuel injection valve
JP2004176656A (en) Fuel injection valve
JPH0688559A (en) Fuel injection valve
US4915129A (en) Check valve
JP3903875B2 (en) Injector
JP2809023B2 (en) Fuel injection valve
JP2001140727A (en) Injector
JPH05180113A (en) Piezoelectric actuator
JP2722621B2 (en) Unit injector
KR20180123533A (en) Damping force adjusting valve and shock absorber