JPH05231131A - Exhaust particulate emission control device - Google Patents

Exhaust particulate emission control device

Info

Publication number
JPH05231131A
JPH05231131A JP4035178A JP3517892A JPH05231131A JP H05231131 A JPH05231131 A JP H05231131A JP 4035178 A JP4035178 A JP 4035178A JP 3517892 A JP3517892 A JP 3517892A JP H05231131 A JPH05231131 A JP H05231131A
Authority
JP
Japan
Prior art keywords
regeneration
filter
amount
unburned
particulates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4035178A
Other languages
Japanese (ja)
Other versions
JP3021921B2 (en
Inventor
Mitsuo Inagaki
稲垣  光夫
Akikazu Kojima
昭和 小島
Shinji Miyoshi
新二 三好
Kenji Arakawa
健二 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP4035178A priority Critical patent/JP3021921B2/en
Publication of JPH05231131A publication Critical patent/JPH05231131A/en
Application granted granted Critical
Publication of JP3021921B2 publication Critical patent/JP3021921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To properly determine the next regeneration starting time when regeneration is suspended midway in the regeneration of a filter. CONSTITUTION:The next regeneration starting time is determined according to the advance degree of the regeration of a filter at the time point where regeneration is suspended. Accordingly, in the illustrated example, the uncombusted quantity of the particulate piled on a filter 1 is detected by a differential pressure detector 12 for each pressure between the fore part and rear part, and when the uncombusted quantity at the time point of the interruption of regeneration is much, the air passing resistance becomes much, and the quantity of the particulates piled on the filter 1 after the restart of the catching of the particulate becomes much, and the temperature in the next regeneration becomes abnormally high, and a control means sets the next regeneration starting time earlier than a standard time, according to the magnitude of the uncombusted quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関に設けられる排
気浄化装置に関し、特にパティキュレートを捕集したフ
ィルタを燃焼によって再生する際に、再生の途中で内燃
機関が停止する等の理由で再生が中断した場合でも、次
回の再生を支障なくなし得るようにした排気浄化装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification device provided in an internal combustion engine, and particularly when the filter that collects particulates is regenerated by combustion, the regeneration is performed because the internal combustion engine is stopped during the regeneration. The present invention also relates to an exhaust emission control device capable of performing the next regeneration without trouble even if the fuel consumption is interrupted.

【0002】[0002]

【従来の技術】例えばディーゼル機関の排気中にはカー
ボン粒を主とする排気微粒子、即ちパティキュレートが
多く含まれているため、機関の排気系にはこのパティキ
ュレートを捕集するためのパティキュレートフィルタ
(以下、フィルタと呼ぶ)が装着されている。
2. Description of the Related Art For example, the exhaust gas of a diesel engine contains a large amount of particulates, that is, particulates, mainly carbon particles. Therefore, the exhaust system of the engine contains particulates for collecting the particulates. A filter (hereinafter referred to as a filter) is attached.

【0003】このフィルタは例えばセラミック材料に代
表されるような耐熱材であって、しかも通気性のある材
料から形成されており、運転時間の経過に伴ってその内
部に堆積するパティキュレートの量が増えると通気抵抗
が次第に増大し、機関の出力低下をきたすため、パティ
キュレートの捕集量に応じて定期的に再生されなければ
ならない。
This filter is a heat-resistant material typified by, for example, a ceramic material, and is formed of a material having air permeability, and the amount of particulates deposited inside the filter over time has increased. If it increases, the ventilation resistance will gradually increase and the output of the engine will decrease, so it must be regenerated periodically according to the amount of particulates collected.

【0004】再生は堆積したパティキュレートを加熱手
段によって着火温度(約650℃)以上の高温まで高
め、着火燃焼させることによって開始される。この加熱
手段としては電気ヒータやバーナ方式が考えられている
が、図2に電気ヒータを用いた場合の一例を示す。図2
において再生時には流路切替バルブ3によって排ガスの
全量がバイパス管4にバイパスされ、フィルタ1の流れ
上流側端面或いは、端面近傍に埋設した電気ヒータ2に
通電する。そして燃焼に必要な空気をエアポンプ5から
供給する。
Regeneration is started by raising the accumulated particulates to a high temperature above the ignition temperature (about 650 ° C.) by a heating means and igniting and burning. As this heating means, an electric heater or a burner system is considered, but FIG. 2 shows an example of the case where an electric heater is used. Figure 2
At the time of regeneration, the entire amount of exhaust gas is bypassed by the bypass pipe 4 by the flow path switching valve 3, and the electric heater 2 embedded in the flow upstream end face of the filter 1 or in the vicinity of the end face is energized. Then, air required for combustion is supplied from the air pump 5.

【0005】[0005]

【発明が解決しようとする課題】ところで、発明者等
は、この再生用空気は流量が多すぎると燃焼帯の吹き消
えを発生するために、少量の空気(容量2リットル程度
のフィルタの場合、毎分90リットル程度)で再生を行
うのが好ましいことを実験により確かめている。従っ
て、フィルタの再生には数分、乃至数十分を要するた
め、再生中に駐車する等によりエンジンを停止すること
があり得る。
By the way, the inventors of the present invention have found that when the flow rate of this regeneration air is too large, the combustion zone is blown out, so a small amount of air (in the case of a filter having a capacity of about 2 liters, Experiments have confirmed that it is preferable to perform regeneration at about 90 liters per minute). Therefore, since it takes several minutes or tens of minutes to regenerate the filter, the engine may be stopped during parking or the like during the regeneration.

【0006】そのような場合、システムダウンしてエア
ポンプ5から空気の供給がなくても対流により外部から
新気が入り込むため、かなり長い時間、火種が残ってく
すぶり続けることが実験により確かめられた。従って、
この間は、燃焼によって発生した高温ガスや一酸化炭素
等の有害成分が外部に排出されることになる。
[0006] In such a case, it was confirmed by an experiment that even if the air is not supplied from the air pump 5 due to convection, fresh air enters from the outside even if the system is down and smoldering remains for a considerably long time. Therefore,
During this time, harmful components such as high temperature gas and carbon monoxide generated by combustion are discharged to the outside.

【0007】これを回避するには、図3に示すようにフ
ィルタ1の上流側と下流側に遮断バルブ6a,6bを設
け、機関停止時にはこれらのバルブを閉じることにより
フィルタ1内を閉空間とし、酸素の供給を停止して消火
させれば良いが、その消火のタイミングによって、例え
ば図4の(a)及び(b)に示すように燃え残りの範囲
が異なった状態になる。
In order to avoid this, shut-off valves 6a and 6b are provided on the upstream side and the downstream side of the filter 1 as shown in FIG. 3, and these valves are closed when the engine is stopped to make the inside of the filter 1 a closed space. It suffices to stop the supply of oxygen to extinguish the fire, but depending on the timing of the fire extinguishing, the range of the unburned residue becomes different as shown in FIGS. 4 (a) and 4 (b).

【0008】一方、図4(a),(b)のように燃え残
りがある状態で再び捕集を行うと、燃え残り部Bと再生
完了部Aのそれぞれの通気抵抗の大きさに応じて両部分
にパティキュレートの堆積が行なわれるため、再生が完
了していた部分Aのパティキュレート堆積量は、燃え残
りがあった部分Bのそれに比べ少なくなり、更に捕集を
続けても、A部とB部の堆積量を全く同一とすることは
できない。
On the other hand, when collecting again in the state where there is an unburned residue as shown in FIGS. 4 (a) and 4 (b), depending on the magnitude of the ventilation resistance of the unburned portion B and the regeneration completion portion A, respectively. Since particulates are deposited on both parts, the amount of particulates deposited on the part A where regeneration has been completed is smaller than that on the part B where there is an unburned residue, and even if collection is continued, part A continues to be collected. It is not possible to make the deposition amounts of B and B completely the same.

【0009】そこで、燃え残り状態を考慮せずに、常に
一定の条件(後述の図5の直線I参照)で再生を行うと
すれば、例えば図4(b)のように燃え残りが少なかっ
た場合に、再生が終っていた部分Aの堆積量を次に再生
を良好に行い得る程度の堆積量にしようとすると、パテ
ィキュレートの燃え残りがあった部分Bでは堆積量が多
くなりすぎ、次に再生を行う時に異常高温の状態を引き
起こしてしまう恐れがある。また逆に、図4(a)のよ
うに燃え残りが多かった場合には、燃え残りがあった部
分Bで良好な再生を行い得る程度の堆積量にしようとす
ると、再生が終っていた部分Aでは次回の堆積量が少な
すぎて、再生ミスを引き起こしてしまう恐れがある。
Therefore, if reproduction is always performed under a constant condition (see a straight line I in FIG. 5 described later) without considering the unburned state, the unburned state is small as shown in FIG. 4B, for example. In this case, if an attempt is made to make the amount of accumulation of the portion A where the regeneration has ended to a degree that allows the regeneration to be performed next favorably, the amount of accumulation becomes too large in the portion B where the particulate remains unburned. It may cause an abnormally high temperature during regeneration. On the contrary, when there is a large amount of unburned residue as shown in FIG. 4A, when the amount of accumulation is set to an extent that good regeneration can be performed in the unburned portion B, the portion where regeneration has ended In A, the next deposition amount is too small, which may cause a regeneration error.

【0010】この問題を解決するために、例えば特開平
3−18614号公報に開示される従来技術において
は、フィルタの再生温度によってフィルタのパティキュ
レートの捕集量を推定し、それによって次回の捕集量を
決定するようにしている。しかし、このような構成の場
合、仮にフィルタの捕集量が多く、しかも、他の原因で
再生温度が低い場合には、次回捕集量は通常の場合より
も高い値が設定される。そのため、燃え残り部分での捕
集量は所定量よりも多くなり、次回の再生温度が過度の
高温になって、フィルタが溶損、劣化する恐れがあっ
た。
In order to solve this problem, for example, in the prior art disclosed in Japanese Laid-Open Patent Publication No. 3-18614, the amount of particulates trapped in the filter is estimated by the regeneration temperature of the filter, and the next trapping is performed accordingly. I try to determine the amount of data. However, in the case of such a configuration, if the collection amount of the filter is large and the regeneration temperature is low due to other reasons, the next collection amount is set to a value higher than that in the normal case. Therefore, the amount collected in the unburned portion becomes larger than the predetermined amount, and the regeneration temperature at the next time becomes excessively high, which may cause the filter to melt and deteriorate.

【0011】そこで本発明は上記のような問題に鑑み、
パティキュレートが堆積したフィルタの再生燃焼の途中
において、再生を中断して燃え残りが発生した場合、次
回の再生において異常高温や着火ミス等を発生すること
なく良好な再生を行い得る装置を提供することを目的と
する。
Therefore, the present invention has been made in view of the above problems.
(EN) Provided is a device capable of performing good regeneration without generating an abnormally high temperature or an ignition error in the next regeneration when regeneration is interrupted and unburned residue occurs during regeneration combustion of a filter where particulates are accumulated. The purpose is to

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、内燃機関の排気系に設けられて排
ガス中のパティキュレートを捕集するフィルタを備え、
フィルタ再生時には、捕集されて堆積したパティキュレ
ートを加熱手段によって着火・燃焼させると共に、フィ
ルタに対して再生用ガスを導入して堆積したパティキュ
レートを焼却する排気浄化装置であって、フィルタ再生
作動後のパティキュレートの燃え残り量を検出する手段
と、再生を中断した場合の燃え残り量が多い時、次回再
生までの期間を短くし、燃え残り量が少ない時、次回再
生までの期間を長くする制御手段とを備えていることを
特徴とする排気微粒子浄化装置が提供される。
To achieve the above object, according to the present invention, there is provided a filter provided in an exhaust system of an internal combustion engine for collecting particulates in exhaust gas,
During filter regeneration, an exhaust gas purification device that ignites and burns the collected and accumulated particulates by the heating means and incinerates the accumulated particulates by introducing regeneration gas into the filter. A means to detect the remaining amount of unburned particulate matter, and shorten the period until the next regeneration when the unburned amount is large when the regeneration is interrupted, and lengthen the period until the next regeneration when the unburned amount is small. An exhaust particulate purification device is provided which is provided with a control means for

【0013】[0013]

【作用】フィルタの再生の途中で何らかの理由で再生が
中断したときは、パティキュレートの燃え残り量を検出
する手段によって測定されているパティキュレートの燃
え残り量が制御手段に記憶される。そして再びパティキ
ュレートの捕集が始まるときの目標となる捕集量を決定
するに当たって、制御手段は燃え残り量の大小に応じ
て、次回の再生までの堆積量の基準値に補正を加える。
すなわち、燃え残り量が多いときは通気抵抗が大きいた
め、基準値を目標にすると堆積量が多くなりすぎて、再
生の際に温度が過度に高くなるので、基準値よりも下方
修正をすることになる。このように、燃え残り量の程度
に応じて基準値に対する補正を行うことによって、次回
の再生時に異常な温度上昇によるトラブルを回避するこ
とができる。
When the regeneration is interrupted for some reason during the regeneration of the filter, the unburned amount of particulates measured by the means for detecting the unburned amount of particulates is stored in the control means. Then, in determining the target collection amount when the collection of particulates starts again, the control means corrects the reference value of the accumulation amount until the next regeneration according to the size of the unburned amount.
In other words, when the amount of unburned fuel is large, the ventilation resistance is large, so if the reference value is set as the target, the amount of deposition will be too large, and the temperature will become excessively high during regeneration.Therefore, lower the value below the reference value. become. In this way, by correcting the reference value according to the degree of the unburned amount, it is possible to avoid troubles due to an abnormal temperature rise at the next regeneration.

【0014】[0014]

【実施例】フィルタ再生の途中に、例えば機関が停止し
た場合には直ちに燃焼を終了させて再生を中断するのが
よいが、本発明ではその時の燃え残り量を検知し、燃え
残り量に応じて次回の再生時期を決定する。再生時期の
決定の基本的な方法は、燃え残り量が多い場合には次回
再生時期の基準の再生時期よりも早めて前回の再生完了
部分に堆積するパティキュレート量を少なくし、逆に燃
え残りが少ない場合には次回再生時期を基準の再生時期
よりも遅くして前回の再生完了部分に堆積するパティキ
ュレート量を多くするもので、図5にその概念を示す。
[Example] During the filter regeneration, for example, when the engine is stopped, it is preferable to immediately terminate the combustion and interrupt the regeneration. However, in the present invention, the unburned amount at that time is detected and the unburned amount is determined according to the unburned amount. And decide the next reproduction time. When there is a large amount of unburned residue, the basic method of determining the regeneration timing is to advance the next regeneration timing standard regeneration timing to reduce the amount of particulates accumulated at the previous regeneration completion portion, and conversely When the amount is small, the next regeneration time is set to be later than the reference regeneration time to increase the amount of particulates accumulated at the previous regeneration completion portion. The concept is shown in FIG.

【0015】図5の横軸に燃え残り比率、つまり、燃え
残り量/全堆積量をとり、縦軸に必要堆積量、つまり、
あとどれだけの堆積が必要かという量をとる。再生の途
中での機関の停止がなかった場合には、次回の再生まで
にmだけ堆積をさせて再生を行うのであるが、燃え残り
量に応じて常にmだけの堆積を行なうためには、図中の
直線Iに示すようにすれば良いので、これが基準とな
る。例えば燃え残り比率がEであれば、あとmE だけ捕
集を行えばフィルタ全体としてはmだけ堆積しているこ
とになる訳である。
The abscissa of FIG. 5 represents the unburned residue ratio, that is, the unburned residue / total accumulated amount, and the vertical axis represents the required accumulated amount, that is,
We take the amount of remaining deposition required. If there is no stoppage of the engine during regeneration, m is deposited until the next regeneration to perform regeneration. However, in order to always deposit m according to the unburned amount, This can be used as a reference because it can be set as shown by the straight line I in the figure. For example, if the unburned residue ratio is E, if m E is collected later, m will be deposited on the entire filter.

【0016】しかしながら、このような直線的な基準で
は、図4について述べたように、再生が完了していた部
分Aの堆積量は燃え残りのあった部分Bよりも少なくな
り、燃え残り比率の小さい、即ち再生の終わった範囲が
広い図4(b)の場合(図5ではL程度)には、捕集を
再開すると再生完了部分Aへのパティキュレートの堆積
は少なく、つまり、広い範囲にわたって堆積量が少なく
なるため着火ミスを引き起こしてしまう。そこで本発明
の好適な実施例においては、基準となる図5の直線Iか
ら求めた捕集時間よりも長くして、再生が完了していた
部分への堆積量が狙いの堆積量となるように、全体の堆
積量を曲線II上の点から求めた値mE ′とし、ΔEだけ
堆積量を増やして着火ミスを防ぐものである。この場
合、燃え残りのあった部分Bの堆積量は狙いの値よりも
多くなり、その部分での高温化が懸念されるが、燃え残
り量がはじめから少ない、即ち、堆積量が多くなる部分
は少ないため、その影響は小さなものである。
However, on such a linear basis, as described with reference to FIG. 4, the accumulation amount of the portion A where the regeneration is completed is smaller than that of the portion B where the unburned portion is left, and the unburned portion ratio of the unburned portion is increased. In the case of Fig. 4 (b) where the range is small, that is, the range where the regeneration is completed is wide (about L in Fig. 5), when the collection is restarted, the accumulation of particulates on the regeneration completed portion A is small, that is, over a wide range. Since the amount of deposition is small, it causes ignition mistakes. Therefore, in the preferred embodiment of the present invention, the collection time obtained from the straight line I in FIG. 5 serving as a reference is set longer so that the amount of deposition on the portion where the regeneration is completed becomes the target amount of deposition. In addition, the total deposition amount is set to a value m E ′ obtained from the points on the curve II, and the deposition amount is increased by ΔE to prevent ignition mistakes. In this case, the accumulated amount of the unburned portion B becomes larger than the target value, and there is a concern that the temperature may rise in that portion, but the amount of unburned portion is small from the beginning, that is, the portion where the accumulated amount is large. The effect is small, since there are few.

【0017】一方、再生の終っていた範囲が比較的に狭
い図4(a)の場合(図5ではH程度)には、基準とな
る直線Iのような制御では、捕集を再開すると燃え残り
部分Bへの堆積が多くなり、つまり広い範囲にわたって
堆積量が多くなるため、特にフィルタ中心部において異
常高温の状態を引き起こしてしまう。そこで燃え残り比
率がHのときは、直線I上の点から以後の堆積量をmH
とすべきところを、曲線II上の点から求めたmH ′とな
るように、捕集時間を短くして、燃え残りがあった部分
Bにおける堆積量が狙いの堆積量程度となるように、即
ち、全体としての捕集量をΔHだけ少なくして、異常高
温の状態の発生を防ぐものである。この場合、再生が終
っていた部分Aの堆積量は狙いの値よりも少なくなり、
その部分での着火ミスが懸念されるが、再生済の範囲A
が狭い、即ち、堆積量が少なくなる部分は比較的少ない
こと、及び再生が終っていた部分Aは電気ヒータ2から
近い上流側の範囲であるため電気ヒータ2の熱が伝わり
やすいことから、その影響は小さい。
On the other hand, in the case of FIG. 4 (a) in which the range where the regeneration is finished is relatively narrow (about H in FIG. 5), the control such as the straight line I as the reference causes burning when the collection is restarted. Since the amount of deposition on the remaining portion B increases, that is, the amount of deposition increases over a wide range, an abnormally high temperature state is caused especially at the center of the filter. Therefore, when the unburned residue ratio is H, the subsequent accumulation amount is m H from the point on the straight line I.
What should be done is to shorten the collection time so that m H ′ obtained from the point on the curve II, so that the amount of deposition in the portion B where there is unburned residue is about the target amount of deposition. That is, the collection amount as a whole is reduced by ΔH to prevent the occurrence of an abnormally high temperature state. In this case, the amount of deposition in the part A where the regeneration was finished becomes smaller than the target value,
There is concern about ignition mistakes in that area, but it has already been regenerated.
Is relatively small, that is, there are relatively few portions where the amount of deposition is small, and since the portion A where regeneration has been completed is in the upstream range near the electric heater 2, the heat of the electric heater 2 is easily transferred. The impact is small.

【0018】他の実施例として、フィルタの熱損傷を絶
対に避けるということを優先させる場合には、再生の途
中で機関停止があり、燃え残り比率が図5のEのように
少ないときでも、前述のmE ′のような堆積量の増加を
行なうことなく、基準となる堆積量mE のままとし、燃
え残り比率がHのように高いときだけ、mH ′のように
堆積量を少なくして、燃え残りの部分Bの大きさに依ら
ず常に次回の捕集量を少なくするという制御を行っても
よい。
As another embodiment, when giving priority to absolutely avoiding heat damage to the filter, even if the engine is stopped during regeneration and the unburned residue ratio is small as indicated by E in FIG. 5, Without increasing the deposition amount as in the above m E ′, the reference deposition amount m E is kept as it is, and the deposition amount is reduced as in m H ′ only when the unburned residue ratio is high as in H. Then, regardless of the size of the unburned portion B, the control may be performed such that the next trap amount is always reduced.

【0019】以上のような制御を実行し得る具体的な排
気微粒子浄化装置のシステム構成の例を図1に示す。図
2と同様に、1はフィルタ、2は再生用の電気ヒータ、
3は流路切替バルブ、4はバイパス管、5はエアポンプ
であり、フィルタ1の下流側にも流路切替バルブ7を設
け、エアポンプ5から送られる空気8は、流路切替バル
ブ3及び7によってフィルタ1が排気流からバイパスさ
れている状態で下流側から上流側に向って供給される。
したがって、再生用の電気ヒータ2もフィルタ1の下流
側端面に設けられている。流路切替バルブ3は、この場
合は再生用の排気管9と排気の入口管10とを切替える
ように作動する。図1に示した再生状態では、排気11
はすべてバイパス管4を通って流れる。フィルタ1の前
後の差圧を検出する前後差圧検出装置12はその検出値
を制御装置13に入力する。制御装置13には機関の停
止を検出するキースイッチのような機関停止検出装置1
4の信号も入力され、それらの信号にもとづいて制御装
置13は演算を行ない、その結果、流路切替バルブ3及
び7のアクチュエータ15,16やエアポンプ5の空気
流量制御装置17へ制御信号を供給したり、電気ヒータ
8に通電するように構成されている。
FIG. 1 shows an example of a specific system configuration of an exhaust particulate purifying apparatus capable of executing the above control. As in FIG. 2, 1 is a filter, 2 is an electric heater for regeneration,
3 is a flow path switching valve, 4 is a bypass pipe, 5 is an air pump, a flow path switching valve 7 is also provided on the downstream side of the filter 1, and air 8 sent from the air pump 5 is fed by the flow path switching valves 3 and 7. The filter 1 is supplied from the downstream side toward the upstream side while being bypassed from the exhaust flow.
Therefore, the electric heater 2 for regeneration is also provided on the downstream end surface of the filter 1. In this case, the flow path switching valve 3 operates so as to switch between the regeneration exhaust pipe 9 and the exhaust inlet pipe 10. In the regeneration state shown in FIG. 1, exhaust 11
All flow through the bypass pipe 4. The differential pressure detection device 12 for detecting the differential pressure across the filter 1 inputs the detected value to the control device 13. The control device 13 includes an engine stop detection device 1 such as a key switch for detecting the stop of the engine.
The signal of No. 4 is also input, and the control device 13 performs calculation based on these signals, and as a result, supplies the control signal to the actuators 15 and 16 of the flow path switching valves 3 and 7 and the air flow rate control device 17 of the air pump 5. And the electric heater 8 is energized.

【0020】フィルタ1に堆積しているパティキュレー
トの量の検出は、この例ではフィルタ1の前後差圧検出
装置12によって行なう。フィルタ1の再生時には、制
御装置13はフィルタ1の上流に設けた流路切替バルブ
3及び7をバルブアクチュエータ15,16により図1
の位置とし、排ガス全量をバイパス管4を介してバイパ
スし、同時に電気ヒータ2に通電して、エアポンプ5か
ら空気流量制御装置17を介して、堆積したパティキュ
レートの燃焼に必要な空気8を供給する。この再生途中
に機関停止の操作がなされた場合、機関停止検出装置1
4の機関停止信号(キースイッチのOFF信号など)を
モニタしている制御装置13では、信号が入力された時
のフィルタ前後差圧検出装置12の検出値により、再生
がどの程度進んだところで機関が停止したか、即ち、燃
え残り比率がどの程度かを検知することができる。
The amount of particulates deposited on the filter 1 is detected by the differential pressure detector 12 before and after the filter 1 in this example. When the filter 1 is regenerated, the control device 13 controls the flow path switching valves 3 and 7 provided upstream of the filter 1 by the valve actuators 15 and 16.
At this position, all the exhaust gas is bypassed through the bypass pipe 4, the electric heater 2 is simultaneously energized, and the air 8 required for combustion of the accumulated particulates is supplied from the air pump 5 through the air flow rate control device 17. To do. If an engine stop operation is performed during this regeneration, the engine stop detection device 1
In the control device 13 that monitors the engine stop signal of No. 4 (key switch OFF signal, etc.), the engine speed is increased by the detection value of the filter front-back differential pressure detection device 12 when the signal is input. Can be detected, that is, how much the unburned residue ratio is.

【0021】この燃え残り比率に応じて、制御装置13
は例えば図5の曲線IIに示すような内容のマップを利用
し、燃え残り比率が大きい場合には、次回に再生を行う
フィルタ前後差圧(堆積量に対応する)を、狙いの差圧
(直線Iから導かれる)よりも小さな値とし、逆に燃え
残り比率が小さい場合には大きな値とするように、基準
値とは異なる値を設定する。そして、機関が再始動され
たのち、フィルタ1の前後差圧が前記の設定値に達した
ときに、流路切替バルブ3及び7を切替え、電気ヒータ
2に通電して赤熱させると共に、エアポンプ5を駆動し
て再生を開始することになる。
In accordance with this unburned residue ratio, the control device 13
For example, a map having the contents shown in the curve II of FIG. 5 is used. When the unburned residue ratio is large, the differential pressure before and after the filter (corresponding to the accumulated amount) for the next regeneration is set to the target differential pressure ( (Derived from the straight line I), and conversely, a large value when the unburned residue ratio is small, a value different from the reference value is set. Then, after the engine is restarted, when the differential pressure across the filter 1 reaches the above-mentioned set value, the flow path switching valves 3 and 7 are switched to energize the electric heater 2 to cause red heat and the air pump 5 Drive to start playback.

【0022】なお、パティキュレートの堆積量の検出
は、差圧によらずに機関回転数の積算値に基づいて行な
ってもよい。機関回転数の積算値に基づいて算出される
燃え残り比率に応じて、例えば燃え残り比率が大きい場
合には次回再生を行うエンジン回転数積算値を狙いの値
よりも小さな値とし、逆に燃え残り比率が大きい場合に
は大きな値とするように、制御手段13によって制御を
行なう。なお、この場合、単なる機関回転数積算値でな
く、機関の負荷を加味したものを判断基準とすれば、よ
り良く実際の状態に適合した再生条件とすることができ
る。
The amount of accumulated particulate matter may be detected based on the integrated value of the engine speed instead of the differential pressure. Depending on the unburned residue ratio calculated based on the integrated value of the engine speed, for example, if the unburned residue ratio is large, set the engine speed integrated value for the next regeneration to a value smaller than the target value, and burn it in reverse. When the remaining ratio is large, the control means 13 controls the value so that it becomes a large value. In this case, the regeneration condition that is better suited to the actual state can be obtained by using not only the engine speed integrated value but also the engine load as a criterion.

【0023】[0023]

【発明の効果】本発明によれば、フィルタの再生の途中
で再生を中断しても、パティキュレートの燃え残りの状
態に応じて次回の再生時期を調整することができるの
で、燃え残りの多少にかかわらず、フィルタにとって常
に良好な再生をなし得るものであり、それによってフィ
ルタの寿命を延ばし、排気浄化を長期間にわたって良好
に継続することができる。
According to the present invention, even if the regeneration is interrupted during the regeneration of the filter, the next regeneration time can be adjusted according to the state of the unburned particulates, so that the unburned amount of the unburned particulates can be adjusted. Regardless of this, it is always possible for the filter to perform good regeneration, thereby extending the service life of the filter and allowing the exhaust gas purification to continue satisfactorily for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による排気微粒子浄化装置のシ
ステム構成図である。
FIG. 1 is a system configuration diagram of an exhaust particulate purifying apparatus according to an embodiment of the present invention.

【図2】従来技術を示すシステム構成図である。FIG. 2 is a system configuration diagram showing a conventional technique.

【図3】従来技術の問題点を説明するためのフィルタの
断面図である。
FIG. 3 is a cross-sectional view of a filter for explaining the problems of the conventional technique.

【図4】燃え残り状態の違いを説明するためのフィルタ
内部の断面図である。
FIG. 4 is a cross-sectional view of the inside of the filter for explaining the difference in the unburned state.

【図5】制御例を説明するための線図である。FIG. 5 is a diagram for explaining a control example.

【符号の説明】[Explanation of symbols]

1…フィルタ 2…電気ヒータ 3…流路切替バルブ 4…バイパス管 5…エアポンプ 6a,6b…遮断バルブ 7…流路切替バルブ 8…空気 9…再生用の排気管 10…排気の入口管 11…排気 12…前後差圧検出装置 13…制御装置 14…機関停止検出装置 15,16…アクチュエータ 17…空気流量制御装置 A…再生が終っていた部分 B…燃え残りがあった部分 DESCRIPTION OF SYMBOLS 1 ... Filter 2 ... Electric heater 3 ... Flow passage switching valve 4 ... Bypass pipe 5 ... Air pump 6a, 6b ... Shutoff valve 7 ... Flow passage switching valve 8 ... Air 9 ... Regeneration exhaust pipe 10 ... Exhaust inlet pipe 11 ... Exhaust gas 12 ... Front-rear differential pressure detection device 13 ... Control device 14 ... Engine stop detection device 15, 16 ... Actuator 17 ... Air flow control device A ... Part where regeneration is finished B ... Part where unburned remains

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三好 新二 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 荒川 健二 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinji Miyoshi 14 Iwatani, Shimohakaku-cho, Nishio-shi, Aichi Japan Auto Parts Research Institute (72) Inventor Kenji Arakawa 1 Toyota-cho, Toyota-shi, Aichi Toyota Auto Car Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気系に設けられて排ガス中
のパティキュレートを捕集するフィルタを備え、フィル
タ再生時には、捕集されて堆積したパティキュレートを
加熱手段によって着火・燃焼させると共に、フィルタに
対して再生用ガスを導入して堆積したパティキュレート
を焼却する排気浄化装置であって、フィルタ再生作動後
のパティキュレートの燃え残り量を検出する手段と、再
生を中断した場合の燃え残り量が多い時、次回再生まで
の期間を短くし、燃え残り量が少ない時、次回再生まで
の期間を長くする制御手段とを備えていることを特徴と
する排気微粒子浄化装置。
1. An exhaust system of an internal combustion engine, comprising a filter for collecting particulates in exhaust gas, and during the regeneration of the filter, the collected particulates are ignited and burned by a heating means, and at the same time, the filter is filtered. Is an exhaust gas purification device that incinerates the accumulated particulates by introducing the regeneration gas, a means for detecting the unburned amount of particulates after the filter regeneration operation, and the unburned amount when regeneration is interrupted. The exhaust particulate purifying apparatus is provided with a control means for shortening the period until the next regeneration when there is a large amount of fuel and for increasing the period until the next regeneration when there is little unburned amount.
【請求項2】 燃え残り量を検出する手段が、フィルタ
の前後の差圧を測定する手段であることを特徴とする請
求項1記載の排気微粒子浄化装置。
2. The exhaust particulate purifying apparatus according to claim 1, wherein the means for detecting the amount of unburned residue is means for measuring the differential pressure across the filter.
JP4035178A 1992-02-21 1992-02-21 Exhaust particulate cleaning equipment Expired - Fee Related JP3021921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4035178A JP3021921B2 (en) 1992-02-21 1992-02-21 Exhaust particulate cleaning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4035178A JP3021921B2 (en) 1992-02-21 1992-02-21 Exhaust particulate cleaning equipment

Publications (2)

Publication Number Publication Date
JPH05231131A true JPH05231131A (en) 1993-09-07
JP3021921B2 JP3021921B2 (en) 2000-03-15

Family

ID=12434601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4035178A Expired - Fee Related JP3021921B2 (en) 1992-02-21 1992-02-21 Exhaust particulate cleaning equipment

Country Status (1)

Country Link
JP (1) JP3021921B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961829B4 (en) * 1999-10-04 2005-10-06 Sonoco Development, Inc. Core tube for improved winding and carrying a paper roll
US7153342B2 (en) 2003-01-10 2006-12-26 Nissan Motor Co., Ltd. Exhaust gas purifying system of internal combustion engine
JP2007162567A (en) * 2005-12-14 2007-06-28 Nissan Motor Co Ltd Regeneration timing control device and regeneration timing control method of engine exhaust gas filter
CN100356039C (en) * 2003-04-02 2007-12-19 日产自动车株式会社 Exhausting treating device and method for diesel engine
US7607295B2 (en) 2005-07-07 2009-10-27 Nissan Motor Co., Ltd. Particulate accumulation amount estimating system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961829B4 (en) * 1999-10-04 2005-10-06 Sonoco Development, Inc. Core tube for improved winding and carrying a paper roll
US7153342B2 (en) 2003-01-10 2006-12-26 Nissan Motor Co., Ltd. Exhaust gas purifying system of internal combustion engine
CN100356039C (en) * 2003-04-02 2007-12-19 日产自动车株式会社 Exhausting treating device and method for diesel engine
US7607295B2 (en) 2005-07-07 2009-10-27 Nissan Motor Co., Ltd. Particulate accumulation amount estimating system
JP2007162567A (en) * 2005-12-14 2007-06-28 Nissan Motor Co Ltd Regeneration timing control device and regeneration timing control method of engine exhaust gas filter

Also Published As

Publication number Publication date
JP3021921B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
JPH05187221A (en) Exhaust gas particulate purifying device
JPH05240027A (en) Exhaust fine particle purifying device
JPH05231131A (en) Exhaust particulate emission control device
JP2998321B2 (en) Diesel engine exhaust purification system
JP2789921B2 (en) Diesel engine exhaust purification system
JP3000762B2 (en) Exhaust particulate cleaning equipment
JPH0614016Y2 (en) Exhaust gas purification device for diesel engine
JPH06323130A (en) Exhaust particulate eliminating device for diesel engine
JP3070244B2 (en) Diesel engine exhaust purification system
JP2913959B2 (en) Exhaust particulate cleaning equipment
JPH07332066A (en) Exhaust emission control device of diesel engine
JPH05163929A (en) Exhaust particulate emission control device
KR0157853B1 (en) Exhaust gas purifying device
JP2589593Y2 (en) Diesel engine exhaust purification system
JP3580563B2 (en) Exhaust gas particulate purification system for internal combustion engine
JPH0480204B2 (en)
JPH062530A (en) Exhaust emission control device for internal combustion engine
JPH05149126A (en) Diesel particulate after-treatment device
JPS6319532Y2 (en)
JP2838609B2 (en) Exhaust gas purification device for internal combustion engine
JP2894074B2 (en) Diesel engine exhaust particulate removal equipment
JPS5813115A (en) Exhaust gas purifier device
JPH05222918A (en) Diesel exhaust emission control device
JPH0432211B2 (en)
JPH05321639A (en) Exhaust particulate purifying device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991207

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees