JPH052303A - Image forming device - Google Patents

Image forming device

Info

Publication number
JPH052303A
JPH052303A JP3154334A JP15433491A JPH052303A JP H052303 A JPH052303 A JP H052303A JP 3154334 A JP3154334 A JP 3154334A JP 15433491 A JP15433491 A JP 15433491A JP H052303 A JPH052303 A JP H052303A
Authority
JP
Japan
Prior art keywords
adhesion amount
image
developer
toner
image carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3154334A
Other languages
Japanese (ja)
Inventor
Rintaro Nakane
林太郎 中根
Jiro Egawa
二郎 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3154334A priority Critical patent/JPH052303A/en
Publication of JPH052303A publication Critical patent/JPH052303A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To optimize fluctuations in an image density caused by a change in environment and the lapse of time in a cycle shorter than that of maintenance, without depending on the maintenance, to achieve the stability of a high image density, and to reduce cost required for the maintenance. CONSTITUTION:A toner sticking quantity calculating part 47 calculates the forecasting value of the sticking quantity of toner stuck on a photosensitive drum 1 by development, from image data for forming an image. A toner sticking quantity measuring part 8 measures the sticking quantity of the toner stuck to a latent image formed on the photosensitive drum 1 based on the image data used for calculating the forecasting value of the above-mentioned toner sticking quantity, by the development. A control circuit 45 compares the measured toner sticking quantity with the above-mentioned calculated forecasting value, and executes processing for changing, at least, one of an electrifying quantity by an electrifier 2, a developing bias voltage by a developing unit 4, an exposure by an optical system 13, the toner density of the developing unit 4, etc., which are image forming conditions, based on the result of the measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、たとえばカラーレーザ
プリンタやカラーデジタル複写機などの電子写真式カラ
ー画像形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic color image forming apparatus such as a color laser printer or a color digital copying machine.

【0002】[0002]

【従来の技術】たとえば、同じ複写機で同じ原稿なのに
複写した複写物の濃さが違うといった経験を持つ人は多
いと思われる。電子写真における画像濃度の変動は、環
境、経時による画像形成条件の変化、劣化による影響で
ある。アナログ複写機は勿論、多階調のプリンタあるい
はデジタル複写機では、この画像濃度の変動をおさえ、
安定化を図ることが重要である。特に、カラーにおいて
は、濃度再現性のみならず、色再現性にまで影響を与え
てしまうため、画像濃度の安定化は必要不可欠な要求で
あるといえる。そこで、従来、これらを材料とプロセス
自体に許容を持たせ、メンテナンスにより画像安定化を
図ってきた。
2. Description of the Related Art For example, it seems that there are many people who have the experience that the same copy is copied by the same copy machine but the copy has different darkness. Fluctuations in image density in electrophotography are the effects of environmental changes, changes in image forming conditions over time, and deterioration. In analog copying machines as well as in multi-tone printers or digital copying machines, this fluctuation in image density is suppressed.
Stabilization is important. In particular, in color, not only the density reproducibility but also the color reproducibility is affected, so it can be said that stabilization of the image density is an essential requirement. Therefore, conventionally, it has been attempted to stabilize the image through maintenance by allowing these materials and the process itself.

【0003】[0003]

【発明が解決しようとする課題】しかし、材料とプロセ
ス自体に許容を持たせるには限界があり、メンテナンス
には労力および、、そのコストがかかり、さらに、メン
テナンスの頻度に比べ、画像濃度の変動する周期は短
く、メンテナンスだけでは、安定な画像濃度は得られな
いという問題があった。
However, there is a limit to allowance in materials and processes themselves, maintenance requires labor and cost, and moreover, the image density varies as compared with the frequency of maintenance. However, there is a problem that the stable image density cannot be obtained only by maintenance.

【0004】そこで、本発明は、環境、経時の変化によ
る画像濃度の変動を、メンテナンスに頼らず、また、メ
ンテナンスの周期よりも短いサイクルで適正化でき、高
い画像濃度の安定性が達成でき、メンテナンスに要する
コストが軽減できる画像形成装置を提供することを目的
とする。
Therefore, according to the present invention, fluctuations in the image density due to changes in the environment and with time can be optimized without depending on maintenance, and in a cycle shorter than the maintenance cycle, high image density stability can be achieved. An object of the present invention is to provide an image forming apparatus capable of reducing the cost required for maintenance.

【0005】[0005]

【課題を解決するための手段】本発明の画像形成装置
は、像担持体上に画像データに基づいて潜像を形成する
潜像形成手段と、この潜像形成手段で形成された前記像
担持体上の潜像を現像剤で現像する現像手段と、前記画
像データから、前記現像手段の現像により前記像担持体
上に付着する現像剤の付着量の予測値を算出する現像剤
付着量算出手段と、この現像剤付着量算出手段において
現像剤付着量の予測値を算出するのに用いた画像データ
に基づいて形成された前記像担持体上の潜像に前記現像
手段の現像により付着した現像剤の付着量を計測する現
像剤付着量計測手段と、この現像剤付着量計測手段の計
測値と前記現像剤付着量算出手段で算出された予測値と
を比較する比較手段と、この比較手段の比較結果に基づ
き前記潜像形成手段または現像手段における像形成条件
を変更する像形成条件変更手段とを具備している。
SUMMARY OF THE INVENTION An image forming apparatus of the present invention comprises a latent image forming means for forming a latent image on an image carrier based on image data, and the image bearing formed by the latent image forming means. A developing means for developing a latent image on the body with a developer, and a developer adhesion amount calculation for calculating, from the image data, a predicted value of an adhesion amount of the developer adhered on the image carrier by the development of the developing means. Means and the latent image on the image carrier formed based on the image data used to calculate the predicted value of the developer adhesion amount in the developer adhesion amount calculation means by the development of the developing means. The developer adhesion amount measuring means for measuring the adhesion amount of the developer, the comparing means for comparing the measured value of the developer adhesion amount measuring means with the predicted value calculated by the developer adhesion amount calculating means, and this comparison The latent image forming means based on the comparison result of the means. Others are provided with an image forming condition changing means for changing an image forming condition in the developing unit.

【0006】[0006]

【作用】画像形成を行なうための画像データから、現像
により像担持体上に付着する現像剤の付着量の予測値を
算出し、この現像剤付着量の予測値を算出するのに用い
た画像データに基づいて形成された像担持体上の潜像に
現像により付着した現像剤の付着量を計測し、この計測
した現像剤付着量と上記算出された予測値とを比較し、
この比較結果に基づき像形成条件である像担持体に対す
る帯電量、現像バイアス電圧、露光量、現像剤の濃度な
どの少なくとも1つを変更することにより、環境、経時
の変化による画像濃度の変動を、メンテナンスに頼ら
ず、また、メンテナンスの周期よりも短いサイクルで適
正化でき、高い画像濃度の安定性が達成でき、メンテナ
ンスに要するコスト(人件費、器材など)が軽減でき
る。
The image used to calculate the predicted value of the amount of developer adhered to the image carrier by development from the image data for forming an image, and the predicted value of the amount of developer adhered The amount of developer adhered to the latent image on the image carrier formed based on the data is measured by development, and the measured amount of developer adhering to the calculated predicted value is compared,
Based on this comparison result, by changing at least one of the image forming condition, such as the charge amount with respect to the image carrier, the developing bias voltage, the exposure amount, and the density of the developer, the change in the image density due to changes in the environment and the passage of time can be suppressed. In addition, without relying on maintenance, it can be optimized in a cycle shorter than the maintenance cycle, high image density stability can be achieved, and maintenance costs (labor costs, equipment, etc.) can be reduced.

【0007】[0007]

【実施例】以下、本発明の一実施例について図面を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0008】図2は、本発明に係る画像形成装置の一例
としてカラーレーザプリンタの構成を示すものである。
図において、1は像担持体としての感光体ドラムで、図
面に対して反時計方向に回転する。感光体ドラム1の周
囲には、帯電手段である帯電器2、現像手段である第1
現像器4、第2現像器5、第3現像器6、第4現像器
7、トナー付着量計測部8、転写材支持体としての転写
ドラム9、クリーニング前除電器10、クリーナ11、
除電ランプ12が順次配置されている。
FIG. 2 shows the structure of a color laser printer as an example of the image forming apparatus according to the present invention.
In the figure, reference numeral 1 is a photosensitive drum as an image bearing member, which rotates counterclockwise with respect to the drawing. Around the photosensitive drum 1, a charger 2 as a charging unit and a first charging unit as a developing unit.
Developing device 4, second developing device 5, third developing device 6, fourth developing device 7, toner adhesion amount measuring unit 8, transfer drum 9 as a transfer material support, pre-cleaning static eliminator 10, cleaner 11,
The static elimination lamps 12 are sequentially arranged.

【0009】感光体ドラム1は図示矢印方向に回転し、
帯電器2により表面が一様に帯電される。帯電器2と第
1現像器4との間から、露光手段である光学系13から
出射されたレーザビーム光14が、感光体ドラム1の表
面に露光することにより、画像データに応じた静電潜像
が形成されるようになっている。
The photosensitive drum 1 rotates in the direction of the arrow in the figure,
The surface is uniformly charged by the charger 2. The laser beam light 14 emitted from the optical system 13 which is an exposing means from between the charging device 2 and the first developing device 4 exposes the surface of the photoconductor drum 1 so that an electrostatic charge corresponding to image data is obtained. A latent image is formed.

【0010】第1ないし第4現像器4〜7は、各色に対
応した感光体ドラム1上の静電潜像をカラーのトナー像
に顕像化するもので、たとえば、第1現像器4はマゼン
タ、第2現像器5はシアン、第3現像器6はイエロー、
第4現像器7はブラックの現像を行なうようになってい
る。
The first to fourth developing devices 4 to 7 visualize the electrostatic latent image on the photosensitive drum 1 corresponding to each color into a color toner image. For example, the first developing device 4 is Magenta, the second developing device 5 is cyan, the third developing device 6 is yellow,
The fourth developing device 7 is adapted to develop black.

【0011】一方、転写材としての転写用紙は、給紙カ
セット15から給紙ローラ16で送り出され、レジスト
ローラ17で一旦整位され、転写ドラム9の所定の位置
に吸着するようにレジストローラ17で送られ、吸着ロ
ーラ18および吸着帯電器19により転写ドラム9に静
電吸着される。転写用紙は、転写ドラム9に吸着した状
態で、転写ドラム9の時計方向の回転に伴って搬送され
る。
On the other hand, the transfer sheet as the transfer material is sent out from the sheet feeding cassette 15 by the sheet feeding roller 16, is once aligned by the registration roller 17, and is attracted to a predetermined position of the transfer drum 9 by the registration roller 17. And is electrostatically attracted to the transfer drum 9 by the attraction roller 18 and the attraction charger 19. The transfer sheet is attracted to the transfer drum 9 and is conveyed as the transfer drum 9 rotates clockwise.

【0012】現像された感光体ドラム1上のトナー像
は、感光体ドラム1と転写ドラム9とが対向する位置
で、転写帯電器20により転写用紙に転写される。複数
色の印字の場合、転写ドラム9の1回転を1周期とする
工程が、現像器を切換えて行ない、転写用紙に複数色の
トナー像を多重転写する。
The developed toner image on the photosensitive drum 1 is transferred to a transfer sheet by the transfer charger 20 at a position where the photosensitive drum 1 and the transfer drum 9 face each other. In the case of printing a plurality of colors, the step of setting one rotation of the transfer drum 9 as one cycle is performed by switching the developing device to multiple-transfer the toner images of a plurality of colors onto the transfer paper.

【0013】トナー像が転写された転写用紙は、転写ド
ラム9の回転に伴って更に搬送され、分離前内除電器2
1、分離前外除電器22、分離除電器23により除電さ
れた後、分離爪24により転写ドラム9から剥離され、
搬送ベルト25,26により定着器27に搬送される。
定着器27により加熱された転写用紙上のトナーは溶融
し、定着器27から排出された直後に転写用紙に定着
し、この定着を終了した転写用紙はトレー28に排出さ
れる。
The transfer sheet on which the toner image has been transferred is further conveyed as the transfer drum 9 rotates, and the internal static eliminator 2 before separation is transferred.
1. After removal of electricity by the external pre-separation static eliminator 22 and separation static eliminator 23, it is peeled off from the transfer drum 9 by the separation claw 24,
It is conveyed to the fixing device 27 by the conveyor belts 25 and 26.
The toner on the transfer paper heated by the fixing device 27 is melted and fixed on the transfer paper immediately after being discharged from the fixing device 27, and the transfer paper after this fixing is discharged to the tray 28.

【0014】図1は、本実施例に係るカラーレーザプリ
ンタの帯電、露光、現像手段とその制御手段に係わるブ
ロック図である。図において、感光体ドラム1は、図面
に対して反時計方向(図示矢印方向)に回転する。帯電
器2は、主に帯電ワイヤ31、導電性ケース32、グリ
ッド電極33により構成されている。帯電ワイヤ31
は、コロナ用の高圧電源34に接続されていて、感光体
ドラム1の表面にコロナ放電して帯電させる。グリッド
電極33は、グリッドバイアス用の高圧電源35に接続
されていて、グリッドバイアス電圧により感光体ドラム
1の表面に対する帯電量を制御している。
FIG. 1 is a block diagram relating to the charging, exposing and developing means of the color laser printer according to this embodiment and its control means. In the figure, the photosensitive drum 1 rotates counterclockwise (in the direction of the arrow in the figure) with respect to the drawing. The charger 2 is mainly composed of a charging wire 31, a conductive case 32, and a grid electrode 33. Charging wire 31
Is connected to a high voltage power supply 34 for corona and charges the surface of the photoconductor drum 1 by corona discharge. The grid electrode 33 is connected to a high voltage power supply 35 for grid bias, and controls the amount of charge on the surface of the photosensitive drum 1 by the grid bias voltage.

【0015】帯電器2により一様に帯電された感光体ド
ラム1の表面は、光学系13からの変調されたレーザビ
ーム光14の露光により静電潜像が形成される。階調デ
ータバッファ36は、図示しない外部機器またはコント
ローラからの階調データを格納し、プリンタの階調特性
を補正し、レーザ露光時間(パルス幅)データに変換す
る。
An electrostatic latent image is formed on the surface of the photosensitive drum 1 uniformly charged by the charger 2 by the exposure of the modulated laser beam light 14 from the optical system 13. The gradation data buffer 36 stores gradation data from an external device or controller (not shown), corrects the gradation characteristics of the printer, and converts it into laser exposure time (pulse width) data.

【0016】レーザ駆動回路37は、レーザビーム光1
4の走査位置に同期するよう、階調データバッファ36
からのレーザ露光時間データに応じてレーザ駆動電流
(発光時間)を変調させる。そして、変調されたレーザ
駆動電流により、光学系13内の半導体レーザ発振器
(図示しない)を駆動する。これにより、半導体レーザ
発振器は、露光時間データに応じて発光動作する。
The laser drive circuit 37 uses the laser beam light 1
The gradation data buffer 36 is synchronized with the scanning position of 4
The laser drive current (light emission time) is modulated according to the laser exposure time data from. Then, the semiconductor laser oscillator (not shown) in the optical system 13 is driven by the modulated laser drive current. As a result, the semiconductor laser oscillator emits light according to the exposure time data.

【0017】さらに、レーザ駆動回路37は、光学系1
3内のモニタ用受光素子(図示しない)の出力と設定値
とを比較し、駆動電流により半導体レーザ発振器の出力
光量を設定値に保つ制御を行なっている。
Further, the laser drive circuit 37 includes the optical system 1
The output of a monitor light receiving element (not shown) in 3 is compared with a set value, and control is performed to keep the output light amount of the semiconductor laser oscillator at the set value by the drive current.

【0018】一方、トナー付着量算出部47は、図示し
ない外部機器またはコントローラからの階調データによ
りトナー付着量の予測値の算出を行なう。すなわち、現
像後にトナー付着量計測部8の計測面に対応する範囲の
階調データバッファ36に受信される階調データ(また
は変換されたレーザ露光時間データ)を積算し、この積
算した値をトナー付着量計測部8の出力に相当する値に
変換する。
On the other hand, the toner adhesion amount calculation section 47 calculates a predicted value of the toner adhesion amount based on gradation data from an external device or controller (not shown). That is, after development, the gradation data (or the converted laser exposure time data) received by the gradation data buffer 36 in the range corresponding to the measurement surface of the toner adhesion amount measuring unit 8 is integrated, and this integrated value is used as the toner value. The value is converted into a value corresponding to the output of the adhesion amount measuring unit 8.

【0019】さて、静電潜像を形成された感光体ドラム
1は、現像器4により現像される。現像器4は、たとえ
ば2成分現像方式で、トナーとキャリアによる現像剤が
収納されており、その現像剤に対するトナーの重量比
(以降、トナー濃度と記す)は、トナー濃度計測部39
により計測される。そして、トナー濃度計測部39の出
力に応じて、トナー補給ローラ40を駆動するトナー補
給モータ41が制御されることにより、トナーホッパ4
2内のトナーが現像器4内に補給されるようになってい
る。
The photosensitive drum 1 on which the electrostatic latent image is formed is developed by the developing device 4. The developing device 4 is, for example, a two-component developing system and stores a developer consisting of toner and carrier, and the weight ratio of the toner to the developer (hereinafter referred to as toner concentration) is determined by the toner concentration measuring unit 39.
It is measured by. Then, the toner replenishment motor 41 that drives the toner replenishment roller 40 is controlled in accordance with the output of the toner concentration measurement unit 39, and thus the toner hopper 4
The toner in 2 is replenished in the developing device 4.

【0020】現像器4の現像ローラ43は、導電性の部
材で形成されていて、現像バイアス用の高圧電源44に
接続されており、現像バイアス電圧が印加された状態で
回転し、感光体ドラム1上の静電潜像に応じた像にトナ
ーを付着させる。こうして現像された画像領域内のトナ
ー像は、転写ドラム9によって支持搬送されてくる転写
用紙に転写される。
The developing roller 43 of the developing device 4 is formed of a conductive member, is connected to a high voltage power source 44 for developing bias, and rotates in a state in which a developing bias voltage is applied to the photosensitive drum. Toner is attached to the image corresponding to the electrostatic latent image on 1. The toner image in the image area thus developed is transferred to the transfer sheet supported and conveyed by the transfer drum 9.

【0021】また、現像後、先にトナー付着量算出部4
7においてトナー付着量の予測値の算出に用いた画像デ
ータの潜像が現像されている部分のトナー付着量をトナ
ー付着量計測部8によって計測する。
After the development, the toner adhesion amount calculation unit 4 is first
7, the toner adhesion amount measuring unit 8 measures the toner adhesion amount in the portion where the latent image of the image data used to calculate the predicted value of the toner adhesion amount is developed.

【0022】図3は、現像後に感光体ドラム1上に付着
したトナー48と、トナー付着量計測部8の感光体ドラ
ム1上における計測位置49を示している。トナー付着
量計測部8の計測面積に関して、階調パターンあるいは
高い印字率のパターンがくる確率の高い位置は、走査方
向(感光体ドラム1の軸方向)に対してほぼ中央となる
と考えられる。
FIG. 3 shows the toner 48 adhered on the photosensitive drum 1 after development and the measurement position 49 on the photosensitive drum 1 of the toner adhesion amount measuring unit 8. With respect to the measurement area of the toner adhesion amount measuring unit 8, it is considered that the position where the gradation pattern or the pattern having a high printing rate has a high probability is substantially in the center with respect to the scanning direction (the axial direction of the photoconductor drum 1).

【0023】特に、濃度階調の変動が気になるのは、面
積の大きいピクトリアル原稿の連続的な濃度階調、ま
た、色再現についても面積が大きいほど目立つ。本発明
が適用されるカラーレーザプリンタをカラー複写機とし
て用いる場合、前述のような印字面積の大きな原稿をと
る用途も多い。したがって、大きな印字面積のカラー原
稿ほど、濃度階調の変動を押さえる必要があり、また、
感光体ドラム1の中央部にそれらのパターンがくる可能
性が増す。
The fluctuation of the density gradation is particularly noticeable when the density gradation of a pictorial original having a large area is continuous, and the color reproduction becomes more noticeable as the area increases. When the color laser printer to which the present invention is applied is used as a color copying machine, there are many applications for taking a document having a large printing area as described above. Therefore, it is necessary to suppress variations in density gradation for color originals with a large print area.
There is an increased possibility that these patterns will come to the center of the photosensitive drum 1.

【0024】したがって、感光体ドラム1の中央部を計
測位置とするトナー付着量計測部8は、階調パターンあ
るいは高い印字率のパターンが現像されるときトナー付
着量の計測を行なう。
Therefore, the toner adhesion amount measuring unit 8 having the central portion of the photosensitive drum 1 as a measurement position measures the toner adhesion amount when a gradation pattern or a pattern having a high printing rate is developed.

【0025】トナー付着量計測部8の出力およびトナー
濃度計測部39の出力は、それぞれA/D変換器46で
デジタル化されて制御回路45に入力される。制御回路
45は、トナー付着量計測部8の出力(計測値)と先に
トナー付着量算出部47において算出したトナー付着量
の予測値とを比較し、その比較結果に応じて、像形成条
件である帯電器2のグリッドバイアス電圧、現像器4の
現像バイアス電圧、光学系13の露光量、現像剤のトナ
ー濃度、面積階調の発光時間などの少なくとも1つを変
更する処理を行なう。
The output of the toner adhesion amount measuring unit 8 and the output of the toner concentration measuring unit 39 are digitized by the A / D converter 46 and input to the control circuit 45. The control circuit 45 compares the output (measured value) of the toner adhesion amount measuring unit 8 with the predicted value of the toner adhesion amount previously calculated by the toner adhesion amount calculation unit 47, and according to the comparison result, the image forming condition is determined. At least one of the grid bias voltage of the charging device 2, the developing bias voltage of the developing device 4, the exposure amount of the optical system 13, the toner concentration of the developer, the light emission time of area gradation, and the like is changed.

【0026】また、制御回路45は、図示しない外部機
器またはコントローラからの階調データと、プリンタ単
独のテストパターンの階調データの切換え制御、計測部
8,39の各出力の取込み、高圧電源34,35,44
の出力量の制御、レーザ駆動電流の目標値設定、トナー
濃度の目標値設定、トナー補給制御、階調データのプリ
ンタの階調特性の補正処理などを行なう。
Further, the control circuit 45 controls switching of grayscale data from an external device or controller (not shown) and grayscale data of a test pattern of the printer alone, taking in each output of the measuring units 8 and 39, and the high voltage power source 34. , 35, 44
Output amount control, laser drive current target value setting, toner density target value setting, toner replenishment control, and gradation data printer gradation characteristic correction processing.

【0027】図4は、階調データに対するトナー付着量
Qを示している。階調データに対するトナー付着量の曲
線は、経時、環境による画像形成条件の変動により偏差
を生じる。したがって、経時、環境による階調データに
対するトナー付着量の曲線の変動が少ないことが、画像
濃度の安定化の必要条件となる。
FIG. 4 shows the toner adhesion amount Q with respect to the gradation data. The curve of the toner adhesion amount with respect to the gradation data has a deviation due to the change of the image forming condition due to time and environment. Therefore, it is a necessary condition for stabilizing the image density that there is little variation in the curve of the toner adhesion amount with respect to the gradation data due to time and environment.

【0028】図5は、帯電器2のグリッド電極33に対
するバイアス電圧の絶対値VG (以降、単にグリッドバ
イアス電圧と記す)に対する、帯電器2により感光体ド
ラム1の一様に帯電された表面電位(以降、未露光部電
位と記す)VO と、光学系13により一定光量で全面露
光され、減衰した感光体ドラム1の表面電位(以降、露
光部電位)VL と、現像バイアス電圧VD (一点鎖線)
を示している。
FIG. 5 shows the surface potential of the photosensitive drum 1 uniformly charged by the charger 2 with respect to the absolute value VG (hereinafter simply referred to as the grid bias voltage) of the bias voltage applied to the grid electrode 33 of the charger 2. (Hereinafter, referred to as unexposed portion potential) VO, the surface potential (hereinafter, exposed portion potential) VL of the photosensitive drum 1 which is entirely exposed by the optical system 13 with a constant light amount and attenuated, and the developing bias voltage VD (dashed line) )
Is shown.

【0029】本実施例では、反転現像のため電位または
電圧の極性は負となっている。グリッドバイアス電圧V
G が増加すると、未露光部電位VO および露光部電位V
L は、それぞれ減少する。グリッドバイアス電圧VG に
対する露光部電位VL 、未露光部電位VO を線形近似す
ると、次式のように表せる。 VO (VG )=K1 ・VG +K2 ……(1) VL (VG )=K3 ・VG +K4 ……(2) ただし、K1 〜K4 は定数
In this embodiment, the polarity of the potential or voltage is negative due to the reversal development. Grid bias voltage V
As G increases, the unexposed portion potential VO and the exposed portion potential V
L decreases respectively. A linear approximation of the exposed portion potential VL and the unexposed portion potential VO with respect to the grid bias voltage VG can be expressed as the following equation. VO (VG) = K1 · VG + K2 …… (1) VL (VG) = K3 · VG + K4 …… (2) where K1 to K4 are constants

【0030】ここで、現像バイアス電圧VD 、前述の露
光部電位VL 、未露光部電位VO の関係で現像濃度が変
化する。いま、コントラスト電位VC と背景電位VBGを
以下のように定義する。 VC =VD (VG )−VL (VG ) ……(3) VBG=VO (VG )−VD (VG ) ……(4)
Here, the development density changes depending on the relationship between the developing bias voltage VD, the exposed portion potential VL and the unexposed portion potential VO. Now, the contrast potential VC and the background potential VBG are defined as follows. VC = VD (VG) -VL (VG) (3) VBG = VO (VG) -V D (VG) (4)

【0031】コントラスト電位VC は、特にベタ部の濃
度に関与する(図6参照)。背景電位VBGは、パルス幅
変調を用いる多階調方式においては、主に低濃度部の濃
度に関与する(図7参照)。
The contrast potential VC is particularly related to the density of solid areas (see FIG. 6). The background potential VBG is mainly involved in the density of the low density portion in the multi-gradation method using pulse width modulation (see FIG. 7).

【0032】図8は、背景電位VBGを増加させたときの
階調データに対するトナー付着量Qを示している。低濃
度領域が図中Cの矢印方向に変化する。したがって、こ
れらコントラスト電位VC と背景電位VBGとにより現像
濃度を変化させることができる。ここで、式(1)〜
(4)から次式を得る。 VG (VC ,VBG)=(VC +VBG−K2 −K4 )/
(K1 +K3 )……(5) VD (VBG,VG )=K1 ・VG +K2 −VBG ……(6)
FIG. 8 shows the toner adhesion amount Q with respect to the gradation data when the background potential VBG is increased. The low-concentration region changes in the direction of the arrow C in the figure. Therefore, the developing density can be changed by the contrast potential VC and the background potential VBG. Here, formula (1)-
The following equation is obtained from (4). VG (VC, VBG) = (VC + VBG-K2-K4) /
(K1 + K3) (5) V D (VBG, VG) = K1 · VG + K2 -VBG (6)

【0033】上記式(5)、(6)から、グリッドバイ
アス電圧VG に対する露光部電位VL 、未露光部電位V
O の関係(K1 ,K2 )が既知のとき、コントラスト電
位VC と背景電位VBGを決定することで、グリッドバイ
アス電圧VG 、現像バイアス電圧VD が一義的に決定で
きる。
From the above equations (5) and (6), the exposed portion potential VL and the unexposed portion potential V with respect to the grid bias voltage VG.
When the relation (K1, K2) of O is known, the grid bias voltage VG and the developing bias voltage VD can be uniquely determined by determining the contrast potential VC and the background potential VBG.

【0034】あらかじめ感光体ドラム1の表面電位を計
測し、グリッドバイアス電圧VG に対する露光部電位V
L 、未露光部電位VO の関係(K1 ,K2 )を得た後、
コントラスト電位VC と背景電位VBGを設定する。前記
式(5)、(6)よりグリッドバイアス電圧VG、現像
バイアス電圧VD が一義的に決定され、この条件下で複
数の濃度パターンを作像し、これらの現像後のトナー付
着量Qを計測し、あらかじめ設定される基準値と比較し
て、その偏差ΔQから、適性現像濃度にするコントラス
ト電位VC と背景電位VBGのそれぞれの補正値ΔVC と
ΔVBGを推論する。この推論結果より、再びグリッドバ
イアス電圧VG 、現像バイアス電圧VDを設定し、濃度
パターンのトナー付着量計測を行ない、良好とする許容
範囲内になるまで繰り返す。
The surface potential of the photosensitive drum 1 is measured in advance, and the exposed portion potential V with respect to the grid bias voltage VG is measured.
After obtaining the relation (K1, K2) between L and the unexposed portion potential VO,
The contrast potential VC and the background potential VBG are set. The grid bias voltage VG and the developing bias voltage VD are uniquely determined by the above equations (5) and (6), a plurality of density patterns are imaged under these conditions, and the toner adhesion amount Q after development is measured. Then, the correction values ΔVC and ΔVBG of the contrast potential VC and the background potential VBG, which are suitable for the development density, are inferred from the deviation ΔQ by comparing with a preset reference value. Based on this inference result, the grid bias voltage VG and the developing bias voltage VD are set again, the toner adhesion amount of the density pattern is measured, and the measurement is repeated until it is within the acceptable range.

【0035】図9は、レーザビーム光の露光量Pに対す
るベタの画像濃度Dを示している。本実施例において
は、露光量Pに対して画像濃度Dが飽和し始める領域を
使用しており、光量変化をした場合、主に低濃度部に変
化を及ぼす(図10参照)。したがって、低濃度部の変
動に対して、露光量を変更することで補正できる。
FIG. 9 shows the solid image density D with respect to the exposure amount P of the laser beam light. In this embodiment, a region where the image density D starts to saturate with respect to the exposure amount P is used, and when the light amount changes, the change mainly affects the low density portion (see FIG. 10). Therefore, the fluctuation of the low density portion can be corrected by changing the exposure amount.

【0036】図11は、トナー濃度T/Dとトナー付着
量Qとの関係を示している。トナー濃度T/Dに対し、
トナー付着量Qは単調増加する。トナー濃度下限値d
は、感光体ドラム1へのキャリア付着、トナー濃度上限
値eは、未帯電トナーの増大などの不具合により経験的
に定まる値で、その両者で挟まれる範囲(2本の破線の
間)でトナー濃度を変更する。図12に、トナー濃度を
増加したときの階調データに対するトナー付着量Qの変
化を示す。
FIG. 11 shows the relationship between the toner density T / D and the toner adhesion amount Q. Toner density T / D
The toner adhesion amount Q monotonically increases. Toner density lower limit value d
Is a value that is empirically determined by a carrier adhesion to the photosensitive drum 1 and the toner concentration upper limit value e due to a problem such as an increase in uncharged toner, and the toner is within a range sandwiched between the two (between two broken lines). Change the concentration. FIG. 12 shows a change in the toner adhesion amount Q with respect to the gradation data when the toner density is increased.

【0037】図13は、画像データ、レーザ露光時間
(パルス幅)PD、トナー付着量Q、プリンタ出力画像
濃度Dを示している。本発明が適用されるカラーレーザ
プリンタがデジタル複写機の一部である場合、ある階調
データに対するレーザ露光時間PD、トナー付着量Q、
プリンタ出力画像濃度Dがそれぞれ対応している。経
時、環境により、トナー付着量Qが変動した場合(一点
鎖線g)、階調データとレーザ露光時間PDとの変換を
変更(2点鎖線h)することで、画像データに対するト
ナー付着量Qの関係を一定化することができる。本実施
例においては、階調データの段階数よりもレーザ露光時
間PDの段階数を多く有し、各階調データに対するレー
ザ露光時間PDが選択的に選べる選択手段を具備してい
る。次に、トナー付着量計測部8について詳細に説明す
る。
FIG. 13 shows image data, laser exposure time (pulse width) PD, toner adhesion amount Q, and printer output image density D. When the color laser printer to which the present invention is applied is a part of a digital copying machine, a laser exposure time PD for a certain gradation data, a toner adhesion amount Q,
The printer output image densities D correspond to each other. When the toner adhesion amount Q fluctuates due to time and the environment (one-dot chain line g), the conversion between the gradation data and the laser exposure time PD is changed (two-dot chain line h) to change the toner adhesion amount Q to the image data. The relationship can be made constant. In the present embodiment, the number of steps of the laser exposure time PD is larger than the number of steps of the gradation data, and the selection means for selectively selecting the laser exposure time PD for each gradation data is provided. Next, the toner adhesion amount measuring unit 8 will be described in detail.

【0038】図14は、トナー付着量計測部8の構成を
示すものである。図において、光源51からの光は感光
体ドラム1の表面に照射され、感光体ドラム1あるい
は、現像されて付着したトナーにより反射した反射光
は、光電変換部52でその反射光の光量に応じた電流に
変換され、さらに電流/電圧変換した後、伝送回路53
によりA/D変換器46に伝送され、ここでデジタル信
号に変換されて制御回路45に取込まれるようになって
いる。
FIG. 14 shows the structure of the toner adhesion amount measuring unit 8. In the figure, the light from the light source 51 is applied to the surface of the photoconductor drum 1, and the reflected light reflected by the photoconductor drum 1 or the toner that has been developed and attached depends on the amount of the reflected light in the photoelectric conversion unit 52. Converted into a current and further converted into a current / voltage, the transmission circuit 53
Is transmitted to the A / D converter 46, converted into a digital signal here, and taken into the control circuit 45.

【0039】光源51は、光源駆動回路54によって電
流駆動されている。光源駆動回路54は、制御回路45
によってオン、オフ制御、あるいは、光源51への駆動
電流の電流量を調整する信号により制御されている。
The light source 51 is current-driven by the light source drive circuit 54. The light source drive circuit 54 includes a control circuit 45.
Is controlled by ON / OFF control or a signal for adjusting the amount of drive current to the light source 51.

【0040】図15は、出力画像の分光反射率を示して
いる。イエロY、マゼンダM、シアンC、ブラックBK
のトナーをカラープリンタによりそれぞれ単色で出力し
た画像について分光反射率を示している。
FIG. 15 shows the spectral reflectance of the output image. Yellow Y, Magenta M, Cyan C, Black BK
Spectral reflectances are shown for images in which each toner is output in a single color by a color printer.

【0041】図16は、異なる入射角の感光体ドラムの
鏡面反射率を示している。反射面の法線に対して比較的
角度の浅い鏡面反射率を実線o、角度の深い鏡面反射率
を破線pで表している。角度が深くなるほど、反射の波
長依存性が少なくなることを表している。
FIG. 16 shows the specular reflectances of the photosensitive drums at different incident angles. The specular reflectance that is relatively shallow with respect to the normal of the reflecting surface is shown by a solid line o, and the specular reflectance that is deep by a broken line is shown by a broken line p. It indicates that the deeper the angle, the less the wavelength dependence of reflection.

【0042】このことは、表面の反射が角度に対して図
17に示すような特性であることからも理解できる。図
17において、RT は入射角に対して平行な方向の反射
率を示し、Rs は入射角に対して垂直な方向の反射率を
示している。したがって、入射角度が浅い場合、感光体
ドラムの表面の反射に比べ、感光体ドラムの感光体層を
透過し、その感光体層を支持する金属光沢を持つ導電性
支持部材により反射され、再び感光体層を透過した光が
大きいことになる。
This can be understood from the fact that the reflection on the surface has a characteristic with respect to the angle as shown in FIG. In FIG. 17, RT represents the reflectance in the direction parallel to the incident angle, and Rs represents the reflectance in the direction perpendicular to the incident angle. Therefore, when the incident angle is shallow, compared with the reflection on the surface of the photoconductor drum, the light is transmitted through the photoconductor layer of the photoconductor drum, reflected by the conductive support member having a metallic luster that supports the photoconductor layer, and again exposed to light. The light transmitted through the body layer is large.

【0043】したがって、本実施例の感光体ドラム1の
場合、カラートナー(Y、M、C)については、入射角
度を浅くし、光源51の光の波長を800nm以上の波
長領域にすることで、ダイナミックレンジが広くなる。
また、ブラックのトナーについては、比較的深い角度で
入射することで、波長についての限定範囲は300〜1
000nmの範囲ではなくなる。
Therefore, in the case of the photosensitive drum 1 of this embodiment, the incident angles of the color toners (Y, M, C) are made shallow and the wavelength of the light of the light source 51 is set to a wavelength range of 800 nm or more. , Wide dynamic range.
Further, with respect to black toner, the limited range of the wavelength is 300 to 1 by being incident at a relatively deep angle.
It is not in the range of 000 nm.

【0044】しかしながら、図18に示すように、感光
体ドラムの光感度が、500〜800nmに高いレベル
となるため、鏡面反射による画像領域への迷光、計測の
対象のトナー像の飛び散りなどを避けるため、この領域
の波長を避ける。本実施例では、感度の最高レベルの1
/10の波長以外を選び、860nm以上で、好ましく
は860〜1000nmの範囲の波長を選んだ。このと
きの光電変換部52として、図19に示したような感度
(受光量に対する変換電流量)を持つフォトダイオード
を使用した。
However, as shown in FIG. 18, since the photosensitivity of the photosensitive drum is as high as 500 to 800 nm, stray light to the image area due to specular reflection and scattering of the toner image to be measured are avoided. Therefore, avoid wavelengths in this region. In this embodiment, the highest level of sensitivity of 1
A wavelength other than / 10 was selected, and a wavelength of 860 nm or more, preferably in the range of 860 to 1000 nm was selected. As the photoelectric conversion unit 52 at this time, a photodiode having the sensitivity (converted current amount with respect to received light amount) as shown in FIG. 19 was used.

【0045】図20は、トナー付着量計測部8と感光体
ドラム1との間に設けられた遮蔽部材の設置状態を示し
ている。すなわち、トナー付着量計測部8は、その計測
面を感光体ドラム1の表面と相対向して配設されてい
る。そして、トナー付着量計測部8の計測面側に近接し
て板状の遮蔽部材61が開閉自在に設けられている。遮
蔽部材61の一端は、ソレノイド62のフラッパ63に
ピンで連結されていて、ソレノイド62のオン、オフ動
作による、そのフラッパ63の開閉動作にしたがい、遮
蔽部材61が図示矢印方向に移動するようになってい
る。
FIG. 20 shows the installation state of the shielding member provided between the toner adhesion amount measuring unit 8 and the photosensitive drum 1. That is, the toner adhesion amount measuring unit 8 is arranged such that its measurement surface faces the surface of the photosensitive drum 1. A plate-shaped shield member 61 is provided so as to be openable and closable close to the measurement surface side of the toner adhesion amount measuring unit 8. One end of the shielding member 61 is connected to the flapper 63 of the solenoid 62 by a pin, so that the shielding member 61 moves in the direction of the arrow in the figure according to the opening / closing operation of the flapper 63 by the on / off operation of the solenoid 62. Has become.

【0046】この遮蔽部材61は、トナー付着量計測部
8の非計測時は閉じて計測面を外部と遮蔽し、計測時の
み開放することで、トナーの飛散などによる計測面の汚
れを少なくでき、精度の高い計測可能な期間を長くする
ことができる。
The shielding member 61 is closed when the toner adhesion amount measuring unit 8 is not measured to shield the measurement surface from the outside, and is opened only during the measurement, so that the contamination of the measurement surface due to scattering of toner can be reduced. Therefore, it is possible to lengthen the period in which highly accurate measurement is possible.

【0047】このように、上記実施例によれば、画像形
成を行なうための画像データから、現像により感光体ド
ラム上に付着するトナーの付着量の予測値を算出し、こ
のトナー付着量の予測値を算出するのに用いた画像デー
タに基づいて形成された感光体ドラム上の潜像に現像に
より付着したトナーの付着量を計測し、この計測したト
ナー付着量と上記算出された予測値とを比較し、この比
較結果に基づき像形成条件である感光体ドラムに対する
帯電量、現像バイアス電圧、露光量、トナー濃度などの
少なくとも1つを変更することにより、環境、経時の変
化による画像濃度の変動を、メンテナンスに頼らず、ま
た、メンテナンスの周期よりも短いサイクルで適正化で
き、高い画像濃度の安定性が達成でき、メンテナンスに
要するコスト(人件費、器材など)が軽減できる。
As described above, according to the above-described embodiment, the predicted value of the amount of toner adhered on the photosensitive drum due to development is calculated from the image data for forming an image, and the predicted amount of toner adhered is calculated. The amount of toner adhering to the latent image formed on the photosensitive drum formed on the basis of the image data used to calculate the value is measured by development, and the measured amount of toner adhering and the predicted value calculated above. By changing at least one of the image forming condition such as the charge amount with respect to the photoconductor drum, the developing bias voltage, the exposure amount, and the toner concentration based on the comparison result. The fluctuation can be optimized without relying on maintenance and in a cycle shorter than the maintenance cycle, high image density stability can be achieved, and maintenance costs (human Costs, such as equipment) can be reduced.

【0048】図21は、トナー付着量計測部8の他の構
成例を示すもので、図13と同一部分には同一符号を付
して説明を省略し、異なる部分についてのみ説明する。
図において、光源51からの光は感光体ドラム1の表面
に照射され、感光体ドラム1あるいは、現像されて付着
したトナーにより反射した反射光は、第1光電変換部5
2および第2光電変換部55でその反射光の光量に応じ
た電流に変換され、さらに電流/電圧変換した後、伝送
回路53,56によりA/D変換器46にそれぞれ伝送
され、ここでそれぞれデジタル信号に変換されて制御回
路45に取込まれるようになっている。
FIG. 21 shows another example of the structure of the toner adhesion amount measuring unit 8. The same parts as those in FIG. 13 are designated by the same reference numerals, and the description thereof will be omitted. Only different parts will be described.
In the figure, the light from the light source 51 is applied to the surface of the photoconductor drum 1, and the reflected light reflected by the photoconductor drum 1 or the developed and attached toner is the first photoelectric conversion unit 5.
In the second and second photoelectric conversion units 55, the current is converted into a current according to the light amount of the reflected light, further current / voltage converted, and then transmitted to the A / D converter 46 by the transmission circuits 53 and 56, respectively. It is adapted to be converted into a digital signal and taken into the control circuit 45.

【0049】第1光電変換部52は、光源51による主
光線の感光体ドラム1の表面の反射光の主光線を含む光
を受光する位置に設けられ、第2光電変換部55は、光
源51による主光線の感光体ドラム1の表面の反射光の
主光線を含まない光を受光する位置に設けられている。
これにより、第1光電変換部52は、感光体ドラム1の
表面の鏡面反射光を受光し、第2光電変換部55は、感
光体ドラム1の表面の拡散反射光を受光することにな
る。
The first photoelectric conversion section 52 is provided at a position for receiving the light including the principal ray of the principal ray of the light source 51 reflected by the surface of the photosensitive drum 1, and the second photoelectric conversion section 55 is provided in the second photoelectric conversion section 55. Is provided at a position for receiving the light that does not include the principal ray of the principal ray of the reflected light on the surface of the photosensitive drum 1.
As a result, the first photoelectric conversion section 52 receives the specularly reflected light on the surface of the photosensitive drum 1, and the second photoelectric conversion section 55 receives the diffusely reflected light on the surface of the photosensitive drum 1.

【0050】図22は、第1光電変換部52および第2
光電変換部55と感光体ドラム1の反射光分布を示して
いる。光源51による主光線および、その主光線の感光
体ドラム1での反射光の主光線を一点鎖線lで示してあ
る。
FIG. 22 shows the first photoelectric converter 52 and the second photoelectric converter 52.
The distribution of reflected light from the photoelectric conversion unit 55 and the photosensitive drum 1 is shown. The principal ray of the light source 51 and the principal ray of the reflected ray of the principal ray on the photosensitive drum 1 are shown by a chain line l.

【0051】実線mは、何も付着していない感光体ドラ
ム1での反射光分布を示している。反射光の主光線lの
角度では、感光体ドラム1の表面、および感光体層を支
持する導電性支持部材の鏡面反射による光量が大きい。
その角度を外れると、感光体層の表面、感光体層、およ
び導電性支持部材による散乱した拡散光となり、鏡面反
射光と比べ、拡散反射光は光量が小さい。
The solid line m shows the distribution of reflected light on the photosensitive drum 1 on which nothing is attached. At the angle of the principal ray 1 of the reflected light, the amount of light due to specular reflection of the surface of the photoconductor drum 1 and the conductive support member that supports the photoconductor layer is large.
If it deviates from that angle, it becomes diffused light scattered by the surface of the photoconductor layer, the photoconductor layer, and the conductive support member, and the amount of diffusely reflected light is smaller than that of specularly reflected light.

【0052】感光体ドラム1の表面に現像によるトナー
の付着により、反射光分布は破線nのようになる。鏡面
反射光は、粒状のトナーにより散乱されて減少し、拡散
反射光は増加する。したがって、第1光電変換部52は
鏡面反射光の減少を計測し、第2光電変換部55は拡散
反射光の増加を計測する。
Due to the adhesion of toner to the surface of the photosensitive drum 1 due to development, the reflected light distribution becomes as indicated by the broken line n. The specularly reflected light is scattered and reduced by the granular toner, and the diffusely reflected light is increased. Therefore, the first photoelectric conversion unit 52 measures the decrease of the specular reflection light, and the second photoelectric conversion unit 55 measures the increase of the diffuse reflection light.

【0053】ここで、鏡面反射光によるトナー付着量の
計測は、トナーの付着がある程度よりも多くなると、鏡
面反射光の光量の変化が極めて小さくなる。また、拡散
反射光の場合、トナーの付着がある程度よりも少なくな
ると、トナーと感光体にもよるが、トナーが付着してい
ない感光体ドラム1の拡散反射光よりも光量が小さくな
ることがある。
Here, in the measurement of the toner adhesion amount by the specular reflection light, when the toner adhesion exceeds a certain amount, the change in the light amount of the specular reflection light becomes extremely small. Further, in the case of diffuse reflected light, when the amount of adhered toner is less than a certain amount, the amount of light may be smaller than that of the diffuse reflected light of the photosensitive drum 1 on which toner is not adhered, depending on the toner and the photoconductor. .

【0054】したがって、鏡面反射光および拡散反射光
をそれぞれ計測し、そのときの、それぞれの光量からト
ナー付着量を換算することで、一方のみの計測に比べ、
より高い精度の広いレンジの計測が可能となる。
Therefore, by measuring the specular reflection light and the diffuse reflection light, respectively, and converting the toner adhesion amount from the respective light amounts at that time, as compared with the measurement of only one,
A wide range of measurement with higher accuracy becomes possible.

【0055】[0055]

【発明の効果】以上詳述したように本発明によれば、環
境、経時の変化による画像濃度の変動を、メンテナンス
に頼らず、また、メンテナンスの周期よりも短いサイク
ルで適正化でき、高い画像濃度の安定性が達成でき、メ
ンテナンスに要するコストが軽減できる画像形成装置を
提供できる。
As described in detail above, according to the present invention, fluctuations in image density due to changes in the environment and time can be optimized without relying on maintenance, and in a cycle shorter than the maintenance cycle, resulting in high image quality. It is possible to provide an image forming apparatus that can achieve density stability and reduce maintenance costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るカラーレーザプリンタ
の帯電、露光、現像手段とその制御手段に係わるブロッ
ク図。
FIG. 1 is a block diagram relating to a charging, exposing, developing means and its control means of a color laser printer according to an embodiment of the present invention.

【図2】カラーレーザプリンタの概略構成図。FIG. 2 is a schematic configuration diagram of a color laser printer.

【図3】感光体ドラム上に付着したトナーとトナー付着
量計測部の感光体ドラム上における計測位置を示す図。
FIG. 3 is a diagram showing toner adhering to the photosensitive drum and a measurement position on the photosensitive drum of a toner adhering amount measuring unit.

【図4】階調データに対するトナー付着量を示す図。FIG. 4 is a diagram showing a toner adhesion amount with respect to gradation data.

【図5】帯電器のグリッドバイアス電圧に対する感光体
ドラムの未露光部電位および露光部電位と現像バイアス
電圧を示す図。
FIG. 5 is a diagram showing an unexposed portion potential, an exposed portion potential, and a developing bias voltage of a photosensitive drum with respect to a grid bias voltage of a charger.

【図6】コントラスト電位に対するベタ部の画像濃度を
示す図。
FIG. 6 is a diagram showing an image density of a solid portion with respect to a contrast potential.

【図7】感光体ドラム表面の未露光部電位と低濃度パタ
ーンによる電位および現像バイアス電圧との関係を示す
図。
FIG. 7 is a diagram showing the relationship between the potential of an unexposed portion on the surface of the photosensitive drum, the potential of a low density pattern, and the developing bias voltage.

【図8】背景電位を増加させたときの階調データに対す
るトナー付着量を示す図。
FIG. 8 is a diagram showing a toner adhesion amount with respect to gradation data when the background potential is increased.

【図9】露光量に対するベタの画像濃度を示す図。FIG. 9 is a diagram showing a solid image density with respect to an exposure amount.

【図10】露光量を変化させたときの階調データに対す
るトナー付着量を示す図。
FIG. 10 is a diagram showing the toner adhesion amount with respect to the gradation data when the exposure amount is changed.

【図11】トナー濃度とトナー付着量との関係を示す
図。
FIG. 11 is a diagram showing a relationship between toner density and toner adhesion amount.

【図12】トナー濃度を増加したときの階調データに対
するトナー付着量の変化を示す図。
FIG. 12 is a diagram showing a change in toner adhesion amount with respect to gradation data when the toner density is increased.

【図13】画像データ、レーザ露光時間、トナー付着
量、プリンタ出力画像濃度の関係を示す図。
FIG. 13 is a diagram showing a relationship among image data, laser exposure time, toner adhesion amount, and printer output image density.

【図14】トナー付着量計測部の構成を示すブロック
図。
FIG. 14 is a block diagram showing a configuration of a toner adhesion amount measuring unit.

【図15】プリンタ出力画像の分光反射率を示す図。FIG. 15 is a diagram showing the spectral reflectance of an image output from a printer.

【図16】異なる光入射角度の感光体ドラムの鏡面反射
率を示す図。
FIG. 16 is a diagram showing the specular reflectance of a photosensitive drum at different light incident angles.

【図17】光入射角度に対する感光体ドラム表面の反射
特性を示す図。
FIG. 17 is a diagram showing the reflection characteristics of the surface of the photosensitive drum with respect to the light incident angle.

【図18】感光体ドラムの光感度特性を示す図。FIG. 18 is a diagram showing a photosensitivity characteristic of a photosensitive drum.

【図19】光電変換部の感度特性を示す図。FIG. 19 is a diagram showing sensitivity characteristics of a photoelectric conversion unit.

【図20】トナー付着量計測部と感光体ドラムとの間に
設けられた遮蔽部材の設置状態を示す図。
FIG. 20 is a diagram showing an installation state of a shielding member provided between the toner adhesion amount measuring unit and the photosensitive drum.

【図21】トナー付着量計測部の他の構成例を示すブロ
ック図。
FIG. 21 is a block diagram showing another configuration example of the toner adhesion amount measuring unit.

【図22】図21における第1光電変換部および第2光
電変換部と感光体ドラムの反射光分布を示す図。
22 is a diagram showing the distribution of reflected light from the first and second photoelectric conversion units and the photosensitive drum shown in FIG.

【符号の説明】[Explanation of symbols]

1……感光体ドラム(像担持体)、2……帯電器(帯電
手段)、4〜7……現像器(現像手段)、8……トナー
付着量測定部、9……転写ドラム、13……光学系(露
光手段)、13……レーザビーム光、20…転写帯電
器、27……定着器、34……コロナ用高圧電源、35
……グリッドバイアス用高圧電源、36……階調データ
バッファ、37……レーザ駆動回路、39……トナー濃
度計測部、40……トナー補給ローラ、43……現像ロ
ーラ、44……現像バイアス用高圧電源、45……制御
回路、46……A/D変換器、47……トナー付着量算
出部、51……光源、52,55……光電変換部、61
……遮蔽部材。
1 ... Photosensitive drum (image bearing member), 2 ... Charging device (charging means), 4-7 ... Developing device (developing means), 8 ... Toner adhesion amount measuring unit, 9 ... Transfer drum, 13 ...... Optical system (exposure means), 13 ・ ・ ・ Laser beam light, 20 ・ ・ ・ Transfer charger, 27 ・ ・ ・ Fixer, 34 ・ ・ ・ Corona high voltage power supply, 35
...... High voltage power supply for grid bias, 36 ・ ・ ・ Gradation data buffer, 37 ・ ・ ・ Laser drive circuit, 39 ・ ・ ・ Toner density measuring unit, 40 ・ ・ ・ Toner replenishing roller, 43 ・ ・ ・ Developing roller, 44 ・ ・ ・ For developing bias High-voltage power supply, 45 ... Control circuit, 46 ... A / D converter, 47 ... Toner adhesion amount calculation unit, 51 ... Light source, 52, 55 ... Photoelectric conversion unit, 61
...... Shielding member.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03G 15/08 115 7635−2H ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G03G 15/08 115 7635-2H

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 像担持体上に画像データに基づいて潜像
を形成する潜像形成手段と、この潜像形成手段で形成さ
れた前記像担持体上の潜像を現像剤で現像する現像手段
と、前記画像データから、前記現像手段の現像により前
記像担持体上に付着する現像剤の付着量の予測値を算出
する現像剤付着量算出手段と、この現像剤付着量算出手
段において現像剤付着量の予測値を算出するのに用いた
画像データに基づいて形成された前記像担持体上の潜像
に前記現像手段の現像により付着した現像剤の付着量を
計測する現像剤付着量計測手段と、この現像剤付着量計
測手段の計測値と前記現像剤付着量算出手段で算出され
た予測値とを比較する比較手段と、この比較手段の比較
結果に基づき前記潜像形成手段または現像手段における
像形成条件を変更する像形成条件変更手段とを具備した
ことを特徴とする画像形成装置。
1. A latent image forming means for forming a latent image on an image carrier based on image data, and a developing process for developing the latent image formed by the latent image forming means on the image carrier with a developer. Means, a developer adhesion amount calculation means for calculating, from the image data, a predicted value of the adhesion amount of the developer adhered on the image bearing member by the development of the developing means, and the developer adhesion amount calculation means A developer adhesion amount for measuring the adhesion amount of the developer adhered by the development of the developing means to the latent image formed on the image carrier based on the image data used to calculate the predicted value of the agent adhesion amount. Measuring means, comparing means for comparing the measured value of the developer adhesion amount measuring means with the predicted value calculated by the developer adhesion amount calculating means, and the latent image forming means or the latent image forming means based on the comparison result of the comparing means. Change the image forming conditions in the developing means And an image forming condition changing unit.
【請求項2】 前記現像剤付着量計測手段は、前記像担
持体で反射し、かつ、前記像担持体上の現像剤で吸収ま
たは散乱する波長の光を前記像担持体に照射する光源
と、この光源から出力される光の波長に感度を持ち、前
記像担持体からの反射光を受光する光電変換手段とから
なることを特徴とする請求項1記載の画像形成装置。
2. A light source for irradiating the image carrier with a light having a wavelength that is reflected by the image carrier and is absorbed or scattered by the developer on the image carrier. The image forming apparatus according to claim 1, further comprising: a photoelectric conversion unit having sensitivity to a wavelength of light output from the light source and receiving reflected light from the image carrier.
【請求項3】 前記現像剤付着量計測手段の光源および
光電変換手段は、前記像担持体の表面の方線方向でない
位置に設けられ、前記像担持体に光を照射する1つの光
源と、この光源からの光が前記像担持体により鏡面反射
する光を受光する第1光電変換手段と、前記光源からの
光が前記像担持体により拡散反射する光を受光する第2
光電変換手段とからなることを特徴とする請求項2記載
の画像形成装置。
3. The light source and photoelectric conversion means of the developer adhesion amount measuring means are provided at positions not on the surface of the image carrier in the direction of the normal line, and one light source for irradiating the image carrier with light, A first photoelectric conversion unit that receives light from the light source that is specularly reflected by the image carrier, and a second photoelectric conversion unit that receives light from the light source that is diffusely reflected by the image carrier.
The image forming apparatus according to claim 2, further comprising a photoelectric conversion unit.
【請求項4】 像担持体上に画像データに基づいて潜像
を形成する潜像形成手段と、この潜像形成手段で形成さ
れた前記像担持体上の潜像を現像剤で現像する現像手段
と、前記画像データから、前記現像手段の現像により前
記像担持体上に付着する現像剤の付着量の予測値を算出
する現像剤付着量算出手段と、前記像担持体の表面と相
対向して設けられ、前記現像剤付着量算出手段において
現像剤付着量の予測値を算出するのに用いた画像データ
に基づいて形成された前記像担持体上の潜像に前記現像
手段の現像により付着した現像剤の付着量を計測する現
像剤付着量計測手段と、この現像剤付着量計測手段と前
記像担持体との間に開閉自在に設けられ、前記現像剤付
着量計測手段の計測時以外は前記現像剤付着量計測手段
と前記像担持体との間を遮蔽する遮蔽部材と、前記現像
剤付着量計測手段の計測値と前記現像剤付着量算出手段
で算出された予測値とを比較する比較手段と、この比較
手段の比較結果に基づき前記潜像形成手段または現像手
段における像形成条件を変更する像形成条件変更手段と
を具備したことを特徴とする画像形成装置。
4. A latent image forming means for forming a latent image on an image carrier based on image data, and a developing process for developing the latent image formed by the latent image forming means on the image carrier with a developer. Means, a developer adhesion amount calculation means for calculating a predicted value of an adhesion amount of the developer adhered on the image carrier by the development of the developing means from the image data, and a surface of the image carrier facing each other. And the latent image on the image carrier formed based on the image data used to calculate the predicted value of the developer adhesion amount in the developer adhesion amount calculation unit is developed by the development unit. The developer adhesion amount measuring means for measuring the adhesion amount of the adhered developer and the developer adhesion amount measuring means and the image carrier are provided so as to be openable and closable at the time of measurement of the developer adhesion amount measuring means. Other than the above, the developer adhesion amount measuring means and the image carrier are A shielding member for shielding the space, a comparing means for comparing the measured value of the developer adhesion amount measuring means and the predicted value calculated by the developer adhesion amount calculating means, and the latent value based on the comparison result of the comparing means. An image forming apparatus comprising: an image forming condition changing unit that changes an image forming condition in an image forming unit or a developing unit.
JP3154334A 1991-06-26 1991-06-26 Image forming device Pending JPH052303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3154334A JPH052303A (en) 1991-06-26 1991-06-26 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3154334A JPH052303A (en) 1991-06-26 1991-06-26 Image forming device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4253149A Division JPH05204218A (en) 1992-09-22 1992-09-22 Image forming device

Publications (1)

Publication Number Publication Date
JPH052303A true JPH052303A (en) 1993-01-08

Family

ID=15581883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3154334A Pending JPH052303A (en) 1991-06-26 1991-06-26 Image forming device

Country Status (1)

Country Link
JP (1) JPH052303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612144A (en) * 1992-11-11 1997-03-18 Asahi Glass Company Ltd. Electrification removing component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612144A (en) * 1992-11-11 1997-03-18 Asahi Glass Company Ltd. Electrification removing component

Similar Documents

Publication Publication Date Title
JPH052305A (en) Image forming device
US6121986A (en) Process control for electrophotographic recording
JP2619218B2 (en) Automatic compensation method for toner concentration drift due to aging of developing device
JP3445809B2 (en) Image forming apparatus and control method thereof
US5386276A (en) Detecting and correcting for low developed mass per unit area
US5216463A (en) Electrophotographic process control device using a neural network to control an amount of exposure
EP0966701A1 (en) Image forming apparatus and method with control of electrostatic transfer using constant current
US6144024A (en) Digital densitometer using voltage-controlled oscillator, counter, and look-up table
JPH05119567A (en) Image forming device
CA2076846C (en) Toner dispensing rate adjustment using the slope of successive ird readings
US5225872A (en) Image forming apparatus having device for determining moisture absorption
US5862433A (en) Electrostatographic method and apparatus with improved auto cycle up
EP0602852B1 (en) System and method for controlling voltages in a printing apparatus
JPH06110286A (en) Image forming device
JPH052306A (en) Image forming device
JPH052303A (en) Image forming device
JPH05204217A (en) Image forming device
JPH09127757A (en) Image forming device
JPH05204218A (en) Image forming device
JPH06110285A (en) Image forming device
US6118953A (en) Electrostatographic apparatus and method with programmable toner concentration decline with the developer life
JPH052304A (en) Image forming device
JPH06102734A (en) Device and method for image forming
JP3412385B2 (en) Image forming device
US5631728A (en) Process control for electrophotographic recording