JPH0523024B2 - - Google Patents

Info

Publication number
JPH0523024B2
JPH0523024B2 JP60051514A JP5151485A JPH0523024B2 JP H0523024 B2 JPH0523024 B2 JP H0523024B2 JP 60051514 A JP60051514 A JP 60051514A JP 5151485 A JP5151485 A JP 5151485A JP H0523024 B2 JPH0523024 B2 JP H0523024B2
Authority
JP
Japan
Prior art keywords
silicon semiconductor
electrode
light
film
thiophene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60051514A
Other languages
Japanese (ja)
Other versions
JPS61211964A (en
Inventor
Hiromi Yamakita
Kyoshi Hayakawa
Masato Tazawa
Hiroshi Taoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60051514A priority Critical patent/JPS61211964A/en
Priority to US06/838,822 priority patent/US4647348A/en
Publication of JPS61211964A publication Critical patent/JPS61211964A/en
Publication of JPH0523024B2 publication Critical patent/JPH0523024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】 (a) 技術分野の説明 本発明は、エネルギー利用技術に関するもので
あり、詳しく言えば、光エネルギーを電気エネル
ギーなどに変換する湿式光電池に用いられる被覆
シリコン半導体電極の製造方法に関するものであ
る。
[Detailed Description of the Invention] (a) Description of the Technical Field The present invention relates to energy utilization technology, and more specifically, to the production of coated silicon semiconductor electrodes used in wet photovoltaic cells that convert light energy into electrical energy, etc. It is about the method.

(b) 従来技術の説明 半導体電極を用いた湿式光電池は、光エネルギ
ーを電気エネルギーに変換するためのものとし
て、また、水の光分解による水素の製造など、す
なわち化学エネルギーへの変換のためのものとし
て注目されている。しかし、半導体電極を電解質
溶液に浸漬するために、半導体が電解質溶液に溶
解したり、酸化されたりして、電極の寿命の短縮
や性能の急速な低下を招く場合が多いという欠点
をもつている。特に、シリコン半導体を動作電極
として、光照射して電気エネルギーへの変換を行
つた場合には、数秒間で電極表面にSiO2の膜が
生成し、急激な性能の劣化が起こる。これらの問
題点を解決するため、従来から半導体電極表面を
金などの貴金属の薄膜で被覆する方法(例えば、
Y.Nakato,K.Abe,H.Tsubomura,Ber.
Bunsenges.Phys.Chem,80,1002(1976))や、
ポリピロールなどの導電性高分子の薄膜で被覆す
る方法(例えば、R.Noufi,D.Tench,L.F.
Warren,J.Electrochem.Soc.128,2596(1981))
が試みられているが、均一な厚さの膜を生成する
ことが困難であつたり、また被覆電極を長時間使
用した場合には、被覆の剥離などが起こり、十分
な解決を見るには至つていないのが現状である。
(b) Description of the prior art Wet photovoltaic cells using semiconductor electrodes are used for converting light energy into electrical energy, and also for producing hydrogen by photolysis of water, that is, for converting it into chemical energy. It is attracting attention as a thing. However, since the semiconductor electrode is immersed in the electrolyte solution, the semiconductor often dissolves in the electrolyte solution or becomes oxidized, resulting in shortened electrode life and rapid deterioration of performance. . In particular, when a silicon semiconductor is used as a working electrode and light is irradiated to convert it into electrical energy, a SiO 2 film is formed on the electrode surface within a few seconds, resulting in rapid performance deterioration. To solve these problems, a conventional method has been to coat the surface of a semiconductor electrode with a thin film of a noble metal such as gold (for example,
Y. Nakato, K. Abe, H. Tsubomura, Ber.
Bunsenges.Phys.Chem, 80 , 1002 (1976)) and
A method of coating with a thin film of conductive polymer such as polypyrrole (for example, R. Noufi, D. Tench, LF
Warren, J.Electrochem.Soc. 128 , 2596 (1981))
However, it is difficult to produce a film with a uniform thickness, and if a coated electrode is used for a long time, the coating may peel off, so it is difficult to find a satisfactory solution. The current situation is that this is not the case.

(c) 発明の目的 本発明は上記の点に鑑み、長時間の使用におい
ても安定な性能をもつた被覆シリコン半導体電極
を製造することを目的とする。
(c) Object of the Invention In view of the above points, the object of the present invention is to manufacture a coated silicon semiconductor electrode that has stable performance even during long-term use.

(d) 発明の構成 この目的は本発明によれば、シリコン半導体の
表面において、チオフエンの脂肪族誘導体を光照
射と同時に電解重合して、その重合体の膜を生成
することによつて達成される。
(d) Structure of the Invention According to the present invention, this object is achieved by electrolytically polymerizing an aliphatic derivative of thiophene on the surface of a silicon semiconductor simultaneously with light irradiation to produce a film of the polymer. Ru.

まず、シリコン半導体としては、単結晶または
多結晶または無定形のシリコンにリン、アンチモ
ンなどをドープして半導体をもたせたものが用い
られる。
First, as the silicon semiconductor, single crystal, polycrystal, or amorphous silicon is doped with phosphorus, antimony, etc. to provide a semiconductor.

チオフエンの脂肪族誘導体としては、チオフエ
ン、3−メチルチオフエン、3−エチルチオフエ
ン、3−プロピルチオフエン、3,4−ジメチル
チオフエン、3,4−ジエチルチオフエンなどを
用いることができる。
As aliphatic derivatives of thiophene, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3,4-dimethylthiophene, 3,4-diethylthiophene, etc. can be used.

次に、シリコン半導体の表面において、チオフ
エン脂肪族誘導体を電解重合して、その重合体の
膜を生成させるには、まず精製したアセトニトリ
ルなどの溶媒にチオフエンの脂肪族誘導体を溶解
し、さらに支持電解質として、トリフルオロメタ
ンスルホン酸テトラブチルアンモニウムなどを添
加した溶液を調製する。これにフツ化水素酸で表
面をエツチングしたシリコン半導体電極と白金な
どの対極を入れ、ハロゲンランプなどの光源から
の光をシリコン半導体表面に照射すると同時に、
シリコン半導体に正の電圧を加えて、その表面に
おいて電解重合させるのである。ここにおいて、
単にシリコン半導体表面に光を照射する操作、又
は、単にシリコン半導体に正の電圧を加えて、そ
の表面において電解重合させる操作では、シリコ
ン半導体表面を被覆する均一な厚さのチオフエン
の脂肪族誘導体の重合体膜を形成することはでき
ず、光照射と同時に電解重合することによつて、
はじめて均一な膜が得られるのである。
Next, in order to electrolytically polymerize a thiophene aliphatic derivative on the surface of a silicon semiconductor to form a film of the polymer, the aliphatic thiophene derivative is first dissolved in a solvent such as purified acetonitrile, and then a supporting electrolyte is added. A solution is prepared by adding tetrabutylammonium trifluoromethanesulfonate. A silicon semiconductor electrode whose surface has been etched with hydrofluoric acid and a counter electrode such as platinum are placed in this, and at the same time the silicon semiconductor surface is irradiated with light from a light source such as a halogen lamp.
A positive voltage is applied to a silicon semiconductor to cause electrolytic polymerization on its surface. put it here,
In the operation of simply irradiating the silicon semiconductor surface with light, or simply applying a positive voltage to the silicon semiconductor and electrolytically polymerizing it on the surface, a uniform thickness of aliphatic derivative of thiophene is coated on the silicon semiconductor surface. It is not possible to form a polymer film, but by electrolytically polymerizing at the same time as light irradiation,
Only then can a uniform film be obtained.

ここで用いる光源としては、ハロゲンランプ、
タングステンランプ、キセノンランプ、水銀灯な
どのほか、太陽光でもよい。
The light source used here is a halogen lamp,
In addition to tungsten lamps, xenon lamps, mercury lamps, etc., sunlight may also be used.

また、支持電解質としては、上記トリフルオロ
メタンスルホン酸テトラブチルアンモニウムのほ
か、テトラフルオロホウ酸テトラブチルアンモニ
ウム、ヘキサフルオロリン酸テトラブチルアンモ
ンニウムなどが用いられる。
Further, as the supporting electrolyte, in addition to the above-mentioned tetrabutylammonium trifluoromethanesulfonate, tetrafluoroborate tetrabutylammonium, hexafluorophosphate tetrabutylammonium, etc. are used.

溶媒としては、アセトニトリルのほか、ニトロ
ベンゼン、ニトロメタンなどでもよい。
In addition to acetonitrile, nitrobenzene, nitromethane, etc. may be used as the solvent.

このように光照射を伴う電解重合によりシリコ
ンの表面に生成したチオフエン化合物ポリマーの
膜は支持電解質として用いた化合物の成分イオン
(例えばトリフルオロメタンスルホン酸イオン)
を含むため、高度の導電性を有する。また、通
常、半導体の表面に電解重合により、均一な膜を
形成することは、半導体の溶解、酸化などが起こ
るため困難であるが、本発明の方法によれば、容
易に均一な薄膜が得られる。一般にシリコン半導
体はきわめて酸化されやすく、湿式光電池の動作
電極として電解質中で用い、光照射した場合には
数秒間以内に光電流が極度に減衰することが知ら
れているが、本発明の方法によりシリコン半導体
表面に形成された均一な膜は、長時間にわたつて
保護効果を示し、電極の性能は安定であつた。
(参考例参照) (e) 発明の実施例 以下、本発明の代表的な実施例を示す。
In this way, the thiophene compound polymer film produced on the surface of silicon by electrolytic polymerization accompanied by light irradiation contains component ions of the compound used as the supporting electrolyte (e.g. trifluoromethanesulfonate ion).
It has a high degree of conductivity. Furthermore, it is normally difficult to form a uniform film on the surface of a semiconductor by electrolytic polymerization because the semiconductor dissolves, oxidizes, etc. However, according to the method of the present invention, a uniform thin film can be easily obtained. It will be done. In general, silicon semiconductors are extremely susceptible to oxidation, and when used in an electrolyte as a working electrode in a wet photovoltaic cell and irradiated with light, it is known that the photocurrent is extremely attenuated within a few seconds. The uniform film formed on the silicon semiconductor surface exhibited a protective effect over a long period of time, and the electrode performance was stable.
(See Reference Examples) (e) Examples of the Invention Typical examples of the present invention will be shown below.

実施例 1 精製した3−メチルチオフエン2.5gとトリフル
オロメタンスルホン酸テトラブチルアンモニウム
0.5gを精製したアセトニトリル29mlに溶解し、パ
イレツクス・ガラス製容器に入れ、これに白金電
極とフツ化水素酸であらかじめエツチングしたn
型単結晶シリコン半導体電極を浸漬し、アルゴン
ガスを6分間吹込んだ。このガラス製容器の外部
からシリコン半導体電極の表面にハロゲンランプ
の光を33.2mW/cm2の強度で照射すると同時に、
3.2ボルトの電圧をシリコン半導体電極に印加し
て、4分間電解重合したところ、シリコン半導体
の表面にトリフルオロメタンスルホン酸イオンを
含んだ3−メチルチオフエン・ポリマーの薄い膜
が生成した。なお、電解重合の際の電流はシリコ
ン半導体表面1cm2当り2.4〜0.83mAであつた。
Example 1 2.5 g of purified 3-methylthiophene and tetrabutylammonium trifluoromethanesulfonate
Dissolve 0.5 g in 29 ml of purified acetonitrile and place in a Pyrex glass container, to which a platinum electrode and an etched nanotube pre-etched with hydrofluoric acid are added.
A type single-crystal silicon semiconductor electrode was immersed, and argon gas was blown in for 6 minutes. At the same time, the surface of the silicon semiconductor electrode is irradiated with light from a halogen lamp at an intensity of 33.2 mW/cm 2 from the outside of this glass container.
When a voltage of 3.2 volts was applied to the silicon semiconductor electrode and electrolytic polymerization was performed for 4 minutes, a thin film of 3-methylthiophene polymer containing trifluoromethanesulfonate ions was formed on the surface of the silicon semiconductor. The current during electrolytic polymerization was 2.4 to 0.83 mA per cm 2 of the silicon semiconductor surface.

実施例 2 精製した3−メチルチオフエン2.5gとテトラフ
ルオロホウ酸テトラブチルアンモニウム0.42gを
精製したアセトニトリル29mlに溶解し、パイレツ
クス・ガラス製容器に入れ、これに白金電極とフ
ツ化水素酸であらかじめエツチングしたn型単結
晶シリコン半導体電極を浸漬し、アルゴンガスを
6分間吹込んだ。これに実施例1と同様の方法
で、112mW/cm2の強度で光照射すると同時に、
3.8ボルトの電圧をシリコン半導体に印加して、
1分間電解重合したところ、シリコン半導体の表
面にテトラフルオロホウ酸イオンを含んだ3−メ
チルチオフエン・ポリマーの薄い膜が生成した。
電解重合の際の電流はシリコン半導体表面1cm2
り5.2〜3.3mAであつた。
Example 2 2.5 g of purified 3-methylthiophene and 0.42 g of tetrabutylammonium tetrafluoroborate were dissolved in 29 ml of purified acetonitrile, placed in a Pyrex glass container, and etched in advance with a platinum electrode and hydrofluoric acid. The n-type single-crystal silicon semiconductor electrode thus prepared was immersed, and argon gas was blown therein for 6 minutes. This was irradiated with light at an intensity of 112 mW/cm 2 in the same manner as in Example 1, and at the same time,
By applying a voltage of 3.8 volts to a silicon semiconductor,
When electropolymerized for 1 minute, a thin film of 3-methylthiophene polymer containing tetrafluoroborate ions was formed on the surface of the silicon semiconductor.
The current during electrolytic polymerization was 5.2 to 3.3 mA per cm 2 of the silicon semiconductor surface.

参考例 1 光照射用の窓をもつガラス製容器に硫酸ナトリ
ウム、硫酸第1鉄、硫酸第2鉄アンモニウムそれ
ぞれ0.1モル/、硫酸0.12モル/を含む水溶
液(PH1.0)を入れ、これに実施例1で得られた
被覆シリコン半導体電極、銀−塩化銀比較電極及
び白金の対極を浸漬し、ハロゲンランプの光を
33.2mW/cm2の強度で照射して、光電流を測定し
た。照射開始後1時間における光電流の減衰率は
8.6%であつた。なお被覆しないシリコン電極の
光電流の減衰率は1分間でほぼ100%であつた。
Reference example 1 An aqueous solution (PH 1.0) containing 0.1 mol/each of sodium sulfate, ferrous sulfate, and ferric ammonium sulfate and 0.12 mol/of sulfuric acid was placed in a glass container with a window for light irradiation. The coated silicon semiconductor electrode obtained in Example 1, the silver-silver chloride comparison electrode, and the platinum counter electrode were immersed and exposed to light from a halogen lamp.
The photocurrent was measured by irradiating with an intensity of 33.2 mW/cm 2 . The decay rate of photocurrent for 1 hour after the start of irradiation is
It was 8.6%. Note that the photocurrent attenuation rate of the uncoated silicon electrode was approximately 100% in 1 minute.

(f) 発明の効果 本発明による被覆シリコン半導体電極は湿式光
電池の動作電極として用いる場合、電解質水溶液
中においても安定で良好な性能を有し、また接着
性の良いチオフエン化合物ポリマーを被覆したも
のであるため、被膜の剥離が起こらず、長時間の
使用に耐えることができる。これを用いて湿式光
電池を組立てれば、太陽エネルギーを電気エネル
ギーなどに変換して利用することが可能である。
(f) Effects of the invention When the coated silicon semiconductor electrode of the present invention is used as a working electrode of a wet photovoltaic cell, it is stable and has good performance even in an electrolyte aqueous solution, and is coated with a thiophene compound polymer that has good adhesive properties. Because of this, the coating does not peel off and can withstand long-term use. If a wet photovoltaic cell is assembled using this, solar energy can be converted into electrical energy and used.

Claims (1)

【特許請求の範囲】[Claims] 1 シリコン半導体の表面において、チオフエン
の脂肪族誘導体を光照射と同時に電解重合して、
その重合体の膜を生成させることを特徴とする被
覆シリコン半導体電極の製造方法。
1 On the surface of a silicon semiconductor, an aliphatic derivative of thiophene is electrolytically polymerized simultaneously with light irradiation,
A method for producing a coated silicon semiconductor electrode, comprising producing a film of the polymer.
JP60051514A 1985-03-14 1985-03-14 Manufacture of coated silicon semiconductor electrode Granted JPS61211964A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60051514A JPS61211964A (en) 1985-03-14 1985-03-14 Manufacture of coated silicon semiconductor electrode
US06/838,822 US4647348A (en) 1985-03-14 1986-03-12 Method for production of film-coated silicon semiconductor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60051514A JPS61211964A (en) 1985-03-14 1985-03-14 Manufacture of coated silicon semiconductor electrode

Publications (2)

Publication Number Publication Date
JPS61211964A JPS61211964A (en) 1986-09-20
JPH0523024B2 true JPH0523024B2 (en) 1993-03-31

Family

ID=12889112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60051514A Granted JPS61211964A (en) 1985-03-14 1985-03-14 Manufacture of coated silicon semiconductor electrode

Country Status (1)

Country Link
JP (1) JPS61211964A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292872A (en) * 1989-05-02 1990-12-04 Agency Of Ind Science & Technol Manufacture of stabilized semiconductor electrode

Also Published As

Publication number Publication date
JPS61211964A (en) 1986-09-20

Similar Documents

Publication Publication Date Title
Noufi et al. Protection of semiconductor photoanodes with photoelectrochemically generated polypyrrole films
De Jongh et al. Cu2O: electrodeposition and characterization
Kaneko et al. Photoresponse of a liquid junction polyaniline film
Bolts et al. Chemically derivatized n-type semiconducting germanium photoelectrodes. Persistent attachment and photoelectrochemical activity of ferrocene derivatives
Nakato et al. Hydrogen evolution and iodine reduction on an illuminated np junction silicon electrode and its application to efficient solar photoelectrolysis of hydrogen iodide
Kavan et al. Nafion modified TiO2 electrodes: photoresponse and sensitization by Ru (II)-bipyridyl complexes
JP3968819B2 (en) Photo-semiconductor electrode for wet solar cell, wet solar cell, and photoelectric conversion method
US4647348A (en) Method for production of film-coated silicon semiconductor electrode
Austin et al. Electrochemical and photoelectrochemical properties of rhodamine B
Loutfy et al. Electrodeposited polycrystalline thin films of cadmium chalcogenides for backwall photoelectrochemical cells
JPH0523024B2 (en)
JPH0523025B2 (en)
JPH0378978A (en) Manufacture of photo-electrochemical cell
Nakato et al. Tungsten‐or Molybdenum‐Coated p‐n Junction Silicon Electrodes for Efficient and Stable Photoelectrochemical Solar Energy Conversion
JP2004071682A (en) Inorganic-organic thin-film composite material
Gruszecki et al. Preparation of thin films of polycrystalline CdSe for solar energy conversion: II. Experimental
Bélanger et al. Characteristics and Stability of n‐Si/SnO2 and n‐Si/SnO2/Pt Photoanodes
Khan et al. Optimization of p-silicon surface by etching and electrodeposition of Pt and Ni for photosplitting of water
JP2004063758A (en) Dye sensitized solar cell and manufacturing method therefor
Gruszecki et al. Indium hexacyanoferrate (III) coating for stabilizing polycrystalline CdSe photoelectrodes
JPS59167975A (en) Photoelectric chemical battery
JPS61225214A (en) Production of thin-film oxidation polymer of aniline
Gningue et al. Stabilization of CdS and CdSe photoelectrodes modified by a catalyst‐containing polythiophene coating
JPH02292872A (en) Manufacture of stabilized semiconductor electrode
US4559282A (en) Stable N-CuInSe2 /iodide-iodine photoelectrochemical cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term