JPH05230090A - Method for selectively desulfating and oxidizing sulfated saccharide - Google Patents

Method for selectively desulfating and oxidizing sulfated saccharide

Info

Publication number
JPH05230090A
JPH05230090A JP7320192A JP7320192A JPH05230090A JP H05230090 A JPH05230090 A JP H05230090A JP 7320192 A JP7320192 A JP 7320192A JP 7320192 A JP7320192 A JP 7320192A JP H05230090 A JPH05230090 A JP H05230090A
Authority
JP
Japan
Prior art keywords
sulfate
sulfated
sulfated saccharide
organic base
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7320192A
Other languages
Japanese (ja)
Other versions
JP3217112B2 (en
Inventor
Saburo Hara
三郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Priority to JP07320192A priority Critical patent/JP3217112B2/en
Publication of JPH05230090A publication Critical patent/JPH05230090A/en
Application granted granted Critical
Publication of JP3217112B2 publication Critical patent/JP3217112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To obtain a new sulfated saccharide useful as a raw material for an improver for lipid metabolism by reacting an organic base salt of sulfated saccharide with N,O-bis(trimethylsilyl)acetamide and selectively desulfating a sulfate group bonded to primary hydroxyl group. CONSTITUTION:An aqueous solution of a sulfated saccharide (e.g. methyl-alpha- galactopyranoside-6 ammonium sulfate) is treated with an anion exchange resin and substituted into a free sulfuric ester type and the anion exchange resin is removed. The solution is mixed with an organic base such as pyridine to prepare an organic base salt of sulfated saccharide (e.g. methyl-alpha- galactosylpyranoside-6 pyridinium sulfate salt). An N,O-bis(trimethylsilyl) acetamide is added in the presence of the organic base salt, reacted at 80 deg.C for about one hour and sulfate group bonded to primary hydroxyl group of the sulfated saccharide is selectively desulfated to give a sulfated saccharide containing a sulfuric ester at a specific position which has not been known.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫酸化糖の選択的脱硫
酸化方法に関し、更に詳しくは硫酸化糖の硫酸エステル
のうち、第1級水酸基(構成糖単位が5単糖又は6単糖
類からなる場合は、それぞれ5位又は6位の水酸基を表
す)に結合している硫酸基を選択的に脱硫酸化する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively desulfating a sulfated sugar, and more particularly to a primary hydroxyl group (having 5 or 6 monosaccharides as a constituent sugar unit) among sulfated esters of a sulfated sugar. In the case of consisting of 5 and 6 respectively represent a hydroxyl group) and a method for selectively desulfating a sulfate group bonded to each.

【0002】[0002]

【従来の技術】生物活性を有する硫酸化糖を提供するた
めに、様々な硫酸化糖の脱硫酸方法が研究されている。
硫酸化糖の脱硫酸方法としては、塩化水素メタノ−ル中
で酸触媒により脱硫酸する方法が知られている(Kantor
T.G. and Schubert M., J. Amer. Chem. Soc. 79, 152
(1957) )。しかし、この方法では特定の硫酸基のみを
脱硫酸することはできず、またグリコシド結合のメタノ
リシスによる糖鎖の切断が起こるため低分子化し、もと
の鎖長を有する反応生成物の収量は低下する。
2. Description of the Related Art Various methods for desulfating sulfated sugars have been studied in order to provide sulfated sugars having biological activity.
As a method for desulfating sulfated sugar, a method of desulfating with an acid catalyst in hydrogen chloride methanol is known (Kantor
TG and Schubert M., J. Amer. Chem. Soc. 79 , 152
(1957)). However, this method cannot desulfurize only a specific sulfate group, and also the sugar chain is cleaved by the methanolysis of glycosidic bond, resulting in a low molecular weight and a low yield of the reaction product having the original chain length. To do.

【0003】収量よく脱硫酸を行う方法として、ジメチ
ルスルホキシド、N,N−ジメチルホルムアミド又はピ
リジン等の非プロトン性溶媒中(Usov A. I., Adamyant
s K.S., Miroshnikova L. I., Shaposhnikova A.A. and
Kochetkov N.K.,Carbohydr. Res. 18,336 (1971))又
は少量の水又はメタノ−ルを含むジメチルスルホキシド
中(Nagasawa K., Inoue Y. and Kamata T., Carbohyd
r. Res., 58, 47 (1977) , Nagasawa K., Inoue Y. and
Tokuyasu T , J. Biochem., 86, 1323 (1979))で行う
ソルボリシスがある。ソルボリシスの反応機構は、非プ
ロトン性の溶媒中で三酸化硫黄とアミンの複合体を用い
て行う硫酸化反応の逆反応であることが知られている。
この反応は、反応条件をコントロ−ルすることによりN
−硫酸基の選択的脱硫酸方法として用いることができ
る。しかし、O−硫酸基の場合には、第1級又は第2級
水酸基に結合している硫酸基を選択的に脱離させること
はできなかった。また、現在までのところ位置特異性を
持った脱硫酸化酵素も知られていない。
As a method for desulfurization with a high yield, an aprotic solvent such as dimethyl sulfoxide, N, N-dimethylformamide or pyridine (Usov AI, Adamyant
s KS, Miroshnikova LI, Shaposhnikova AA and
Kochetkov NK, Carbohydr. Res. 18 , 336 (1971)) or in dimethyl sulfoxide containing a small amount of water or methanol (Nagasawa K., Inoue Y. and Kamata T., Carbohyd.
r. Res., 58 , 47 (1977), Nagasawa K., Inoue Y. and
Tokuyasu T, J. Biochem., 86 , 1323 (1979)). It is known that the reaction mechanism of solvolysis is the reverse reaction of the sulfation reaction performed using a complex of sulfur trioxide and an amine in an aprotic solvent.
This reaction is controlled by controlling the reaction conditions.
It can be used as a method for selectively desulfating a sulfate group. However, in the case of O-sulfate group, the sulfate group bonded to the primary or secondary hydroxyl group could not be selectively eliminated. Further, to date, no desulfation enzyme having position specificity is known.

【0004】[0004]

【発明が解決しようとする課題】第1級水酸基に結合し
ている硫酸基の特異的脱離法の開発は、ヒトに対し好ま
しい生物活性を有する医薬品の創造を目的とした硫酸化
糖を提供するために非常に重要である。例えば、硫酸化
多糖であるデキストラン硫酸、キシラン硫酸、コンドロ
イチン硫酸、ヘパリン類は、脂質代謝改善剤、抗血栓剤
として使用されているが、人工的に硫酸基を導入したも
のは、導入した硫酸基の位置が特定できず、多量に硫酸
基を導入するに従い組織からの出血傾向が強まる副作用
が生ずることも知られている。また、天然由来の硫酸化
糖は、起源の違いにより硫酸基の位置、量がそれぞれ異
なり、各硫酸化糖の生理活性も微妙に異なる。本発明者
は、硫酸化糖の特定位置の硫酸エステルを脱硫酸化する
ことにより、出血作用が少なく、かつ元の硫酸化糖に対
して異なる生物活性を発現させるための位置選択的硫酸
エステルの脱硫酸を目的として鋭意検討し、本発明に到
達した。
The development of a specific elimination method for a sulfate group bonded to a primary hydroxyl group provides a sulfated sugar for the purpose of creating a drug having a biological activity preferable to humans. Is very important to do. For example, sulfated polysaccharides such as dextran sulfate, xylan sulfate, chondroitin sulfate, and heparins are used as lipid metabolism improving agents and antithrombotic agents, but those artificially introduced sulfate groups have introduced sulfate groups. It is also known that the position cannot be specified, and that the introduction of a large amount of sulfate groups causes a side effect of increasing the tendency of bleeding from the tissue. In addition, naturally occurring sulfated sugars have different positions and amounts of sulfate groups depending on their origins, and the physiological activities of the sulfated sugars are also slightly different. The present inventor has desulfated a sulfate ester at a specific position of a sulfated sugar to remove a regioselective sulfate ester for reducing hemorrhagic action and for expressing a different biological activity with respect to the original sulfated sugar. The present invention has been achieved through intensive studies aimed at sulfuric acid.

【0005】[0005]

【課題を解決するための手段】本発明の方法は、硫酸化
糖の有機塩基塩を、該有機塩基の存在下に、N,O−ビ
ス(トリメチルシリル)アセトアミド類と反応させるこ
とにより、硫酸化糖の第1級水酸基に結合している硫酸
基を選択的に脱硫酸することを特徴とする脱硫酸化糖の
製造方法である。
The method of the present invention is a method of sulfating an organic base salt of a sulfated sugar by reacting it with N, O-bis (trimethylsilyl) acetamide in the presence of the organic base. A method for producing a desulfated saccharide, which comprises selectively desulfating a sulfate group bonded to a primary hydroxyl group of a sugar.

【0006】本発明の方法によれば、硫酸化糖の第1級
水酸基(構成糖単位が5単糖又は6単糖類からなる場合
は、それぞれ5位又は6位の水酸基を表す)に結合して
いる全部の硫酸基の脱硫酸化、又は部分的脱硫酸化を選
択的に行うことができる。
According to the method of the present invention, it is bonded to the primary hydroxyl group of the sulfated sugar (in the case where the constitutional sugar unit is composed of 5 monosaccharides or 6 monosaccharides, the hydroxyl group is at the 5th or 6th position, respectively). It is possible to selectively perform desulfation or partial desulfation of all the sulfate groups.

【0007】本発明の方法が適用される硫酸化糖は、単
糖、オリゴ糖、多糖、複合多糖の類を問わず、該糖の硫
酸エステルである。本方法に用いられる硫酸化糖の有機
塩基塩としては、ピリジン等の芳香族アミン;トリメチ
ルアミン、トリエチルアミン等の脂肪族3級アミン;N
−メチルピリミジン、N−エチルピリミジン、N−メチ
ルモルホリン、N−エチルモルホリン等のN−アルキル
複素環アミン等の有機塩基との塩が挙げられる。
The sulfated sugar to which the method of the present invention is applied is a sulfate ester of the sugar regardless of whether it is a monosaccharide, an oligosaccharide, a polysaccharide or a complex polysaccharide. Examples of organic base salts of sulfated sugars used in this method include aromatic amines such as pyridine; aliphatic tertiary amines such as trimethylamine and triethylamine; N
Examples thereof include salts with organic bases such as N-alkylheterocyclic amines such as -methylpyrimidine, N-ethylpyrimidine, N-methylmorpholine and N-ethylmorpholine.

【0008】有機塩基を溶媒として硫酸化糖を溶解し、
該有機塩基との塩を形成させる。続いて無水の有機塩基
の存在下、トリメチルシリル化試薬であるN,O−ビス
(トリメチルシリル)アセトアミド(以下BTSAと略
記)、N,O−ビス(トリメチルシリル)トリフロロア
セトアミド(BTSFA)、N,O−ビス(トリメチル
シリル)ジフロロアセトアミド、N,O−ビス(トリメ
チルシリル)モノフロロアセトアミドを加え、反応温度
を室温〜100℃で反応させることにより、本発明の選
択的脱硫酸化を達成することができる。
The sulfated sugar is dissolved using an organic base as a solvent,
Form a salt with the organic base. Then, in the presence of an anhydrous organic base, N, O-bis (trimethylsilyl) acetamide (hereinafter abbreviated as BTSA) which is a trimethylsilylating reagent, N, O-bis (trimethylsilyl) trifluoroacetamide (BTSFA), N, O- The selective desulfation of the present invention can be achieved by adding bis (trimethylsilyl) difluoroacetamide and N, O-bis (trimethylsilyl) monofluoroacetamide and reacting at a reaction temperature of room temperature to 100 ° C.

【0009】第1級水酸基に結合している硫酸基の全部
を脱硫酸化する場合は、硫酸化糖中の遊離水酸基及び硫
酸エステル化水酸基を含む全水酸基のモル量に対し16
倍モル量以上、第1級水酸基に結合している硫酸基を部
分的に脱硫酸化し、該硫酸基量の一部を残存させる場合
には、3倍〜16倍モル量のトリメチエルシリル化試薬
を用いればよい。
When desulfating all of the sulfate groups bonded to the primary hydroxyl group, it is 16 with respect to the total amount of hydroxyl groups including free hydroxyl groups and sulfate esterified hydroxyl groups in the sulfated sugar.
In the case of partially desulfating the sulfate group bonded to the primary hydroxyl group in an amount equal to or more than twice the molar amount and leaving a part of the amount of the sulfuric acid group remaining, a 3 to 16-fold molar amount of trimethylelsilylation A reagent may be used.

【0010】具体的には、例えば、第1級水酸基に結合
している硫酸基の全部を脱硫酸化する場合、前記の条件
を満足するトリメチルシリル化剤量の存在下、好ましく
は40℃〜80℃で3時間以内反応させることにより、
目的の全部を脱硫酸化することができる。また、第1級
水酸基に結合している硫酸基を部分的に脱硫酸化する場
合、所定のトリメチルシリル化剤量の存在下、好ましく
は30℃〜80℃で2時間以上、適宜条件を組み合わせ
て反応させることにより目的を達成できる。
Specifically, for example, in the case of desulfating all the sulfate groups bonded to the primary hydroxyl group, it is preferably 40 ° C. to 80 ° C. in the presence of an amount of trimethylsilylating agent satisfying the above conditions. By reacting within 3 hours,
All of the objectives can be desulfated. Further, in the case of partially desulfating the sulfate group bonded to the primary hydroxyl group, the reaction is carried out in the presence of a predetermined amount of trimethylsilylating agent, preferably at 30 ° C to 80 ° C for 2 hours or more, by combining appropriate conditions. By doing so, the purpose can be achieved.

【0011】続いて反応液中に水を加え、余分のトリメ
チルシリル化剤を加水非反応性とすることにより反応を
停止させ、次いで溶媒及び非反応性のトリメチルシリル
化剤を透析により可能な限り除去する。次に、透析内液
を100℃で30分〜1時間沸騰させ、透析内液中に残
存するO−トリメチルシリル化糖誘導体のO−トリメチ
ルシリル基を加水分解除去する。
Subsequently, water is added to the reaction solution to stop the reaction by making the excess trimethylsilylating agent hydro-non-reactive, and then the solvent and the non-reactive trimethylsilylating agent are removed by dialysis as much as possible. .. Next, the dialysis inner solution is boiled at 100 ° C. for 30 minutes to 1 hour to hydrolyze and remove the O-trimethylsilyl group of the O-trimethylsilylated sugar derivative remaining in the dialysis inner solution.

【0012】用いた硫酸化糖に、第1級水酸基との硫酸
エステルに加えて第2級水酸基との硫酸エステルが存在
する場合、又は、第1級水酸基に結合している硫酸基の
全部を脱硫酸化しない反応条件を選択した場合には、こ
れら残存する硫酸基をNa塩とするために、水酸化ナト
リウムを加えてpH9前後に調整し、透析した後、凍結乾
燥して硫酸化糖のナトリウム塩を得ることができる。
When the sulfated sugar used contains a sulfate ester with a secondary hydroxyl group in addition to a sulfate ester with a primary hydroxyl group, or when all sulfate groups bonded to the primary hydroxyl group are removed. When reaction conditions that do not desulfate are selected, in order to convert these remaining sulfate groups into Na salts, sodium hydroxide is added to adjust pH to around 9, dialyzate, and then lyophilize to form sodium sulfated sugar. A salt can be obtained.

【0013】[0013]

【実施例】以下、実施例及び試験例により本発明を更に
詳細に説明するが、硫酸化糖の同定は以下の試験例に基
づき行った。実施例は本発明の範囲をなんら制限するも
のではない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Test Examples. Identification of sulfated sugars was carried out based on the following Test Examples. The examples do not limit the scope of the invention in any way.

【0014】試験例 1)硫酸イオンの定量 硫酸化糖及び脱硫酸化糖の硫酸基の定量は、新生化学実
験講座3,糖質II,p37,p 81 (東京化学同人刊)に記
載の方法に従い、酸加水分解により硫酸基を遊離硫酸イ
オンとし、次いで該イオンをイオン交換樹脂に吸着させ
た後、溶媒を用いて溶出し、その遊離硫酸イオンを電気
電導度計を用いて検出、定量した。
Test Example 1) Quantification of Sulfate Ion The quantification of sulfate groups in sulfated and desulfated sugars was carried out according to the method described in Shinsei Chemistry Experimental Course 3, Carbohydrate II, p37, p81 (published by Tokyo Kagaku Dojin). The sulfate group was converted to a free sulfate ion by acid hydrolysis, and the ion was adsorbed on an ion exchange resin, and then eluted with a solvent, and the free sulfate ion was detected and quantified using an electric conductivity meter.

【0015】すなわち、300μgの硫酸化糖に3N−
塩酸1 mlを加え、100℃で18時間加水分解した。そ
の溶液を乾燥した後、1mlの水に溶解した。ミリポア
限外ろ過膜(0.45 μm )でろ過した後、硫酸イオン含
量をHPLC(Waters ILC-1)によるイオン交換クロマ
ロトグラフィーで分析した。カラムに IC Pak Anion(W
aters, 4.6 mm × 5 cm )を用い、1.3 mM四ホウ酸ナ
トリウム、 1.5 mM グルコン酸ナトリウム、 6 mM ホウ
酸、0.25%グリセリン及び 12 %アセトニトリルの組成
の移動相を使用して、0.8 ml/分の流速で展開した。硫
酸イオンの検出には電気電導度計(Waters 430)を用い
た。
That is, 3 N- was added to 300 μg of sulfated sugar.
Hydrochloric acid (1 ml) was added and the mixture was hydrolyzed at 100 ° C. for 18 hours. The solution was dried and then dissolved in 1 ml of water. After filtering with a Millipore ultrafiltration membrane (0.45 μm), the sulfate ion content was analyzed by ion exchange chromatography by HPLC (Waters ILC-1). IC Pak Anion (W
aters, 4.6 mm x 5 cm) and 0.8 ml / min using a mobile phase of composition 1.3 mM sodium tetraborate, 1.5 mM sodium gluconate, 6 mM boric acid, 0.25% glycerin and 12% acetonitrile. Was developed at a flow rate of. An electric conductivity meter (Waters 430) was used to detect sulfate ions.

【0016】2)13C−NMR 硫酸化糖の水酸基の性質を判定する目的で、骨格炭素の
核磁気共鳴スペクトルを測定した。10%糖の重水溶液
でのスペクトルは、80℃、 75.4 MHz(GeneralElectoric
Company, QE-300 )で測定した。
2) 13 C-NMR Nuclear magnetic resonance spectrum of skeletal carbon was measured for the purpose of determining the properties of the hydroxyl group of the sulfated sugar. The spectrum of 10% sugar in heavy aqueous solution was 80 ° C, 75.4 MHz (General Electoric
Company, QE-300).

【0017】3)酵素消化による構造解析 新生化学実験講座3,糖質II p49〜62に記載の「2・8
グリコサミノグリカン分解酵素とHPLCを組合せた構
造解析」を参照して次のようにして行った。
3) Structural Analysis by Enzyme Digestion Shinsei Chemistry Laboratory Lecture 3, Carbohydrate II p.
It carried out as follows with reference to "Structural analysis combining glycosaminoglycan degrading enzyme and HPLC".

【0018】a)コンドロイチナ−ゼABCによる消化 吉田らの方法(生化学,57,1189 (1985))により、デル
マタン硫酸及びコンドロイチン硫酸の水溶液(10 mg/m
l)20μl に、0.4 M トリス−塩酸(pH 8.0)20μl
、0.4 M 酢酸ナトリウム20μl 、0.1 %ウシ血清ア
ルブミン20μl 及び水120μl を加え、コンドロイ
チナ−ゼABC(5U/ml )を20μl 加えて、37℃で
2時間反応させた。
A) Digestion with chondroitinase ABC An aqueous solution of dermatan sulfate and chondroitin sulfate (10 mg / m 2) according to the method of Yoshida et al. (Biochemistry, 57 , 1189 (1985)).
l) 20 μl, 0.4 M Tris-hydrochloric acid (pH 8.0) 20 μl
, 0.4 M sodium acetate (20 μl), 0.1% bovine serum albumin (20 μl) and water (120 μl), chondroitinase ABC (5 U / ml) (20 μl) were added, and the mixture was reacted at 37 ° C. for 2 hours.

【0019】b)ヘパリン分解酵素による消化 M,W,Mcleanの方法(M.W.Mclean, “ Proc. 9th Int. Sy
mp. Glycoconjugates”,p.B41(1987))により、ヘパリ
ン0.1 mg を 2 mM 酢酸カルシウムを含む 20 mM 酢
酸ナトリウム (pH 7.0) 220μl に溶解して、20 mU
のヘパリナ−ゼ、20 mU のヘパリチナ−ゼI及びIIを加
えて、37℃で2時間反応させた。
B) Digestion with heparin-degrading enzyme M, W, Mclean method (MWMclean, “Proc. 9th Int. Sy
mp. Glycoconjugates ”, p.B41 (1987)), dissolve 0.1 mg of heparin in 220 μl of 20 mM sodium acetate (pH 7.0) containing 2 mM calcium acetate to give 20 mU
Of heparinase, and 20 mU of heparinase I and II were added and reacted at 37 ° C for 2 hours.

【0020】c)HPLCによる分析 コンドロイチナ−ゼABC又はヘパリン分解酵素消化を
行った後の溶液50μl を、HPLC(医理化、モデル
852型)を用いて分析した。イオン交換カラム(島津 P
NH2 カラム,4.0 mm × 250 mm )を使用し、232 nmでの
吸光度を測定した。流速1ml/分で、16mMリン酸水素ナ
トリウムを60分間に0%から50%まで上昇させて溶
出した。
C) Analysis by HPLC 50 μl of the solution after digestion with chondroitinase ABC or heparin-degrading enzyme was analyzed by HPLC (medical science, model).
852) was used for analysis. Ion exchange column (Shimadzu P
The absorbance at 232 nm was measured using an NH 2 column, 4.0 mm × 250 mm). At a flow rate of 1 ml / min, 16 mM sodium hydrogen phosphate was eluted by increasing it from 0% to 50% in 60 minutes.

【0021】4)ゲルろ過 硫酸化糖の3%溶液10μl をHPLCによるゲルろ過
で分析した。カラムはTSKgel-G4000PWX1 (東ソ−、
7.8 mm × 30 cm)を用い、溶離液に 0.2 M硫酸カリウ
ムを使用して、1.0 ml/分の流速で展開した。硫酸化糖
の検出には示差屈折計(島津,AID-2A )を用いた。
4) Gel filtration 10 μl of a 3% solution of sulfated sugar was analyzed by gel filtration by HPLC. Column is TSKgel-G4000PW X1 (Tosoh,
7.8 mm x 30 cm) and 0.2 M potassium sulfate was used as the eluent, and the flow rate was 1.0 ml / min. A differential refractometer (Shimadzu, AID-2A) was used to detect the sulfated sugar.

【0021】実施例1 メチル−α−ガラクトピラノシド−6硫酸アンモニウム
塩約2mg/3mlの水溶液に、アンバ−ライトIR−12
0H型樹脂5mlを加えて、遊離の硫酸エステル型に変換
させた。樹脂を除去した後、ピリジン2mlを加え、ピリ
ジニウム塩を形成させた。残余のピリジンを減圧下で留
去し、残渣を凍結乾燥することにより、乾燥メチル−α
−ガラクトピラノシド−6硫酸ピリジニウム塩を調製し
た。この試料を各0.2 mg づつ小分けし、乾燥ピリジ
ン約0.05mlを加えて、メチル−α−ガラクトピラノ
シド−6硫酸ピリジニウム塩の全水酸基モル量([-OH]
+[-O-SO3 -])に対するBTSAのモル量が0〜20倍
量までの異なる反応系を用意した。各系にBTSAを加
えた後、80℃で約1時間加熱反応させた。各系の反応
混合物中のトリメチルシリル化メチルガラクトピラノシ
ドを直接ガスクロマトグラフィ−で測定することによ
り、脱硫酸量を算出して図1に示した。
Example 1 Amberlite IR-12 was added to an aqueous solution of about 2 mg / 3 ml of methyl-α-galactopyranoside-6 sulfate ammonium salt.
5 ml of OH type resin was added to convert to free sulfate ester type. After removing the resin, 2 ml of pyridine was added to form a pyridinium salt. Residual pyridine was distilled off under reduced pressure, and the residue was freeze-dried to obtain dry methyl-α.
-Galactopyranoside-6 pyridinium sulfate salt was prepared. This sample was divided into 0.2 mg aliquots, and about 0.05 ml of dry pyridine was added, and the molar amount of all hydroxyl groups of methyl-α-galactopyranoside-6-pyridinium sulfate ([-OH]
+ [- O-SO 3 - ]) molar amount of BTSA for were prepared different reaction system of up to 0-20 times. After adding BTSA to each system, the mixture was heated and reacted at 80 ° C. for about 1 hour. The desulfation amount was calculated by measuring the trimethylsilylated methylgalactopyranoside in the reaction mixture of each system by direct gas chromatography, and the results are shown in FIG. 1.

【0022】実施例2 実施例1のBTSAモル量を16倍量及び8倍量に設定
し、反応温度を40℃、60℃、80℃に変えて、経時
的に脱硫酸化率を検討した。その結果を図2に示した。
Example 2 The desulfurization rate was examined with time by setting the molar amount of BTSA of Example 1 to 16 times and 8 times and changing the reaction temperature to 40 ° C., 60 ° C. and 80 ° C., respectively. The results are shown in Fig. 2.

【0023】実施例1及び2から明らかなように、BT
SAが硫酸化糖の遊離水酸基及び硫酸化水酸基を含む全
水酸基のモル量に対して16倍モル量以上で、反応温度
40℃〜80℃、3時間以内反応させることにより第1
級水酸基に結合している硫酸基の全部を脱硫酸化するこ
とができる。また第1級水酸基に結合している硫酸基を
部分的に脱硫酸化する場合には、BTSAを3〜16倍
迄のモル量で、反応温度を30℃〜80℃、反応時間を
適宜選択することにより目的を達成することができる。
As is clear from Examples 1 and 2, BT
By reacting SA at a reaction amount of 40 ° C. to 80 ° C. within 3 hours at a reaction amount of 16 times or more with respect to the molar amount of all hydroxyl groups including free hydroxyl groups and sulfated hydroxyl groups of sulfated sugar,
It is possible to desulfate all the sulfate groups bonded to the primary hydroxyl group. When the sulfate group bonded to the primary hydroxyl group is partially desulfated, BTSA is used in a molar amount of 3 to 16 times, the reaction temperature is 30 ° C. to 80 ° C., and the reaction time is appropriately selected. By doing so, the purpose can be achieved.

【0024】実施例3〜9 α−D−ガラクトピラノシド−6硫酸(実施例3)、α
−D−ガラクトピラノシド−2硫酸(実施例4)、フノ
ラン(実施例5)、ポルフィラン(実施例6)、コンド
ロイチン硫酸(実施例7)、デルマタン硫酸(実施例
8)、ヘパリン(実施例9)の7種の硫酸化糖の脱硫酸
化を、それぞれBSTAにより以下のようにして行っ
た。
Examples 3 to 9 α-D-galactopyranoside-6-sulfate (Example 3), α
-D-galactopyranoside-2 sulfate (Example 4), funoran (Example 5), porphyran (Example 6), chondroitin sulfate (Example 7), dermatan sulfate (Example 8), heparin (Example) Desulfation of the seven types of sulfated sugars of 9) was performed with BSTA as follows.

【0025】各硫酸化糖のナトリウム塩200mgをそれ
ぞれIR−120(H+ 型)カラム(1 ×10 cm )にか
け、溶出液に過剰のピリジンを加えてpH8に中和し、凍
結乾燥して各硫酸化糖のピリジン塩を調製した。各硫酸
化糖のピリジン塩をそれぞれ脱水したピリジン20mlに
溶解して反応試料とした。各試料の糖骨格の全水酸基の
計算当量に対して20倍モル量(約4ml)のBTSAを
加え、60℃で2時間攪拌した。反応終了後、20ml
の水を加えて未反応のBTSAを加水非反応性とするこ
とにより反応を停止させ、ミリポア限外ろ過膜を用いて
透析した。
200 mg of each sodium salt of sulfated sugar was applied to an IR-120 (H + type) column (1 x 10 cm), and excess pyridine was added to the eluate to neutralize the pH to 8, and freeze-dried. A pyridine salt of sulfated sugar was prepared. The pyridine salt of each sulfated sugar was dissolved in 20 ml of dehydrated pyridine to prepare a reaction sample. A 20-fold molar amount (about 4 ml) of BTSA was added to the calculated equivalent of all hydroxyl groups in the sugar skeleton of each sample, and the mixture was stirred at 60 ° C. for 2 hours. 20 ml after the reaction
The reaction was stopped by adding water to make unreacted BTSA unhydrolyzable and dialyzed using a Millipore ultrafiltration membrane.

【0026】次にO−トリメチルシリル基を加水分解除
去するため、透析内液を100℃で30分から1時間
(溶液が透明になるまで)加熱沸騰させた。水酸化ナト
リウムを加えてpH9〜9.5に調整した後、透析した。
透析内液を凍結乾燥して、各硫酸化糖の脱硫酸化処理物
各140 mg 相当のナトリウム塩を得た。各糖の処理前
後の硫酸イオンの定量値を表1に示す。
Next, in order to hydrolyze and remove the O-trimethylsilyl group, the dialyzed solution was heated and boiled at 100 ° C. for 30 minutes to 1 hour (until the solution became transparent). After adjusting the pH to 9 to 9.5 by adding sodium hydroxide, it was dialyzed.
The dialyzed solution was freeze-dried to obtain 140 mg of each desulfated product of each sulfated sugar. Table 1 shows the quantitative values of sulfate ions before and after the treatment of each sugar.

【0027】[0027]

【表1】 [Table 1]

【0028】実施例10,比較例1〜3 実施例3及び4に準じ、トリメチルシリル化剤としてB
TSFA、トリメチルシリルイミダゾ−ル(TSI)、
ヨウ化トリメチルシラン(ITS)、N,O−ビス(ト
リメチルシリル)カーバメ−ト(BSC)を用いて反応
させた結果を表2に示す。
Example 10, Comparative Examples 1 to 3 According to Examples 3 and 4, B was used as a trimethylsilylating agent.
TSFA, trimethylsilyl imidazole (TSI),
Table 2 shows the results of the reaction using trimethylsilane iodide (ITS) and N, O-bis (trimethylsilyl) carbamate (BSC).

【0029】[0029]

【表2】 [Table 2]

【0030】実施例3、4から判るように、本発明の方
法は、第1級水酸基に結合している硫酸基を選択的に脱
硫酸化する方法であり、第2級水酸基の脱硫酸化は起こ
らないことが判る。
As can be seen from Examples 3 and 4, the method of the present invention is a method for selectively desulfating the sulfate group bonded to the primary hydroxyl group, and the desulfation of the secondary hydroxyl group does not occur. I know there isn't one.

【0031】実施例5のフノランは - 3 D Gal(6-SO4)
β1-4(3,6-anhydro)L-Gal α1-の2糖が繰り返した構造
であり、BTSA処理により硫酸基が殆んど無くなっ
た。実施例6のポルフィランは -3 D Gal β1-4 LGal(6
-SO4) α1- の2糖が繰り返した構造であり、BTSA
処理により硫酸基が殆んど無くなった。これら実施例5
及び6におけるNMRの解析では、C−6位の13Cシグ
ナルの高磁場シフト並びにC−5位の低磁場シフトが確
認され、他の部位に変化がなく、Perlin A.S. and Casu
B. の報告(The Polysaccharides Vol.1,p133〜193 (
Academic Press ))と一致した。
The funoran of Example 5 is -3 D Gal (6-SO 4 ).
It has a structure in which the disaccharide β1-4 (3,6-anhydro) L-Gal α1- is repeated, and the sulfate group was almost eliminated by the BTSA treatment. Porphyran of Example 6 was -3 D Gal β1-4 LGal (6
-SO 4 ) α1-disaccharide is a repeating structure
Almost all sulfate groups were eliminated by the treatment. Example 5
The NMR analysis in and 6 confirmed a high magnetic field shift of the 13 C signal at the C-6 position and a low magnetic field shift at the C-5 position, and there was no change in other sites.
Report by B. (The Polysaccharides Vol.1, p133-193 (
Academic Press)).

【0032】実施例8のコンドロイチン硫酸は鮫由来の
もので、コンドロイチナ−ゼ類を用いる組成2糖分析に
より、6硫酸:4硫酸の量比が90:10であった。実
施例8、9のコンドロイチン硫酸とヘパリンは、6硫酸
だけでなく4硫酸やジ硫酸エステル等を含んでおり、B
TSA処理後の硫酸イオン含量はそれぞれ6.6%、2
4.9%の値を示した。実施例7のデルマタン硫酸は殆
んどが4硫酸であったため、BTSA処理前後での硫酸
イオン含量の変化は少なかった。
The chondroitin sulfate of Example 8 was derived from a shark, and the composition disaccharide analysis using chondroitinase revealed that the amount ratio of 6-sulfate: 4-sulfate was 90:10. The chondroitin sulfate and heparin of Examples 8 and 9 contain not only 6-sulfate but also 4-sulfate, disulfate, etc.
The sulfate ion content after TSA treatment is 6.6% and 2 respectively.
A value of 4.9% was shown. Almost all of the dermatan sulfate of Example 7 was 4-sulfate, and therefore the change in the sulfate ion content before and after the BTSA treatment was small.

【0033】デルマタン硫酸、コンドロイチン硫酸、ヘ
パリンについては、更に詳しい構造変化を調べるため
に、2糖単位に酵素消化してHPLCにより分析した。
実施例7、8、9の対応する硫酸化糖並びに脱硫酸化処
理後の糖に対し、コンドロイチン硫酸及びデルマタン硫
酸に対してはコンドロイチナ−ゼABC、ヘパリンに対
してはヘパリン分解酵素を用い、新実験生化学講座3,
糖質II p54〜59(東京化学同人刊)の方法に従って処理
した。生じた不飽和2糖異性体のHPLC分画クロマト
グラムを図3に示す。
Dermatan sulfate, chondroitin sulfate and heparin were subjected to enzymatic digestion into disaccharide units and analyzed by HPLC in order to investigate further detailed structural changes.
New experiments were carried out using the corresponding sulfated sugars of Examples 7, 8 and 9 and sugars after desulfation treatment, chondroitin sulfate ABC for chondroitin sulfate and dermatan sulfate, and heparin degrading enzyme for heparin. Biochemistry Course 3,
It processed according to the method of sugar II p54-59 (Tokyo Kagaku Dojin). The HPLC fraction chromatogram of the resulting unsaturated disaccharide isomer is shown in FIG.

【0034】実施例7で用いたデルマタン硫酸は殆んど
が4硫酸であり、6硫酸が少量混ざっているものであっ
が、BTSA処理により6硫酸のみに脱硫酸が起こり、
硫酸基が結合していない2糖残基になった以外は全く変
化が認められなかった。また、実施例8で用いたコンド
イチン硫酸は6硫酸、4硫酸、ジ硫酸エステル等の混合
物であったが、BTSA処理をすると、6硫酸のみが脱
離したために起きた変化しか見られなかった。次に実施
例9で用いたヘパリンについては、消化されて遊離した
2糖残基を比較すると6硫酸のみが脱離され、その他の
位置の硫酸基は一切変化を受けていなかった。
Most of the dermatan sulfuric acid used in Example 7 was 4-sulfuric acid and a small amount of 6-sulfuric acid was mixed, but desulfurization occurred only in 6-sulfuric acid by the BTSA treatment.
No change was observed except for the disaccharide residue having no sulfate group bonded. The chondoitin sulfate used in Example 8 was a mixture of 6-sulfate, 4-sulfate, disulfate and the like, but when BTSA treatment was performed, only the change caused by the elimination of 6-sulfate was observed. Next, regarding the heparin used in Example 9, when the digested and released disaccharide residues were compared, only 6-sulfate was eliminated and the sulfate groups at other positions were not changed at all.

【0035】更に、デルマタン硫酸、コンドロイチン硫
酸、ヘパリンについて、ゲルろ過によりBTSA処理前
後の分子量変化を調べた。図4に示したように分子量分
布の変化は殆んど認められなかった。
Further, dermatan sulfate, chondroitin sulfate and heparin were examined for changes in molecular weight before and after BTSA treatment by gel filtration. As shown in FIG. 4, almost no change in the molecular weight distribution was observed.

【0036】以上のことから、BTSAによる脱硫酸化
反応は、第1級水酸基に結合している硫酸基に特異的に
働き、他の位置の硫酸基及びグリコシド結合には影響を
与えないことが明らかである。
From the above, it is clear that the desulfation reaction by BTSA acts specifically on the sulfate group bonded to the primary hydroxyl group and does not affect the sulfate group and glycoside bond at other positions. Is.

【0037】実施例1、10及び比較例1、2、3から
わかるように、本発明の方法で適用可能なシリル化剤と
しては、N,O−ビス(トリメチルシリル)アセトアミ
ド類のような有機カルボン酸アミドのN,O−ビス(ト
リメチルシリル)化合物に特定できる。
As can be seen from Examples 1 and 10 and Comparative Examples 1, 2, and 3, silylating agents applicable in the method of the present invention include organic carboxylic acids such as N, O-bis (trimethylsilyl) acetamides. It can be specified as an N, O-bis (trimethylsilyl) compound of acid amide.

【0038】[0038]

【発明の効果】本発明によれば、糖骨格の水酸基に結合
している性質の異なる硫酸基を、第1級水酸基及び第2
級水酸基の違いを認識して脱硫酸化することにより、従
来知られていない位置特定硫酸エステルを有する硫酸化
糖を製造することができる。
INDUSTRIAL APPLICABILITY According to the present invention, a sulfate group having different properties bonded to a hydroxyl group of a sugar skeleton is converted to a primary hydroxyl group and a secondary hydroxyl group.
By recognizing the difference in the primary hydroxyl groups and desulfating, a sulfated sugar having a hitherto unknown position-specific sulfate ester can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】BTSA量変化に伴うメチル−α−ガラクトピ
ラノシド−6硫酸の脱硫酸化率を示したグラフである。
FIG. 1 is a graph showing the desulfation rate of methyl-α-galactopyranoside-6 sulfate as the amount of BTSA changes.

【図2】メチル−α−ガラクトピラノシド−6硫酸の各
温度における経時的脱硫酸化率を示したグラフである。
実線はBTSA16倍モル量、破線はBTSA8倍モル
量での結果を示す。
FIG. 2 is a graph showing a time-dependent desulfation rate of methyl-α-galactopyranoside-6 sulfuric acid at each temperature.
The solid line shows the results with 16 times molar amount of BTSA, and the broken line shows the results with 8 times molar amount of BTSA.

【図3】BTSA処理による糖組成の変化を示した分画
クロマトグラムである。
FIG. 3 is a fractional chromatogram showing changes in sugar composition due to BTSA treatment.

【図4】BTSA処理による分子量分布の変化を示した
HPLC(ゲルろ過)のクロマトグラムである。実線は
BTSA処理前、破線はBTSA処理後を示す。
FIG. 4 is a chromatogram of HPLC (gel filtration) showing changes in molecular weight distribution due to BTSA treatment. The solid line shows before BTSA processing, and the broken line shows after BTSA processing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 硫酸化糖の有機塩基塩を、該有機塩基の
存在下に、N,O−ビス(トリメチルシリル)アセトア
ミド類と反応させることにより、硫酸化糖の第1級水酸
基に結合している硫酸基を選択的に脱硫酸することを特
徴とする脱硫酸化糖の製造方法。
1. An organic base salt of a sulfated sugar is reacted with N, O-bis (trimethylsilyl) acetamide in the presence of the organic base to bind to the primary hydroxyl group of the sulfated sugar. A method for producing a desulfated sugar, which comprises selectively desulfating sulfate groups present in the product.
JP07320192A 1992-02-25 1992-02-25 Method for selective desulfation of sulfated sugar Expired - Lifetime JP3217112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07320192A JP3217112B2 (en) 1992-02-25 1992-02-25 Method for selective desulfation of sulfated sugar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07320192A JP3217112B2 (en) 1992-02-25 1992-02-25 Method for selective desulfation of sulfated sugar

Publications (2)

Publication Number Publication Date
JPH05230090A true JPH05230090A (en) 1993-09-07
JP3217112B2 JP3217112B2 (en) 2001-10-09

Family

ID=13511301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07320192A Expired - Lifetime JP3217112B2 (en) 1992-02-25 1992-02-25 Method for selective desulfation of sulfated sugar

Country Status (1)

Country Link
JP (1) JP3217112B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132994A (en) * 1996-07-23 2000-10-17 Seikagaku Corporation Lactosamine oligosaccharides and method for producing the same
JP2005232064A (en) * 2004-02-18 2005-09-02 Noguchi Inst Sulfated saccharide library
US10669172B2 (en) 2017-08-23 2020-06-02 Ecolab Usa Inc. Elemental sulfur dispersant to control fouling in water systems

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132994A (en) * 1996-07-23 2000-10-17 Seikagaku Corporation Lactosamine oligosaccharides and method for producing the same
US6365733B1 (en) 1996-07-23 2002-04-02 Seikagaku Corporation Lactosamine oligosaccharide and method for producing the same
JP2005232064A (en) * 2004-02-18 2005-09-02 Noguchi Inst Sulfated saccharide library
JP4675048B2 (en) * 2004-02-18 2011-04-20 公益財団法人野口研究所 Sulfate sugar library
US10669172B2 (en) 2017-08-23 2020-06-02 Ecolab Usa Inc. Elemental sulfur dispersant to control fouling in water systems

Also Published As

Publication number Publication date
JP3217112B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
Jouault et al. Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus
Habuchi et al. The occurrence of a wide variety of dermatan sulfate-chondroitin sulfate copolymers in fibrous cartilage
US4916219A (en) Oligosaccharide heparin fragments as inhibitors of complement cascade
Wessler The nature of the non-ultrafilterable glycosaminoglycans of normal human urine
Volpi “Fast moving” and “slow moving” heparins, dermatan sulfate, and chondroitin sulfate: qualitative and quantitative analysis by agarose-gel electrophoresis
Wende et al. 1D NMR methods for determination of degree of cross-linking and BDDE substitution positions in HA hydrogels
JP2007530932A (en) Method for quantitatively measuring specifically composed heparin or low molecular weight heparin using HPLC
Ohno et al. The structure of the type-specific polysaccharide of Pneumococcus type XIX
Siddiqui et al. Structures of ceramide tetrasaccharides from various sources: uniqueness of rat kidney ceramide tetrasaccharide
Jin et al. Preactivation-based, iterative one-pot synthesis of anticoagulant pentasaccharide fondaparinux sodium
Raftery et al. Distinguishing between possible mechanistic pathways during lysozyme-catalyzed cleavage of glycosidic bonds
Vityazev et al. Synthesis of sulfated pectins and their anticoagulant activity
EP0769502B1 (en) Process for producing desulfated polysaccharide and desulfated heparin
JP4179567B2 (en) Novel lactosamine oligosaccharide and method for producing the same
EP3279220A1 (en) Method for sulfating glycosaminoglycan
CA2136531A1 (en) Heparan sulphate oligosaccharides having hepatocyte growth factor binding affinity
Chavante et al. A novel heparan sulphate with high degree of N-sulphation and high heparin cofactor-II activity from the brine shrimp Artemia franciscana
JP3217112B2 (en) Method for selective desulfation of sulfated sugar
Rosenfeld et al. Location of specific oligosaccharides in heparin in terms of their distance from the protein linkage region in the native proteoglycan.
US20060223781A1 (en) Process for induction of intramolecular migration of sulfates, phosphates, and other oxyanions
Takano Desulfation of sulfated carbohydrates
JP3497209B2 (en) Method for desulfating sulfated sugar
JP3522775B2 (en) Heparin unsaturated tetrasaccharide and method for producing the same
JP4166846B2 (en) Heparin-binding carrier and method for separating fructose-1,6-bisphosphate aldolase
Volpi Separation of capsular polysaccharide K4 and defructosylated K4 derived disaccharides by high‐performance capillary electrophoresis and high‐performance liquid chromatography

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080803

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120803

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120803