JPH0522965A - Ultrasonic motor - Google Patents
Ultrasonic motorInfo
- Publication number
- JPH0522965A JPH0522965A JP3197394A JP19739491A JPH0522965A JP H0522965 A JPH0522965 A JP H0522965A JP 3197394 A JP3197394 A JP 3197394A JP 19739491 A JP19739491 A JP 19739491A JP H0522965 A JPH0522965 A JP H0522965A
- Authority
- JP
- Japan
- Prior art keywords
- torsional
- longitudinal
- rotor
- piezoelectric ceramic
- hollow cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はOA機器や玩具に用いら
れる小型モータに関し,特にローター直径が小さい割り
にトルクの大きい超音波モータに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small motor used in office automation equipment and toys, and more particularly to an ultrasonic motor having a large torque despite its small rotor diameter.
【0002】[0002]
【従来の技術】一般に,超音波モータは,電磁モータと
比較して,低い回転で高いトルクが得られること,停止
保持力を有すること,電磁ノイズが小さいことなどの利
点を有しており,カメラのオートフォーカス用や自動車
パワーモータなどに使用されている。図3及び図4は従
来の超音波モータの構造を概略的に示す分解組立図であ
る。図3及び図4において,従来の超音波モータは,一
面にリング状で且つ串歯状の突起部を設けた金属円板1
06の突起部が形成されている面の裏側に重ね合わせて
接着される二枚の圧電セラミックス円板107,108
とで,ステータを構成し,このステータ−の上にロータ
ー109を圧接した構造となっている。圧電セラミック
ス円板107,108は,偶数等分に分極の向きが逆向
きとなっており,これら2枚の圧電セラミックス10
7,108は分割角度の半分の角度だけ回転して接着さ
れている。2. Description of the Related Art Generally, an ultrasonic motor has advantages that an electromagnetic motor can obtain a high torque at a low rotation speed, a stop holding force, and a small electromagnetic noise, as compared with an electromagnetic motor. It is used for auto focus of cameras and automobile power motors. 3 and 4 are exploded views schematically showing the structure of a conventional ultrasonic motor. 3 and 4, the conventional ultrasonic motor has a metal disc 1 having a ring-shaped and comb-teeth-shaped protrusion on one surface.
Two piezoelectric ceramic discs 107 and 108 which are laminated and bonded to the back side of the surface on which the projecting portion of 06 is formed.
And constitute a stator, and the rotor 109 is pressed onto the stator. The piezoelectric ceramic discs 107 and 108 are polarized in opposite directions evenly evenly.
7 and 108 are bonded by being rotated by an angle that is half the dividing angle.
【0003】[0003]
【発明が解決しようとする課題】図3及び図4に示した
従来の超音波モータにおいては,ステータの超音波振動
を中心軸の周囲で平面的にローターに伝達しているた
め,必然的に径が大きくなり,直径の小さいモータを得
ることが難しい。したがって,従来の超音波モータの実
用的な最小直径は,20〜30mmの範囲内に限定されて
いた。また,図4からわかるように,従来の超音波モー
タにおいては,ステーターが多くの部品から構成されて
いるため,各部品の製造上の誤差が繁栄されるため,特
性のばらつきが大きくなること及びモータの製造コスト
が高くなるという欠点があった。そこで,本発明の一つ
の技術的課題は,ローター直径を小さくした小型の超音
波モータ,特に,ローターの直径として20mm以下の超
音波モータを提供することにある。さらに,本発明の別
の技術的課題は,構成部品が少なく製造コストの安い超
音波モータを提供することにある。In the conventional ultrasonic motor shown in FIGS. 3 and 4, since the ultrasonic vibration of the stator is transmitted to the rotor in a plane around the central axis, it is inevitable. Since the diameter is large, it is difficult to obtain a motor with a small diameter. Therefore, the practical minimum diameter of the conventional ultrasonic motor is limited to the range of 20 to 30 mm. Further, as can be seen from FIG. 4, in the conventional ultrasonic motor, since the stator is composed of many parts, the manufacturing error of each part is prosperous, resulting in large variation in characteristics. There is a drawback that the manufacturing cost of the motor becomes high. Therefore, one technical problem of the present invention is to provide a small-sized ultrasonic motor having a reduced rotor diameter, particularly an ultrasonic motor having a rotor diameter of 20 mm or less. Further, another technical problem of the present invention is to provide an ultrasonic motor having a small number of components and a low manufacturing cost.
【0004】[0004]
【課題を解決するための手段】本発明によれば,圧電セ
ラミック中空円柱の長さ方向略半分の外周面に長さ方向
に対して45°の方向に延在する分極及び駆動用の一対
の交差指電極を有し該圧電セラミックス円柱に捩り振動
を与える捩り振動部と,前記圧電セラミック中空円柱の
長さ方向の残りの略半分の外周面に該捩り振動部に隣接
して円周方向又は長さ方向に平行延在する分極及び駆動
用の一対の交差指電極を有し該圧電セラミック中空円柱
に縦振動を与える縦振動部とを有し,一端が固定された
圧電縦−捩り複合振動子と,前記圧電縦−捩り複合振動
子の他端に圧接される回転自在に支持されたローターと
を備えたことを特徴とする超音波モータが得られる。According to the present invention, a pair of polarization and driving members extending in the direction of 45 ° with respect to the lengthwise direction are provided on the outer peripheral surface of the piezoelectric ceramic hollow cylinder approximately half the lengthwise direction. A torsional vibrating portion having interdigitated electrodes for applying torsional vibration to the piezoelectric ceramic cylinder, and a circumferential half of the piezoelectric ceramic hollow cylinder adjacent to the torsional vibration portion on the outer peripheral surface of the remaining approximately half of the length of the piezoelectric ceramic hollow cylinder. Piezoelectric longitudinal-torsion composite vibration having one end fixed, which has a longitudinal vibrating portion having a pair of interdigital electrodes for polarization and driving extending parallel to the longitudinal direction and imparting longitudinal vibration to the piezoelectric ceramic hollow cylinder An ultrasonic motor including a child and a rotatably supported rotor that is pressed against the other end of the piezoelectric vertical-torsion composite oscillator is obtained.
【0005】[0005]
【作用】本発明の超音波モータにおいては,圧電縦−捩
り複合振動子は圧電セラミックス中空円柱の略半分の捩
り振動部と残り半分に縦振動部とを有する。捩り振動部
は,外周面にこの圧電セラミックス中空円柱の長さ方向
に対して45°の方向に一対の交差指電極が形成されて
いる。この一対の交差指電極を用いて前記圧電セラミッ
ク中空円柱に分極を施し,この一対の交差指電極を二端
子として交流電圧を印加すると圧電セラミック中空円柱
の両端は捩り振動を行う。一方,縦振動部は,残りの圧
電セラミック中空円柱の外周面に円周方向又は長さ方向
に平行に一対の交差指電極が形成されている。この一対
の交差指電極を用いて前記圧電セラミック中空円柱に分
極を施し,この一対の交差指電極を二端子として,交流
電圧を印加すると縦振動部はこの圧電セラミック中空円
柱の長さ方向に伸縮振動を行う。したがって,捩り振動
に同期した交流電圧を縦振動部に印加すると,圧電セラ
ミック中空円柱は捩り振動と伸縮振動が合成された複合
振動が励起される。この圧電縦−捩り複合振動子の端部
の内の一方を固定ベースに固定し,一端に回転自在に支
持されたローターを圧接すると,複合振動はローターの
回転に変換される。In the ultrasonic motor of the present invention, the piezoelectric longitudinal-torsional composite oscillator has a torsional vibration portion which is substantially half of the piezoelectric ceramic hollow cylinder and a longitudinal vibration portion which is the other half. The torsional vibration part has a pair of interdigital electrodes formed on the outer peripheral surface in a direction of 45 ° with respect to the length direction of the piezoelectric ceramic hollow cylinder. The piezoelectric ceramic hollow cylinder is polarized by using the pair of interdigital electrodes, and when an alternating voltage is applied with the pair of interdigital electrodes as two terminals, both ends of the piezoelectric ceramic hollow cylinder vibrate torsionally. On the other hand, in the longitudinal vibrating portion, a pair of interdigital electrodes are formed on the outer peripheral surface of the remaining piezoelectric ceramic hollow cylinder parallel to the circumferential direction or the length direction. The piezoelectric ceramic hollow cylinder is polarized by using the pair of interdigital electrodes, and when the pair of interdigital electrodes is used as two terminals and an AC voltage is applied, the longitudinal vibration part expands and contracts in the length direction of the piezoelectric ceramic hollow cylinder. Vibrate. Therefore, when an AC voltage synchronized with the torsional vibration is applied to the longitudinal vibrating portion, the piezoelectric ceramic hollow cylinder is excited with a composite vibration that is a combination of torsional vibration and stretching vibration. When one of the ends of the piezoelectric longitudinal-torsion composite oscillator is fixed to a fixed base and a rotor rotatably supported at one end is pressed, the composite vibration is converted into rotation of the rotor.
【0006】[0006]
【実施例】次に,本発明に実施例について説明する。図
1は本発明の縦−捩り型超音波モータの一構成例を示す
斜視図である。図1において,縦−捩り複合振動子1の
捩り振動発生用電極側端部を固定ベース2に固定し,も
う一方の端部に軸受け3に回転自在に支持されたロータ
ー4が圧接されている。軸受け3は固定ベース2に固定
枠5により固定されている。図2は本発明の縦−捩り複
合振動子圧接型超音波モータに用いられる縦−捩り複合
振動子1の構造例を示す概略図である。図2において,
圧電セラミック中空円柱1´の外周面の長さ方向に対す
る約半分の領域に捩り振動部10,残りの半分の領域に
縦振動部20が該セラミック円柱の長さ方向に沿って連
設されている。圧電セラミック中空円柱1´は,通常の
プレス成形により製造され,また電極部は電極印刷によ
って製造されている。捩り振動部10は,円柱の長さ方
向に対して45°の方向に第1及び第2の斜め電極11
a,12aが形成され、この第1及び第2の斜め電極1
1a,12aが第1及び第2の共通電極11b,12b
に接続され二端子とされ,第1及び第2の斜め交差指電
極11及び12が形成されている。この第1及び第2の
斜め交差指電極11,12を用いて,圧電セラミックス
中空円柱1´に分極処理を施すと,この圧電セラミック
中空円柱表面の分極方向は,第1及び第2の斜め電極1
1a,12aの長さ方向に対して,直角な方向となる。
このように分極された状態で,第1及び第2の斜め交差
指電極11,12に交流電圧を印加すると,電圧の極性
が分極時の電圧の極性と同じ場合は,分極の伸び歪みが
発生し,電圧の極性が分極時の電圧の極性と逆の場合
は,分極の方向に縮み歪みが発生する。分極方向に伸び
あるいは縮み歪みが発生した場合,分極方向と直角な方
向に,これらと反対に縮みあるいは伸び歪みが発生す
る。したがって,前記圧電セラミックス中空円柱1´の
捩り振動部10に捩り変位が発生する。EXAMPLES Next, examples of the present invention will be described. FIG. 1 is a perspective view showing a structural example of a vertical-torsion type ultrasonic motor of the present invention. In FIG. 1, a torsional vibration generating electrode side end of a vertical-torsion composite vibrator 1 is fixed to a fixed base 2, and a rotor 4 rotatably supported by a bearing 3 is pressed against the other end. . The bearing 3 is fixed to the fixed base 2 by a fixed frame 5. FIG. 2 is a schematic diagram showing a structural example of the vertical-torsion composite vibrator 1 used in the vertical-torsion composite vibrator pressure contact type ultrasonic motor of the present invention. In FIG.
A torsional vibrating portion 10 is provided in approximately half the area of the outer peripheral surface of the piezoelectric ceramic hollow cylinder 1'with respect to the lengthwise direction, and a longitudinally vibrating portion 20 is continuously provided in the other half area along the lengthwise direction of the ceramic cylinder. . The piezoelectric ceramic hollow cylinder 1'is manufactured by ordinary press molding, and the electrode portion is manufactured by electrode printing. The torsional vibration part 10 includes the first and second oblique electrodes 11 in the direction of 45 ° with respect to the length direction of the cylinder.
a and 12a are formed, and the first and second diagonal electrodes 1 are formed.
1a and 12a are first and second common electrodes 11b and 12b
To form two terminals, and first and second diagonally intersecting finger electrodes 11 and 12 are formed. When the piezoelectric ceramic hollow cylinder 1 ′ is polarized by using the first and second diagonal interdigital electrodes 11, 12, the polarization direction of the surface of the piezoelectric ceramic hollow cylinder is the first and second diagonal electrodes. 1
The direction is perpendicular to the length direction of 1a and 12a.
When an AC voltage is applied to the first and second diagonal interdigitated electrodes 11 and 12 in such a polarized state, elongation strain of polarization occurs when the polarity of the voltage is the same as the polarity of the voltage during polarization. However, if the polarity of the voltage is opposite to the polarity of the voltage during polarization, shrinkage distortion occurs in the direction of polarization. When elongation or contraction strain occurs in the polarization direction, contraction or elongation strain occurs in the direction orthogonal to the polarization direction, opposite to these. Therefore, torsional displacement occurs in the torsional vibration part 10 of the piezoelectric ceramic hollow cylinder 1 '.
【0007】さらに図2の圧電セラミックス中空円柱1
´の外周面の長さ方向の別の半分の領域には,縦振動部
20が形成されている。この縦振動部20は,円周方向
に平行に延在する第1及び第2の周電極を夫々有し,図
示しない第1の接続電極,及び第2の接続電極22cに
接続され二端子とされ,第1及び第2の縦交差指電極2
1,22が形成されている。この第1及び第2の縦交差
指電極21,22を用いて圧電セラミック中空円柱1´
に分極処理を施すと,分極方向は,この圧電セラミック
中空円柱表面の第1及び第2の周電極の長さ方向と直角
な方向となる。この状態で第1及び第2の縦交差指電極
21,22に交流電圧を印加すると,電圧の極性が分極
時の電圧の極性と同じ場合は,分極方向に伸び歪みが発
生し,電圧の極性が分極時の電圧の極性と逆の場合は,
分極方向に縮み歪みが発生する。したがって,圧電セラ
ミックス中空円柱1´の縦振動部20は長さ方向に伸縮
する。Further, the piezoelectric ceramic hollow cylinder 1 shown in FIG.
A longitudinal vibrating portion 20 is formed in the other half area of the outer peripheral surface of the ‘′ in the length direction. The longitudinal vibrating portion 20 has first and second peripheral electrodes extending parallel to the circumferential direction, respectively, and is connected to a first connection electrode and a second connection electrode 22c (not shown) and has two terminals. The first and second vertical interdigitated electrodes 2
1, 22 are formed. A piezoelectric ceramic hollow cylinder 1'is formed by using the first and second vertical crossing finger electrodes 21 and 22.
When the polarization treatment is performed on, the polarization direction becomes a direction perpendicular to the length directions of the first and second peripheral electrodes on the surface of the piezoelectric ceramic hollow cylinder. When an AC voltage is applied to the first and second longitudinal interdigitated electrodes 21 and 22 in this state, if the voltage polarity is the same as the voltage polarity during polarization, extension strain occurs in the polarization direction and the voltage polarity Is opposite to the polarity of the voltage during polarization,
Shrinkage distortion occurs in the polarization direction. Therefore, the longitudinal vibration part 20 of the piezoelectric ceramic hollow cylinder 1'expands and contracts in the length direction.
【0008】図1に戻って,縦−捩り複合振動子1の捩
り振動駆動電極に捩り振動の共振周波数にほぼ等しい周
波数の交流電圧を印加すると,縦−捩り複合振動子1の
ローター4に圧接側の端部が捩じれるように振動する。
この捩り振動に同期した交流電圧を縦振動駆動用電極に
印加すると,前記縦−捩り複合振動子1のローター4圧
接側の端部にはには,捩り振動部による捩り振動と,縦
振動部による伸縮振動が合成された複合振動が励起され
る。従って,この端部にローター4を圧接すると複合振
動は,ローター4の回転に変換される。尚,このロータ
−4の回転方向の転換は捩り振動駆動電圧の位相と,縦
振動駆動電圧の位相とのいずれか一方を,180°変化
させることで可能である。Returning to FIG. 1, when an AC voltage having a frequency substantially equal to the resonance frequency of torsional vibration is applied to the torsional vibration drive electrode of the longitudinal-torsional composite vibrator 1, the rotor 4 of the longitudinal-torsional composite vibrator 1 is pressure-contacted. It vibrates so that the side end is twisted.
When an AC voltage synchronized with the torsional vibration is applied to the longitudinal vibration driving electrode, the torsional vibration due to the torsional vibration part and the longitudinal vibration part are formed at the end portion of the longitudinal-torsion composite vibrator 1 on the rotor 4 pressure contact side. A composite vibration that is a combination of the stretching vibration due to is excited. Therefore, when the rotor 4 is pressed against this end, the composite vibration is converted into rotation of the rotor 4. The rotation direction of the rotor 4 can be changed by changing the phase of the torsional vibration driving voltage or the phase of the longitudinal vibration driving voltage by 180 °.
【0009】[0009]
【発明の効果】以上示したように,本発明の超音波モー
タにおいては,駆動力を発生させるための圧電振動子の
形状が単純で,通常一般的に適用されているプレス成形
技術により容易に製造することが可能な圧電セラミック
ス中空円柱を用いて,この外周面にこれも一般的な技術
である電極印刷を施すことにより,圧電捩り振動子及び
圧電縦振動子が得られるため,製造が容易で,接着工程
や複雑な加工工程による特性のばらつきの少ない超音波
モータが得られ実用的価値は実に大きい。さらに,本発
明の超音波モータにおいては,ステータを構成する縦−
捩り複合振動子の形状が円筒状であるため直径の小さい
超音波モータを提供することができる。As described above, in the ultrasonic motor of the present invention, the shape of the piezoelectric vibrator for generating the driving force is simple, and it is easy to use the press molding technique which is generally applied. Piezoelectric torsional oscillators and piezoelectric longitudinal oscillators can be obtained by using piezoelectric ceramic hollow cylinders that can be manufactured and by applying electrode printing, which is also a general technique, to the outer peripheral surface of the cylinders. Therefore, an ultrasonic motor with less variation in characteristics due to the bonding process and complicated processing process can be obtained, and its practical value is really great. Furthermore, in the ultrasonic motor of the present invention, the vertical
Since the torsion composite oscillator has a cylindrical shape, it is possible to provide an ultrasonic motor having a small diameter.
【図1】本発明の縦−捩り型超音波モータの一構成例を
示す斜視図である。FIG. 1 is a perspective view showing a structural example of a vertical-torsion ultrasonic motor of the present invention.
【図2】図1の縦−捩り複合振動子圧接型超音波モータ
に用いられる縦−捩り複合振動子の一構成例を示す斜視
図である。FIG. 2 is a perspective view showing a configuration example of a vertical-torsion composite vibrator used in the vertical-torsion composite vibrator pressure contact type ultrasonic motor of FIG.
【図3】従来の超音波モータの構造を示す分解組立斜視
図である。FIG. 3 is an exploded perspective view showing the structure of a conventional ultrasonic motor.
【図4】図3の超音波モータの構造を概略的に示す分解
組立斜視図である。FIG. 4 is an exploded perspective view schematically showing the structure of the ultrasonic motor shown in FIG.
1 縦−捩り複合振動子 1´ 圧電セラミックス中空円柱 2 固定ベース 3 軸受け 4 ローター 10 捩り振動部 11a 第1の斜め電極 12a 第2の斜め電極 11 第1の斜め交差指電極 12 第2の斜め交差指電極 20 縦振動部 21a 第1の周電極 22a 第1の周電極 21 第1の縦交差指電極 22 第2の縦交差指電極 22c 第2の接続電極 106 金属円板 107 圧電セラミックス円板 108 圧電セラミックス円板 109 ローター 1 Vertical-Torsion Composite Oscillator 1'Piezoelectric Ceramic Hollow Cylinder 2 Fixed Base 3 Bearing 4 Rotor 10 Torsional Vibration Part 11a First Oblique Electrode 12a Second Oblique Electrode 11 First Oblique Interdigitated Finger Electrode 12 Second Oblique Intersection Finger electrode 20 Longitudinal vibrating part 21a First peripheral electrode 22a First peripheral electrode 21 First vertical crossing finger electrode 22 Second vertical crossing finger electrode 22c Second connection electrode 106 Metal disk 107 Piezoelectric ceramic disk 108 Piezoelectric ceramic disc 109 rotor
Claims (1)
分の外周面に長さ方向に対して45°の方向に延在する
分極及び駆動用の一対の交差指電極を有し該圧電セラミ
ックス円柱に捩り振動を与える捩り振動部と,前記圧電
セラミック中空円柱の長さ方向の残りの略半分の外周面
に該捩り振動部に隣接して円周方向又は長さ方向に平行
延在する分極及び駆動用の一対の交差指電極を有し該圧
電セラミック中空円柱に縦振動を与える縦振動部とを有
し,一端が固定された圧電縦−捩り複合振動子と, 前記圧電縦−捩り複合振動子の他端に圧接される回転自
在に支持されたローターとを備えたことを特徴とする超
音波モータ。Claim: What is claimed is: 1. A pair of interdigital electrodes for polarization and driving, which extend in a direction of 45 ° with respect to the lengthwise direction, are provided on an outer peripheral surface of the piezoelectric ceramic hollow cylinder approximately half the lengthwise direction. A torsional vibrating portion which applies torsional vibration to the piezoelectric ceramic cylinder, and a circumferential or longitudinal direction adjacent to the torsional vibrating portion on the outer peripheral surface of the remaining approximately half of the length of the piezoelectric ceramic hollow cylinder. A piezoelectric longitudinal-torsion composite oscillator having a pair of interdigitated electrodes for polarization and driving extending in parallel, and a longitudinal vibrating portion for longitudinally vibrating the piezoelectric ceramic hollow cylinder, and one end of which is fixed, An ultrasonic motor, comprising: a rotatably supported rotor that is pressed against the other end of the piezoelectric vertical-torsion composite oscillator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3197394A JPH0522965A (en) | 1991-07-12 | 1991-07-12 | Ultrasonic motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3197394A JPH0522965A (en) | 1991-07-12 | 1991-07-12 | Ultrasonic motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0522965A true JPH0522965A (en) | 1993-01-29 |
Family
ID=16373778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3197394A Pending JPH0522965A (en) | 1991-07-12 | 1991-07-12 | Ultrasonic motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0522965A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170054385A1 (en) * | 2015-08-19 | 2017-02-23 | Lawrence Livermore National Security, Llc | Electrostatic generator/motor rotor electrode system suitable for installation on the outer surface of an emb rotor |
-
1991
- 1991-07-12 JP JP3197394A patent/JPH0522965A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170054385A1 (en) * | 2015-08-19 | 2017-02-23 | Lawrence Livermore National Security, Llc | Electrostatic generator/motor rotor electrode system suitable for installation on the outer surface of an emb rotor |
US10312830B2 (en) * | 2015-08-19 | 2019-06-04 | Lawrence Livermore National Security, Llc | Electrostatic generator/motor rotor electrode system suitable for installation on the outer surface of an EMB rotor |
US10727763B2 (en) | 2015-08-19 | 2020-07-28 | Lawrence Livermore National Security, Llc | Method using a electrostatic generator/motor rotor electrode system suitable for installation on the outer surface of an EMB rotor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4119903B2 (en) | Flat plate piezoelectric ultrasonic motor | |
JPH0522965A (en) | Ultrasonic motor | |
JP3122882B2 (en) | Ultrasonic motor | |
JP2903425B2 (en) | Ultrasonic motor | |
JP3297211B2 (en) | Ultrasonic motor | |
JP2729828B2 (en) | Ultrasonic motor | |
JP2995665B2 (en) | Ultrasonic motor | |
JPH07107756A (en) | Ultrasonic motor | |
JP3122881B2 (en) | Ultrasonic motor | |
JPH02237478A (en) | Ultrasonic motor | |
JP2816851B2 (en) | Piezoelectric torsional displacement element, piezoelectric expansion / contraction displacement element, and piezoelectric composite displacement element | |
JPH0319291A (en) | Piezoelectric composite vibrator | |
JP2832614B2 (en) | Ultrasonic motor | |
JP3168430B2 (en) | Ultrasonic motor | |
JP2832613B2 (en) | Ultrasonic motor | |
JP2691617B2 (en) | Ultrasonic motor | |
JPS62277079A (en) | Piezoelectric driving device | |
JPH0522962A (en) | Ultrasonic motor | |
JP3141210B2 (en) | Ultrasonic motor | |
JPS6344970A (en) | Ultrasonic vibrator and drive control method thereof | |
JPS63110973A (en) | Piezoelectric driver | |
JPH0340765A (en) | Ultrasonic motor | |
JP2007135267A (en) | Ultrasonic motor | |
JPH072033B2 (en) | Ultrasonic motor | |
JPH04125076A (en) | Ultrasonic wave motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010328 |