JPH0522948A - Resonance-type inverter - Google Patents

Resonance-type inverter

Info

Publication number
JPH0522948A
JPH0522948A JP3172236A JP17223691A JPH0522948A JP H0522948 A JPH0522948 A JP H0522948A JP 3172236 A JP3172236 A JP 3172236A JP 17223691 A JP17223691 A JP 17223691A JP H0522948 A JPH0522948 A JP H0522948A
Authority
JP
Japan
Prior art keywords
pulse width
circuit
resonance
voltage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3172236A
Other languages
Japanese (ja)
Other versions
JP3049667B2 (en
Inventor
Yosuke Nozaki
洋介 野崎
Chuichi Aoki
忠一 青木
Yutaka Kuwata
豊 鍬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3172236A priority Critical patent/JP3049667B2/en
Publication of JPH0522948A publication Critical patent/JPH0522948A/en
Application granted granted Critical
Publication of JP3049667B2 publication Critical patent/JP3049667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To suppress the low-order higher harmonic components of AC voltage and to reduce device size by changing the modulation period of a pulse width modulation signal in accordance with the amplitude of a reference sine wave, and making it into a modulation-period-variable pulse width signal having pulse width proportional to the amplitude of the reference sine wave. CONSTITUTION:High-frequency resonance output voltage (e1) synchronized with a reference oscillator 5 is generated by a resonance voltage generating circuit 1 and put into a polarity changing circuit 2. On the other hand, in a modulation-period-variable pulse width signal generating circuit 15, the output signal CP of the reference oscillator 5 and the output signal of the reference sine wave V1 of a sine wave generator 16 synchronized with the reference oscillator 5 are put into an arithmetic circuit 17 for a modulation-period-variable pulse width signal. In the arithmetic circuit 17, a pulse width modulation period and pulse width during its duration are determined. If the modulation-period- variable pulse width signal Vg is 'L', a polarity changing switch is operated as mode A for output-side current to flow back. And if the modulationperiod- variable pulse width signal Vg is 'H', a control switch is operated as mode B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、共振電圧発生回路出力
の高周波共振電圧を変調して、低周波の交流電圧を得る
共振型インバータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resonance type inverter for modulating a high frequency resonance voltage output from a resonance voltage generating circuit to obtain a low frequency AC voltage.

【0002】[0002]

【従来の技術】近年、交流電源装置を、低雑音化・高効
率化・小型化する目的で、共振電圧発生回路出力の高周
波共振電圧を周波数変換して低周波の交流電圧を得る共
振型インバータが研究されている。
2. Description of the Related Art In recent years, a resonance type inverter for converting a high frequency resonance voltage output from a resonance voltage generating circuit into a low frequency AC voltage for the purpose of reducing noise, improving efficiency and downsizing an AC power supply device. Is being studied.

【0003】従来の共振型インバータのブロック図を図
6に示す。この共振形インバータAは共振電圧発生回路
1、極性切り替え回路2、制御回路3,低域通過フィル
タ4から構成され、さらに制御回路3は基準発振器5、
パルス幅変調信号発生回路6、同期パルス幅変調信号発
生回路7、スイッチ決定論理回路8、正・負信号発生回
路9、駆動回路10,11から構成されている。また、
パルス幅変調信号発生回路6は例えば、正弦波発生器1
2、三角波発生器13、比較器14から構成される。
A block diagram of a conventional resonant inverter is shown in FIG. This resonance type inverter A is composed of a resonance voltage generating circuit 1, a polarity switching circuit 2, a control circuit 3 and a low pass filter 4, and the control circuit 3 has a reference oscillator 5 and
It is composed of a pulse width modulation signal generation circuit 6, a synchronous pulse width modulation signal generation circuit 7, a switch decision logic circuit 8, a positive / negative signal generation circuit 9, and drive circuits 10 and 11. Also,
The pulse width modulation signal generation circuit 6 is, for example, the sine wave generator 1
2, a triangular wave generator 13 and a comparator 14.

【0004】この回路の動作波形を図7に示す。基準発
振器5に同期した高周波共振出力電圧e1[図7
(a)]が共振電圧発生回路1により発生し、極性切替
回路2に入力される。一方、パルス幅変調信号発生回路
6では基準発振器5に同期した正弦波発生器12から出
力される基準正弦波V1とキャリア三角波発生器13の
出力信号V2[図7(b)]が比較器14で比較され、
正弦波V1の振幅に比例したパルス幅を持つパルス幅変
調信号V3[図7(c)]が発生し、このパルス幅変調
信号V3は同期パルス幅変調信号発生回路7により、共
振電圧発生回路1の出力電圧e1に同期した同期パルス
幅変調信号Vc[図7(d)]に変換される。
The operation waveform of this circuit is shown in FIG. The high frequency resonance output voltage e1 synchronized with the reference oscillator 5 [FIG.
(A)] is generated by the resonance voltage generating circuit 1 and input to the polarity switching circuit 2. On the other hand, in the pulse width modulation signal generation circuit 6, the reference sine wave V1 output from the sine wave generator 12 synchronized with the reference oscillator 5 and the output signal V2 of the carrier triangular wave generator 13 [FIG. Compared with
A pulse width modulation signal V3 [FIG. 7 (c)] having a pulse width proportional to the amplitude of the sine wave V1 is generated, and the pulse width modulation signal V3 is generated by the synchronous pulse width modulation signal generation circuit 7 by the resonance voltage generation circuit 1 Is converted into a synchronous pulse width modulation signal Vc [FIG. 7 (d)] which is synchronized with the output voltage e1.

【0005】この同期パルス幅変調信号Vcは、共振電
圧発生回路1の出力電圧e1の一発生周期Tの最初の時
点(1T,2T,3T,…)での出力電圧e1の信号
を、その終了まで保持している。すなわち、一発生周期
Tの途中で信号が変化することはない。同期パルス幅変
調信号Vcは、スイッチ決定論理回路8に入力され、同
期パルス幅変調信号Vcが“L”であれば、高周波共振
出力電圧e1を通過させず、出力側の電流を極性切替回
路2のスイッチを通じて還流させるモードAとして、極
性切替回路2の制御スイッチを駆動回路11を介して動
作させる。
This synchronous pulse width modulation signal Vc is the signal of the output voltage e1 at the first time point (1T, 2T, 3T, ...) Of one generation cycle T of the output voltage e1 of the resonance voltage generating circuit 1 and its end. Holds up. That is, the signal does not change in the middle of one generation period T. The synchronous pulse width modulation signal Vc is input to the switch decision logic circuit 8, and if the synchronous pulse width modulation signal Vc is "L", the high frequency resonance output voltage e1 is not passed and the output side current is switched to the polarity switching circuit 2. In the mode A in which the electric current is returned through the switch, the control switch of the polarity switching circuit 2 is operated via the drive circuit 11.

【0006】また、同期パルス幅変調信号Vcが“H”
で、正・負信号発生回路9からの正・負方向信号V4
[図7(e)]が“H”、すなわち、正方向であれば、
高周波共振出力電圧e1の極性の切り替えを行わずに極
性切換回路2を通過させ、正方向の極性を有する共振出
力電圧e2を出力させるモードBとして、極性切替回路
2の制御スイッチを駆動回路11を介して動作させる。
Further, the synchronous pulse width modulation signal Vc is "H".
Then, the positive / negative direction signal V4 from the positive / negative signal generation circuit 9
If [FIG. 7 (e)] is “H”, that is, in the positive direction,
As a mode B in which the polarity switching circuit 2 is allowed to pass without switching the polarity of the high-frequency resonance output voltage e1 and the resonance output voltage e2 having a positive polarity is output, the control switch of the polarity switching circuit 2 is set to the drive circuit 11. To work through.

【0007】さらに、同期パルス幅変調信号Vcが
“H”で、正・負方向信号V4が“L”であれば、高周
波共振出力電圧e1の極性を変化させ、負方向の極性を
有する共振電圧を出力するモードCとして極性切替回路
2の制御スイッチを駆動回路11を介して動作させる。
これらの動作モードA〜Cを同期パルス幅変調信号Vc
と正・負方向信号V4に従って繰り返すことにより、極
性切替回路2の出力波形はe2[図7(f)]となり、
この電圧e2は低域通過フィルタ4を通過することによ
って、低周波の交流電圧e3[図7(g)]となる。
Further, if the synchronous pulse width modulation signal Vc is "H" and the positive / negative direction signal V4 is "L", the polarity of the high frequency resonance output voltage e1 is changed to a resonance voltage having a negative direction polarity. The control switch of the polarity switching circuit 2 is operated via the drive circuit 11 as the mode C for outputting
These operation modes A to C are set to the synchronous pulse width modulation signal Vc.
And the positive / negative direction signal V4, the output waveform of the polarity switching circuit 2 becomes e2 [FIG. 7 (f)],
The voltage e2 passes through the low-pass filter 4 to become a low-frequency AC voltage e3 [FIG. 7 (g)].

【0008】この従来の共振型インバータAは、同期パ
ルス幅変調信号Vcに従ってモードの切り替えを行って
いるため、共振電圧発生回路1の出力の途中でモードが
切り替わらないので、極性切替回路2においても、ゼロ
電圧状態でのスイッチングが可能となり、スイッチング
損失及びスイッチングサージを低減することが可能とな
る。従って、この従来の共振型インバータAは、高効率
であり、また、ノイズの発生が少ないという利点を有す
る。
Since the conventional resonance type inverter A switches the mode according to the synchronous pulse width modulation signal Vc, the mode is not switched in the middle of the output of the resonance voltage generating circuit 1, so that the polarity switching circuit 2 is also switched. The switching can be performed in the zero voltage state, and the switching loss and the switching surge can be reduced. Therefore, this conventional resonant inverter A has the advantages of high efficiency and low noise generation.

【0009】[0009]

【発明が解決しようとする課題】しかし、その反面、こ
の共振型インバータAによれば、パルス幅変調信号V3
と同期パルス幅変調信号Vcとの間に図7(d)で示す
ような誤差が生じ、同期パルス幅信号Vcのパルス幅
と、基準正弦波V1の振幅との間に比例関係が成り立た
なくなるため、出力電圧波形e3に歪が生じ、低次高調
波成分の増加につながる。これを解決するためには、共
振電圧発生回路1の周波数を充分に高くするか、キャリ
ア三角波出力信号V2の周波数を共振電圧発生回路1の
出力電圧e1より充分低くするか、という2つの方法が
考えられるが、前者の方法では、共振電圧発生回路1の
共振周波数の上昇に伴い共振電圧発生回路1内の共振用
リアクタのインダクタンス及び共振用コンデンサの容量
が小さくなるため、配線等のインダクタンス成分及びキ
ャパシタンス成分の影響を受け易くなり、共振電圧発生
回路1の設計条件が厳しくなる。
On the other hand, however, according to this resonance type inverter A, the pulse width modulation signal V3
Since an error as shown in FIG. 7D occurs between the sync pulse width modulation signal Vc and the sync pulse width modulation signal Vc, a proportional relationship between the pulse width of the sync pulse width signal Vc and the amplitude of the reference sine wave V1 is lost. , The output voltage waveform e3 is distorted, leading to an increase in low-order harmonic components. In order to solve this, there are two methods, that is, the frequency of the resonance voltage generating circuit 1 is made sufficiently high, or the frequency of the carrier triangular wave output signal V2 is made sufficiently lower than the output voltage e1 of the resonance voltage generating circuit 1. Although considered, in the former method, the inductance of the resonance reactor and the capacitance of the resonance capacitor in the resonance voltage generation circuit 1 become smaller as the resonance frequency of the resonance voltage generation circuit 1 increases, so that the inductance component of wiring and It becomes easy to be influenced by the capacitance component and the design condition of the resonance voltage generating circuit 1 becomes strict.

【0010】また、後者の方法では、パルス幅変調によ
る出力高調波の抑制効果が小さくなり、低域通過フィル
タ4の大型化や出力インピーダンスの増加による電気的
特性の悪化という問題が生じる。ここにおいて、本発明
は、上記従来の共振型インバータの欠点に鑑みて、交流
電圧の低次高調波成分を抑制し、低域通過フィルタの高
周波化が図れる共振型インバータを提供せんとするもの
である。
In the latter method, the effect of suppressing the output harmonics by the pulse width modulation becomes small, and there arises a problem that the low-pass filter 4 becomes large and the output impedance increases to deteriorate the electrical characteristics. Here, in view of the above-mentioned drawbacks of the conventional resonant inverter, the present invention provides a resonant inverter that suppresses low-order harmonic components of an AC voltage and enables a high-frequency low-pass filter. is there.

【0011】[0011]

【課題を解決するための手段】前記課題の解決は、本発
明の次に列挙する新規な特徴的構成手段を採用すること
により達成される。すなわち、本発明の第1の特徴は、
高周波共振出力電圧を発生する共振電圧発生回路と、当
該共振電圧発生回路の高周波共振出力電圧の極性を切り
替える極性切替回路と、前記高周波共振出力電圧に同期
し所望の周波数の交流電圧の振幅に対応するパルス幅変
調信号により前記極性の切り替えを制御する制御回路
と、前記極性切替回路の出力のうち前記所望の周波数の
交流電圧を通過させて出力電圧を発生させる低域通過フ
ィルタとを有する共振型インバータにおいて、前記制御
回路内に基準発振器を共通する変調周期可変パルス幅信
号発生回路と正・負信号発生回路とを備えて、前記制御
回路を前記パルス幅変調信号の変調周期を前記所望の周
波数の交流電圧の振幅に対応して変化自在に回路構成し
てなる共振型インバータである。
The solution of the above-mentioned problems can be achieved by adopting the novel characteristic constitutional means listed below in the present invention. That is, the first feature of the present invention is
A resonance voltage generation circuit that generates a high frequency resonance output voltage, a polarity switching circuit that switches the polarity of the high frequency resonance output voltage of the resonance voltage generation circuit, and an amplitude of an AC voltage of a desired frequency that is synchronized with the high frequency resonance output voltage. Resonant type having a control circuit for controlling switching of the polarity by a pulse width modulation signal, and a low-pass filter for passing an AC voltage of the desired frequency among the outputs of the polarity switching circuit to generate an output voltage In the inverter, the control circuit includes a modulation period variable pulse width signal generation circuit and a positive / negative signal generation circuit that share a reference oscillator, and the control circuit controls the modulation period of the pulse width modulation signal to the desired frequency. Is a resonance type inverter having a circuit configuration that can be changed according to the amplitude of the AC voltage.

【0012】本発明の第2の特徴は、前記第1の特徴に
おける制御回路において、変調周期可変パルス幅信号発
生回路が、共振電圧発生回路の高周波共振出力電圧と同
期し、かつ、前記制御回路が当該所望周波数の交流電圧
の振幅に比例したパルス幅になるような変調周期可変パ
ルス幅信号を出力することにより極性切替回路を制御せ
しめ、前記出力電圧の低次高調波成分を抑制自在に回路
構成してなる共振型インバータである。
According to a second aspect of the present invention, in the control circuit according to the first aspect, the modulation period variable pulse width signal generation circuit is synchronized with the high frequency resonance output voltage of the resonance voltage generation circuit, and The polarity switching circuit is controlled by outputting a modulation period variable pulse width signal such that the pulse width is proportional to the amplitude of the AC voltage of the desired frequency, and the circuit can freely suppress low-order harmonic components of the output voltage. It is a resonance type inverter configured.

【0013】[0013]

【作用】本発明は、前記のような手段を講じるので、パ
ルス幅変調信号の変調周期を、基準正弦波の振幅に応じ
て変化させ、共振電圧発生回路の出力電圧に同期し、か
つ、基準正弦波の振幅に比例したパルス幅となるような
変調周期可変パルス幅信号とするので、交流電圧の低次
高調波成分を抑制する。
According to the present invention, since the above-mentioned means is taken, the modulation period of the pulse width modulation signal is changed according to the amplitude of the reference sine wave, and the reference voltage is synchronized with the output voltage of the resonance voltage generating circuit. Since the modulation period variable pulse width signal has a pulse width proportional to the amplitude of the sine wave, the low-order harmonic component of the AC voltage is suppressed.

【0014】[0014]

【実施例】本発明の実施例を図について説明する。図1
は本実施例の共振型インバータ回路のブロック構成図、
図2は図1の本実施例における動作波形、図3は図1中
の変調周期可変パルス幅信号演算回路における演算のフ
ローチャート、図4は本実施例の極性切替回路の出力電
圧の高調波成分の分析グラフ、図5は図6の従来例の共
振型インバータAの極性切替回路の高調波成分の分析グ
ラフである。図中、Bは本実施例の共振型インバータ、
15は変調周期可変パルス幅信号発生回路、16は正弦
波発生器、17は変調周期可変パルス幅信号演算回路で
ある。なお、図中、図6の従来例と同一の要素には、同
一の符号を付した。
Embodiments of the present invention will be described with reference to the drawings. Figure 1
Is a block configuration diagram of the resonant inverter circuit of the present embodiment,
2 is an operation waveform in the present embodiment of FIG. 1, FIG. 3 is a flowchart of calculation in the modulation period variable pulse width signal arithmetic circuit in FIG. 1, and FIG. 4 is a harmonic component of the output voltage of the polarity switching circuit of the present embodiment. 5 is an analysis graph of the harmonic component of the polarity switching circuit of the resonant inverter A of the conventional example of FIG. In the figure, B is the resonant inverter of this embodiment,
Reference numeral 15 is a modulation period variable pulse width signal generation circuit, 16 is a sine wave generator, and 17 is a modulation period variable pulse width signal calculation circuit. In the figure, the same elements as those of the conventional example of FIG. 6 are designated by the same reference numerals.

【0015】本実施例の共振型インバータBの仕様は、
このような具体的実施態様を呈し次にその動作を説明す
る。基準発振器5に同期した高周波共振出力電圧e1が
共振電圧発生回路1により発生し、極性切替回路2に入
力される。一方、変調周期可変パルス幅信号発生回路1
5では、基準発振器5の出力信号CPと基準発振器5に
同期した正弦波発生器6の基準正弦波V1出力信号とが
変調周期可変パルス幅信号演算回路17に入力され、変
調周期可変パルス幅信号演算回路17は図3に示すスタ
ート(START)からエンド(END)に至るステッ
プI〜VII を経るフローチャートに従って、パルス幅変
調周期及びその期間内でのパルス幅を決定する。
The specifications of the resonance type inverter B of this embodiment are as follows.
The operation will be described below by presenting such a concrete embodiment. A high frequency resonance output voltage e1 synchronized with the reference oscillator 5 is generated by the resonance voltage generating circuit 1 and input to the polarity switching circuit 2. On the other hand, the modulation period variable pulse width signal generation circuit 1
5, the output signal CP of the reference oscillator 5 and the reference sine wave V1 output signal of the sine wave generator 6 synchronized with the reference oscillator 5 are input to the modulation cycle variable pulse width signal calculation circuit 17, and the modulation cycle variable pulse width signal is output. The arithmetic circuit 17 determines the pulse width modulation period and the pulse width within that period according to the flow chart including steps I to VII from the start (START) to the end (END) shown in FIG.

【0016】具体的には、初期手順としてパルス幅変調
周期内の共振電圧の個数n=1、これと対応するパルス
幅に正方向又は負方向に出力される共振電圧の個数k=
0から設定を始め(ステップI参照)、次いで、期間i
の変調周期及びパルス幅を決定するには、パルス幅変調
周期によって変化する基準正弦波V1の期間i内の平均
値bi(ステップII参照)と基準正弦波V1の最大振幅
aとの比bi/aと、個数nと個数kとの比k/nとの
比較を行い、その差|bi/a−k/n|が微少な許容
値D(ステップIII 参照)以下となるnとkの値を求め
る(ステップIV〜VI参照)ことにより、共振電圧発生回
路1の出力電圧e1に同期し、かつ、基準正弦波V1の
振幅に比例したパルス幅となるパルス幅変調周期niT
とパルス幅kiTの組合せが与えられ、各期間について
繰り返し演算する(ステップII,III 参照)ことによっ
て、図2(c)に示すような変調周期可変パルス幅信号
Vgを獲得する(ステップVII 参照)。
Specifically, as an initial procedure, the number of resonance voltages in the pulse width modulation period is n = 1, and the number of resonance voltages output in the positive or negative direction corresponding to the pulse width is k =.
Start setting from 0 (see step I), then period i
In order to determine the modulation period and pulse width of the reference sine wave V1, the ratio of the average value bi (see step II) of the reference sine wave V1 that varies with the pulse width modulation period to the maximum amplitude a of the reference sine wave V1 bi / a is compared with the ratio k / n of the number n and the number k, and the difference | bi / a−k / n | is less than a small allowable value D (see step III). Is obtained (see steps IV to VI), the pulse width modulation period niT is synchronized with the output voltage e1 of the resonance voltage generating circuit 1 and has a pulse width proportional to the amplitude of the reference sine wave V1.
And a pulse width kiT are given, and the variable modulation period pulse width signal Vg as shown in FIG. 2C is obtained by repeatedly calculating for each period (see steps II and III) (see step VII). .

【0017】獲得された変調周期可変パルス幅信号Vg
は、スイッチ決定論理回路8に入力され、変調可変パル
ス幅信号Vgが“L”であれば、高周波共振出力電圧e
1を通過させず、出力側の電流を極性切替回路2のスイ
ッチを通じて還流させるモードAとして極性切替回路2
の制御スイッチを駆動回路11を介して動作させる。ま
た、変調周期可変パルス幅信号Vgが“H”で正・負方
向信号V4[図2(d)]が“H”、すなわち、正方向
であれば、高周波共振出力電圧e1の極性の切り替えを
行わずに極性変換回路2を通過させ、正方向の極性を有
する共振電圧を出力させるモードBとして極性切替回路
2の制御スイッチを駆動回路11を介して動作させる。
Obtained modulation period variable pulse width signal Vg
Is inputted to the switch decision logic circuit 8, and if the modulation variable pulse width signal Vg is "L", the high frequency resonance output voltage e
The polarity switching circuit 2 is set as a mode A in which the current on the output side is returned through the switch of the polarity switching circuit 2 without passing through 1.
The control switch is operated via the drive circuit 11. Further, when the modulation cycle variable pulse width signal Vg is “H” and the positive / negative direction signal V4 [FIG. 2 (d)] is “H”, that is, in the positive direction, the polarity of the high frequency resonance output voltage e1 is switched. The control switch of the polarity switching circuit 2 is operated via the drive circuit 11 as a mode B in which the resonance voltage having the positive polarity is output without passing through the polarity conversion circuit 2.

【0018】また、変調周期可変パルス幅信号Vgが
“H”で、正・負方向信号V4が“L”であれば、高周
波共振出力電圧e1の極性を変化させ、負方向の極性を
有する共振電圧を出力するモードCとして極性切替回路
2の制御スイッチを駆動回路11を介して動作させる。
これらのA〜Cの動作モードを変調周期可変パルス幅信
号Vgと正・負方向信号V4に従って繰り返すことによ
り、極性切替回路2の出力電圧e2波形は[図2
(e)]となり、この出力電圧e2を低域通過フィルタ
4を通すことによって、正弦波交流電圧e3[図2
(f)]を獲得する。なお、変調周期可変パルス幅信号
演算回路17には、高速なマイクロプロセッサを使用
し、瞬時に波形を演算する方法を用いる。
If the modulation cycle variable pulse width signal Vg is "H" and the positive / negative direction signal V4 is "L", the polarity of the high-frequency resonance output voltage e1 is changed and the resonance having the negative direction polarity is generated. In mode C for outputting a voltage, the control switch of the polarity switching circuit 2 is operated via the drive circuit 11.
By repeating these operation modes A to C according to the modulation cycle variable pulse width signal Vg and the positive / negative direction signal V4, the waveform of the output voltage e2 of the polarity switching circuit 2 becomes as shown in FIG.
(E)], and the output voltage e2 is passed through the low-pass filter 4 to obtain a sinusoidal AC voltage e3 [Fig.
(F)] is acquired. A high-speed microprocessor is used for the modulation period variable pulse width signal calculation circuit 17, and a method of instantaneously calculating the waveform is used.

【0019】(比較例)本実施例及び従来例の共振型イ
ンバータB,Aを使用した際の、極性切替回路2の出力
電圧e2の高調波成分を分析したグラフを図4及び図5
に示す。図4は本実施例の共振型インバータBを使用し
た際の極性切替回路2の出力電圧[図2(e)]の高調
波成分を分析したグラフで、測定条件は、入力電圧10
0V,高周波共振出力電圧e1の発生周期100kH
z,図3における許容値D=0.005である。
(Comparative Example) FIGS. 4 and 5 are graphs in which the harmonic components of the output voltage e2 of the polarity switching circuit 2 when the resonant inverters B and A of this embodiment and the conventional example are used.
Shown in. FIG. 4 is a graph in which the harmonic components of the output voltage [FIG. 2 (e)] of the polarity switching circuit 2 when the resonant inverter B of this embodiment is used are analyzed.
0 V, generation cycle of high frequency resonance output voltage e1 100 kHz
z, the allowable value D in FIG. 3 is 0.005.

【0020】図5は、従来例の共振型インバータAを使
用した際の、極性切替回路2の出力電圧e2[図7
(f)]の高調波成分を分析したグラフで、測定条件
は、入力電圧100V,高周波共振出力電圧e1の発生
周期100kHz,キャリア三角波V2の周波数は10
kHzである。この条件は、従来技術を用いた共振型イ
ンバータAでは、低次の高調波成分が最も少ない例であ
る。
FIG. 5 shows the output voltage e2 of the polarity switching circuit 2 when the conventional resonance type inverter A is used [FIG.
(F)] is a graph in which the harmonic components are analyzed. The measurement conditions are as follows: input voltage 100 V, high frequency resonance output voltage e1 generation period 100 kHz, carrier triangular wave V2 frequency 10
kHz. This condition is an example in which the resonance-type inverter A using the conventional technique has the least low-order harmonic components.

【0021】図4及び図5を比較すると、本実施例にお
ける共振型インバータBの低次の高調波は、従来技術を
用いた共振型インバータAより小さく、特に3次から7
次の成分は、1/2から1/5程度に抑制されることが
わかる。なお、本実施例では、図3に示す許容値Dによ
って、低次高調波成分の抑制効果が変化するため、高周
波共振出力電圧e1の発生周期と、インバータ出力の交
流電圧の周波数に応じて、最適な許容値Dの値を選定す
ることが必要である。
Comparing FIG. 4 and FIG. 5, the low-order harmonics of the resonance type inverter B in this embodiment are smaller than those of the resonance type inverter A using the prior art.
It can be seen that the following components are suppressed to about 1/2 to 1/5. In the present embodiment, the effect of suppressing the low-order harmonic component changes depending on the allowable value D shown in FIG. 3, and therefore, depending on the generation period of the high frequency resonance output voltage e1 and the frequency of the AC voltage of the inverter output, It is necessary to select the optimum allowable value D.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
パルス幅変調信号の変調周期を、基準正弦波の振幅に応
じて変化させ、共振電圧発生回路の出力電圧に同期し、
かつ、基準正弦波の振幅に比例したパルス幅を持つ変調
周期可変パルス幅信号とすることにより、交流電圧の低
次高調波成分を抑制することが可能となり、装置に使用
する低域通過フィルタのカットオフ周波数を高くするこ
とが可能となり、低域通過フィルタを小型・軽量化で
き、従って、共振型インバータ装置全体の小型・軽量化
が可能となる等優れた効用性、有用性を発揮する。
As described above, according to the present invention,
The modulation cycle of the pulse width modulation signal is changed according to the amplitude of the reference sine wave, synchronized with the output voltage of the resonance voltage generation circuit,
Moreover, by using a modulation period variable pulse width signal having a pulse width proportional to the amplitude of the reference sine wave, it becomes possible to suppress the low-order harmonic components of the AC voltage, and the low-pass filter of the device is used. The cutoff frequency can be increased, and the low-pass filter can be reduced in size and weight. Therefore, the resonance type inverter device as a whole can be reduced in size and weight, thus exhibiting excellent utility and usefulness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す共振型インバータ回路の
ブロック構成図である。
FIG. 1 is a block configuration diagram of a resonance type inverter circuit showing an embodiment of the present invention.

【図2】同上の動作波形である。FIG. 2 is an operation waveform of the above.

【図3】同上に備わった変調周期可変パルス幅信号演算
回路における演算のフローチャートである。
FIG. 3 is a flowchart of calculation in a modulation period variable pulse width signal calculation circuit provided therein.

【図4】同上に備わった極性切替回路の出力電圧の高調
波成分の分析グラフである。
FIG. 4 is an analysis graph of a harmonic component of the output voltage of the polarity switching circuit provided in the same.

【図5】従来の共振型インバータの極性切替回路の高調
波成分の分析グラフである。
FIG. 5 is an analysis graph of harmonic components of a polarity switching circuit of a conventional resonance type inverter.

【図6】従来の共振型インバータ回路のブロック構成図
である。
FIG. 6 is a block diagram of a conventional resonant inverter circuit.

【図7】同上の動作波形である。FIG. 7 is an operation waveform of the above.

【符号の説明】[Explanation of symbols]

A…従来の共振型インバータ B…本実施例の共振型インバータ 1…共振電圧発生回路 2…極性切替回路 3…制御回路 4…低域通過フィルタ 5…基準発振器 6…パルス幅変調信号発生回路 7…同期パルス幅変調信号回路 8…スイッチ決定論理回路 9…正・負信号発生回路 10,11…駆動回路 12,16…正弦波発生器 13…三角波発生器 14…比較器 15…変調周期可変パルス幅信号発生回路 17…変調周期可変パルス幅信号演算回路 A: Conventional resonance type inverter B ... Resonant inverter of this embodiment 1 ... Resonance voltage generation circuit 2 ... Polarity switching circuit 3 ... Control circuit 4 ... Low pass filter 5 ... Reference oscillator 6 ... Pulse width modulation signal generation circuit 7. Synchronous pulse width modulation signal circuit 8 ... Switch decision logic circuit 9 ... Positive / negative signal generation circuit 10, 11 ... Driving circuit 12, 16 ... Sine wave generator 13 ... Triangle wave generator 14 ... Comparator 15. Modulation cycle variable pulse width signal generation circuit 17 ... Modulation cycle variable pulse width signal arithmetic circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高周波共振出力電圧を発生する共振電圧発
生回路と、当該共振電圧発生回路の高周波共振出力電圧
の極性を切り替える極性切替回路と、前記高周波共振出
力電圧に同期し所望の周波数の交流電圧の振幅に対応す
るパルス幅変調信号により前記極性切替回路の極性の切
り替えを制御する制御回路と、前記極性切替回路の出力
のうち前記所望の周波数の交流電圧を通過させて出力電
圧を発生させる低域通過フィルタとを有する共振型イン
バータにおいて、前記制御回路内に基準発振器を共通す
る変調周期可変パルス幅信号発生回路と正・負信号発生
回路とを備えて、前記制御回路を前記パルス幅変調信号
の変調周期を前記所望の周波数の交流電圧の振幅に対応
して変化自在に回路構成したことを特徴とする共振型イ
ンバータ
1. A resonance voltage generation circuit for generating a high frequency resonance output voltage, a polarity switching circuit for switching the polarity of the high frequency resonance output voltage of the resonance voltage generation circuit, and an alternating current of a desired frequency synchronized with the high frequency resonance output voltage. A control circuit that controls the switching of the polarity of the polarity switching circuit by a pulse width modulation signal corresponding to the amplitude of the voltage, and an AC voltage of the desired frequency among the outputs of the polarity switching circuit is passed to generate an output voltage. In a resonance type inverter having a low-pass filter, the control circuit includes a modulation period variable pulse width signal generation circuit and a positive / negative signal generation circuit that share a reference oscillator, and the control circuit is pulse width modulated. A resonance type inverter characterized in that the circuit is configured so that the modulation period of the signal can be changed corresponding to the amplitude of the AC voltage of the desired frequency.
【請求項2】制御回路において、変調周期可変パルス幅
信号発生回路が、共振電圧発生回路の高周波共振出力電
圧と同期し、かつ、当該所望周波数の交流電圧の振幅に
比例したパルス幅になるような変調周期可変パルス幅信
号を出力することにより極性切替回路を制御せしめ、前
記出力電圧の低次高調波成分を抑制自在に回路構成する
ことを特徴とする請求項1記載の共振型インバータ
2. In the control circuit, the modulation period variable pulse width signal generation circuit is synchronized with the high frequency resonance output voltage of the resonance voltage generation circuit and has a pulse width proportional to the amplitude of the AC voltage of the desired frequency. 2. The resonant inverter according to claim 1, wherein the polarity switching circuit is controlled by outputting a variable modulation period variable pulse width signal, and the low-order harmonic component of the output voltage can be suppressed.
JP3172236A 1991-07-12 1991-07-12 Resonant inverter Expired - Fee Related JP3049667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3172236A JP3049667B2 (en) 1991-07-12 1991-07-12 Resonant inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3172236A JP3049667B2 (en) 1991-07-12 1991-07-12 Resonant inverter

Publications (2)

Publication Number Publication Date
JPH0522948A true JPH0522948A (en) 1993-01-29
JP3049667B2 JP3049667B2 (en) 2000-06-05

Family

ID=15938142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3172236A Expired - Fee Related JP3049667B2 (en) 1991-07-12 1991-07-12 Resonant inverter

Country Status (1)

Country Link
JP (1) JP3049667B2 (en)

Also Published As

Publication number Publication date
JP3049667B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JP3392128B2 (en) Resonant inverter
JP2001522218A (en) Variable frequency pulse inverter and wind power generation equipment equipped with the pulse inverter
CN112072943B (en) H-bridge inverter power supply PWM modulation method for eliminating odd-order switch harmonic waves
Calleja et al. Improved induction-heating inverter with power factor correction
KR20030011274A (en) Method and device for reducing harmonics in power converters
JP2007252048A (en) Power controller
JPH03107373A (en) Power converter and control method thereof
EP0603683A2 (en) Frequency converter, procedure for controlling it and motor control using a frequency converter
CN113852289B (en) Multi-tap transformer inductance sectional configuration and control method of BCM flyback inverter
JPH0522948A (en) Resonance-type inverter
Dewangan et al. A Bipolar Multilevel Structure for DC/AC Conversion with Reduced Device Count
JPS6127991B2 (en)
JPH0779570A (en) Power converter
KR100583974B1 (en) Method for PWM signal generation in inverter apparatus
JPH02202368A (en) Control method for pwm inverter
JP3421166B2 (en) Switching power supply control method
CN113328648B (en) Inverter PWM modulation method and device
JP2654876B2 (en) Power supply for switching power converter
KR20040040530A (en) Parallel control system of single-phase inverter
Colak et al. High frequency resonant DC link PWM inverter
JPS5855756B2 (en) AC power supply
JPS58212371A (en) Method and device for controlling pulse width of inverter
Rajeev et al. A Switched Inductor Based Five Level NPC Quasi-Z Source Inverter
Hatase et al. Improvement of output voltage waveform for ARCP matrix converter
JPH07250479A (en) Method of controlling three-level inverter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees